CENG 222

Statistical Methods for Computer Engineering

Week 14

Chapter 6 Stochastic Processes
Counting Processes
Simulation of Stochastic Processes



Counting Processes

e X Isacounting process If X(t) shows the number of
items counted by timet € T.

« Counting processes are non-decreasing

« Since they show count, they are discrete-state
processes

 Can be discrete-time (Binomial Process) or
continuous-time (Poisson Process)
« Examples:

— Counting emails received by time t
— Counting total number of goals scored in a game by time t



Binomial process

Discrete-time (i.e., each time step contains a
Bernoulli trial)

A binomial process X(t) Is the number of
successes by the time t in a sequence of
Independent Bernoulli trials.

X(t) number of successes by the time t

— Binomial(tp)

Y number of trials between two successes
— Geometric(p)



Binomial Process
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FIGURE 6.7: Binomial process (sample path). Legend: S = success, F=failure.



# of trials versus time

 Although discrete, If the time unit for each trial
IS not 1 (second, minute, etc.), we may need to
be careful in using the value of t in our
computations.

» For example: if a Bernoulli trial occurs every 3
seconds, X (6) Is not Binomial(6,p) but it is
Binomial(2,p) (2 trials in 6 seconds).

« The time interval A of each Bernoulli is called
a frame.

— Number of trials equals to t /A



Arrival/Success rate A
* If pIsthe success rate at A units of time, then A
IS the success rate per 1 unit of time
—A=p/A
T 1s the time between two success. (Y was the
number of trials (As) between two success.
-T = YA



Transition probabilities
of a Binomial Process

FIGURE 6.8: Transition diagram for a Binomial counting process.

* Is it regular?



Poisson counting process

* \When the frame A approaches 0, we approach
a continuous-time counting process.

— Note that as A approaches 0, p also approaches O.
 Taking the success/arrival rate per unit of time,

A, as constant, we may model such continuous
counting processes.

e X(t) becomes a Poisson(At) variable. T
becomes an Exponential(L) variable.




Using the Gamma-Poisson formula

 Recall that Poisson problems could be solved
using the Gamma distribution (Chapter 4)

— Gamma-Poisson formula (Eq. 4.14)

* Time needed for the kth success, Ty, IS a
Gamma(k, A) variable

e P(T;,, <t) = P(ksuccesses before timet) =
P(X(t) = k)
- T} 1s Gamma(k, A) and X (t) Is Poisson(At)




Poisson Process
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FIGURE 6.10: Poisson process (sample path).
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Simulation of Stochastic Processes

» \We can use random sampling techniques we
learned In Chapter 5 to simulate stochastic
processes.

— For example: state transitions are discrete with
specific pmfs, which could be simulated by using
Algorithm 5.1 (or the Alias method for efficiency)

 Steady-state distributions of a regular Markov
chain can also be found using an iterative
simulation and checking whether two
successive state-distributions are equal (or
very close).
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