CENG 222

Statistical Methods for Computer Engineering

Week 14

Chapter 6 Stochastic Processes Counting Processes Simulation of Stochastic Processes

Counting Processes

- X is a counting process if X(t) shows the number of items counted by time t ∈ T.
- Counting processes are non-decreasing
- Since they show count, they are discrete-state processes
- Can be *discrete-time* (Binomial Process) or *continuous-time* (Poisson Process)
- Examples:
 - Counting emails received by time t
 - Counting total number of goals scored in a game by time t

Binomial process

- Discrete-time (i.e., each time step contains a Bernoulli trial)
- A binomial process *X*(*t*) is the number of successes by the time *t* in a sequence of independent Bernoulli trials.
- *X*(*t*) number of successes by the time *t* Binomial(*tp*)
- Y number of trials between two successes
 Geometric(p)

Binomial Process

FIGURE 6.7: Binomial process (sample path). Legend: S = success, F = failure.

of trials versus time

- Although discrete, if the time unit for each trial is not 1 (second, minute, etc.), we may need to be careful in using the value of *t* in our computations.
- For example: if a Bernoulli trial occurs every 3 seconds, X(6) is not Binomial(6,p) but it is Binomial(2,p) (2 trials in 6 seconds).
- The time interval Δ of each Bernoulli is called a frame.
 - Number of trials equals to t/Δ

Arrival/Success rate λ

• If p is the success rate at Δ units of time, then λ is the success rate per 1 unit of time

 $-\lambda = p/\Delta$

T is the time between two success. (Y was the number of trials (Δs) between two success.
 T = YΔ

Transition probabilities of a Binomial Process

FIGURE 6.8: Transition diagram for a Binomial counting process.

• Is it regular?

Poisson counting process

• When the frame Δ approaches 0, we approach a continuous-time counting process.

– Note that as Δ approaches 0, *p* also approaches 0.

- Taking the success/arrival rate per unit of time,
 λ, as constant, we may model such continuous counting processes.
- X(t) becomes a Poisson(λt) variable. T
 becomes an Exponential(λ) variable.

Using the Gamma-Poisson formula

- Recall that Poisson problems could be solved using the Gamma distribution (Chapter 4)
 – Gamma-Poisson formula (Eq. 4.14)
- Time needed for the *k*th success, T_k , is a Gamma(k, λ) variable
- $P(T_k \le t) = P(k \text{ successes before time } t) = P(X(t) \ge k)$

- T_k is Gamma(k, λ) and X(t) is Poisson(λt)

Poisson Process

Simulation of Stochastic Processes

- We can use random sampling techniques we learned in Chapter 5 to simulate stochastic processes.
 - For example: state transitions are discrete with specific *pmfs*, which could be simulated by using Algorithm 5.1 (or the Alias method for efficiency)
- Steady-state distributions of a regular Markov chain can also be found using an iterative simulation and checking whether two successive state-distributions are equal (or very close).