CENG 222
 Statistical Methods for Computer Engineering

Week 3

Chapter 3
Families of discrete distributions

Bernoulli distribution

- A random variable with two possible values, 0 and 1, is called a Bernoulli variable
- The distribution of such a r.v. is called the Bernoulli distribution
- Any random experiment with a binary outcome is called a Bernoulli trial
- Generic outcome names: successes and failures

Not equally likely outcomes

- In general, $f(1)=f(0)=0.5$ does NOT hold when the binary outcomes are not equally likely
- If $f(1)=p$, what is $E(X)$ and $\operatorname{Var}(X)$?

What about "non 0-1", binary outcomes?

- Example:
- What if the two possible outcomes are 5 and 9 with $f(5)=0.3$ and $f(9)=0.7$?
- What is the expected value?

What about "non 0-1", binary outcomes?

- Example:
- What if the two possible outcomes are 5 and 9 with $f(5)=0.3$ and $f(9)=0.7$?
- What is the expected value?
- It is just a shifted and rescaled standard Bernoulli trial.
- $X=4 B+5$
- $E(X)=E(4 B+5)=4 E(B)+5=4 \cdot 0.7+5=7.8$

Binomial distribution

- Number of successes in a sequence of independent Bernoulli trials
$-n$: number of trials
- p: probability of success
- $f_{x}(x)=P(X=x)=\binom{n}{x} p^{x} q^{n-x}$
- Expected value and variance:
- A binomial variable X is a sum of n independent Bernoulli trials.
$-E(X)=n p, \operatorname{Var}(X)=n p q$

Using distribution tables

- Table A2, cdf of Binomial distribution
- $p d f$ can be obtained by difference of two consecutive entries
- Example 3.16
- Example 3.17
- Using $\operatorname{binocdf}(x, n, p)$ function of MATLAB

Geometric distribution

- The number of Bernoulli trials needed to get the first success
- The support is the set of integers [1.. ∞]
- $f_{x}(x)=P(X=x)=p q^{x-1}$
- The support is unbounded
- Check that $\sum_{x} f_{x}(x)=\sum_{x=1}^{\infty} p(1-p)^{x-1}=1$
- Expected value and variance:

$$
-E(X)=1 / p, \operatorname{Var}(X)=(1-p) / p^{2}
$$

Geometric distribution

- Example 3.20 St. Petersburg Paradox
- Gambling with a guaranteed strategy to win a desired amount
- Even when p is less then 0.5 !
- Start with the desired amount
- Double betting amount every time you loose
- Stop when you win the first time
- E.g if $p=0.2$ the expected number of bets to win is 5 !

Geometric distribution

- So what's the paradox?
- What is the amount of money, Y, needed to follow the strategy?
$-Y=D 2^{X-1}$ where D is the desired amount and X is the number of bets needed to win.
$-E(Y)=$ infinity when $p \leq 0.5$ (the paradox)

Negative Binomial distribution

- In a sequence of independent Bernoulli trials, the number of trials needed to obtain k successes
- It can be considered as the inverse of the Binomial, where, we now fix the number of successes and count the number of trials n to reach that number of successes
- It is a generalization of the Geometric distribution

Negative Binomial distribution

- $f_{x}(x)=P(X=x)=\binom{x-1}{k-1} p^{k} q^{x-k}$
- Expected value and variance:
- A negative binomial variable X is a sum of k independent Geometric variables.
$-E(X)=k / p, \operatorname{Var}(X)=k(1-p) / p^{2}$
- Example 3.21
$-k=12, p=0.95, P(X>15)=$?
$-P(X>15)=1-F_{X}(15)$
- Can be solved by using the Binomial distribution with $n=15, p=0.95, P(Y<12)=F_{Y}(11)$.

Poisson distribution

- The number of rare events occurring within a fixed period of time
- It has a single parameter
$-\lambda$: frequency, average number of events
$-f_{x}(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}$
$-E(X)=\lambda, \operatorname{Var}(X)=\lambda$
- Example 3.22

Poisson approximation of Binomial distribution

- Poisson distribution can be used to approximate Binomial distribution when n is large and p is small
- E.g., $n \geq 30$ and $p \leq 0.05$
$-n p=\lambda$
- Example 3.25 The Birthday Problem

