CENG 222
 Statistical Methods for Computer Engineering

Week 4

Chapter 4
Continuous Distributions:
Probability density, Uniform and Exponential
Distributions

Continuous R.V.s

- A continuous random variable may assume any real value in an interval:
$-(a, b),(a,+\infty),(-\infty,+\infty)$, etc.
- Examples:
- Time
- Temperature
- Length
- Weight

Point events have 0 probabilities

- Since there are infinitely many outcomes associated with a continuous random variable, the probability of a specific outcome is 0 .

$$
-P(X=x)=0
$$

- In this case, probabilities of intervals of outcomes are of interest

$$
\text { - E.g, } P(c<X \leq d) \text { or } P(X>d)
$$

- $P(X<x)=P(X \leq x)$

cdf of continuous r.v.s

- $F_{X}(x)$ has the same meaning as in the discrete case

$$
-F_{X}(x)=P(X \leq x)=P(X<x)
$$

- But unlike the discrete cdfs, continuous cdfs do not have jumps, since $P(X=x)=0$.
- cdfs of continuous r.v.s are continuous functions

Probability density function (pdf)

- Given the $\operatorname{cdf} F_{X}(x)$ as a continuous and nondecreasing functions, the pdf is defined as:
$-f_{X}(x)=F_{X}^{\prime}(x)=\frac{d F}{d x}$
- The distribution is called continuous if it has a density
- $F_{X}(x)$ is an antiderivative of the density
$-\int_{a}^{b} f_{X}(x)=F_{X}(b)-F_{X}(a)=P(a<X<b)$
$-\int_{-\infty}^{b} f_{X}(x)=F_{X}(b)$ and $\int_{-\infty}^{+\infty} f_{X}(x)=1$

Example 4.1

- Lifetime (in years) of some electronic component is a r.v with the following pdf:
$-f_{X}(x)=\left\{\begin{array}{c}0, x<1 \\ \frac{k}{x^{3}}, x \geq 1\end{array}\right.$
- What is k ?
- Find the cdf.
- What is the probability for the lifetime to exceed 5 years?

Joint and Marginal densities

- The joint cdf for two rvs is defined as:

$$
-F_{X, Y}(x, y)=P(X \leq x \cap Y \leq y)
$$

- The joint density function is then given as
$-f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)$
- Marginal distributions can be computed from the joint pdf as:

$$
-f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y
$$

- Two continuous rvs are independent if the joint pdf is a product of marginal pdfs:
- $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Expectation and variance

- Expectation
- $E(X)=\mu=\int x f_{X}(x) d x$
- Variance
$-\operatorname{Var}(X)=\int(x-\mu)^{2} f_{X}(x) d x=\int x^{2} f_{X}(x) d x-\mu^{2}$
- Example 4.2
- $f_{X}(x)=2 x^{-3}$ for $x \geq 1$
- Compute expectation and variance

Some important continuous distributions

- Uniform
- Exponential
- related to Poisson, continuous case of Geometric distribution
- Gamma
- Normal

Uniform distribution

- Parameters: interval $[a, b]$
- Constant density

$$
-f_{X}(x)=\frac{1}{b-a}
$$

- Expectation

$$
-E(X)=\frac{a+b}{2}
$$

- Variance
$-\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$

The Uniform property

- The probability of an interval within $[a, b]$ is only determined by its width, not by its location.

Standard Uniform distribution

- $[a, b]=[0,1]$ is called Standard Uniform distribution
- If X is a $\operatorname{Uniform}(a, b)$ rv then $Y=(X-a) /(b-a)$ is the Standard Uniform rv.

Exponential distribution

- Used to model time: waiting time, interarrival time, failure time, etc.
- Can be considered as the continuous version of the geometric distribution which counts the number of trials before success.
- Related to Poisson distribution
$-\lambda$ parameter has the same meaning in both distributions
$-\lambda=$ avg. \# of events in a time unit

Exponential dist. vs Poisson dist.

- Rare events
- $N_{1}=\#$ of events in $1 \mathrm{~min}=\operatorname{Poisson}(\lambda)$
- $N_{2}=\#$ of events in 2 mins $=$ Poisson (2λ)
- $N_{t}=\#$ of events in t mins $=\operatorname{Poisson}(t \lambda)$
- $X=$ Time between events $=$ Exponential (λ)
- $X_{1}=$ Time of the first event $=\operatorname{Exponential}(\lambda)$

Exponential cdf

- Can be derived from the Poisson pmf
$-f_{X}(x)=e^{-\lambda \frac{\lambda^{x}}{x!}}$
- "The waiting time for the next event is greater than t time units" is the same as saying " 0 events occur in t time units". If X is a rv that shows the number of events in t time units (X is a Poisson rv with $t \lambda$)
$-f_{X}(0)=e^{-\lambda t} \frac{(\lambda t)^{0}}{0!}=e^{-\lambda t}$

Exponential cdf

- Exponential cdf $F_{T}(t)$ shows the total probability that waiting time is less than t.
- If $f_{X}(0)$ shows the probability of 0 events in t time units, then:

$$
-F_{T}(t)=1-f_{X}(0)=1-e^{-\lambda t}
$$

Exponential pdf

- Is the derivative of the $\operatorname{cdf} F_{T}(t)$

$$
-f_{T}(t)=F_{T}^{\prime}(t)=\lambda e^{-\lambda t} \quad t>0
$$

Exponential distribution summary

- Parameter: λ - the number of event per time unit
- Density

$$
-f_{X}(x)=\lambda e^{-\lambda x}, \quad x>0
$$

- Expectation

$$
-E(X)=\frac{1}{\lambda}
$$

- Variance

$$
-\operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Memoryless property

- What is the chance that an electronic component \mathbf{A} survives x hours?
$-X=$ time to failure $=\operatorname{Exponential}(\lambda)$
- $P(X>x)=1-F_{X}(x)=e^{-\lambda x}$
- Another component \mathbf{B} did not fail for t hours. What is the probability that it will survive another x hours?
$-P(X>t+x \mid X>t)=$?

Memoryless property

- $P(X>t+x \mid X>t)=\frac{P(X>t+x \cap X>t)}{P(X>t)}$

$$
\begin{aligned}
& =\frac{P(X>t+x)}{P(X>t)} \\
& =\frac{e^{-\lambda(t+x)}}{e^{-\lambda t}}=e^{-\lambda x}
\end{aligned}
$$

- Same as $P(X>x)$!!
- This is called the memoryless property
- Exponential distribution is the only continuous distribution with this property

