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CENG 222
Statistical Methods for Computer Engineering

Week 5

Chapter 4

Continuous Distributions:

Gamma and Normal Distributions, 

Central Limit Theorem
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Gamma distribution

• X = the total time of observing α rare and 

independent events each with exponential 

waiting times (with parameter λ) 

– i.e., it is the sum of α exponential rvs

• Expectation and variance can be found using 

linearity of expectation.

– E(X) = 
𝛼

λ
, Var(X) = 

𝛼

λ
2
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Gamma pdf

• fX(x) = 
λ
𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−λ,   x > 0 

• Γ 𝛼 = 𝛼 − 1 !
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α does not need to be an integer
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The Gamma function

https://www.probabilitycourse.com/

chapter4/4_2_4_Gamma_distributi

on.php
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Gamma distribution

• Is widely used to model random variables 

other than waiting times (since α does not need 

to be an integer)

– Amount of money spent

– Amount of resources used (electricity, gas, etc.)
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Gamma-Poisson formula

• Rare events

• T = time of the αth rare event = Gamma (α,λ)

– The event {T>t} means that fewer than α events 

occur in t time. 

– Let X be a Poisson rv with parameter λt

– {T > t} = {X < α}   hence P(T > t) = P(X < α)

–  P(T ≤ t) = P(X ≥ α)

–  we can use the Poisson table for computation of 

Gamma probabilities (Caution: T is continuous, X is discrete)

T
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Example 4.9

• Lifetimes for computer chips have Gamma 

distribution with expectation μ=12 years and 

standard deviation σ=4 years. What is the 

probability that such a chip has a lifetime between 

8 and 10 years?

• Step 1: what are the parameters of this Gamma 

rv?

–
𝛼

λ
= 12, 

𝛼

λ
2 = 16 λ = 12/16 = 0.75, 𝛼 = 12*0.75 = 9



9

Example 4.9 continued

• Step 2: Compute the probability

– P(8<T<10) = FT(10) – FT(8)

– FT(10) = P(T ≤ 10) = P(X1 ≥ 9) where X1 = Poisson(7.5)

• P(X1 ≥ 9) = 1-FX1
(8) = 0.338

– FT(8) = P(T ≤ 8) = P(X2 ≥ 9) where X2 = Poisson(6)

• P(X2 ≥ 9) = 1-FX2
(8) = 0.153

– P(8<T<10) = 0.338 – 0.153 = 0.185
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Normal (Gaussian) distribution

• A good model for physical variables like 

weight, height, temperature, etc.

• Sums and averages of arbitrarily distributed 

rvs are also normally distributed (Central Limit 

Theorem)

– Thus, very popular for modelling errors

• Normal pdf:

– 𝑓𝑋 𝑥 =
1

σ 2𝜋
exp

−(𝑥−𝜇)2

2𝜎2
,             -∞ < x < +∞
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Normal distribution

• The mean and the std. dev. are also called 

location and scale parameters.

Standard

Normal

Distribution



12

Standard Normal Distribution

• Any non-standard Normal rv X with 

Normal(𝜇, 𝜎) can be standardized as follows:

– Z = Normal(0,1) = 
𝑋−𝜇

𝜎

– and vice versa: 𝑋 = 𝜇 + 𝜎𝑍

–  we only need the Standard Normal Distribution 

table

• Example 4.11 – computing non-standard 

probabilities using the standard normal table

• Example 4.12 – solving inverse problems
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Central Limit Theorem

• Let X1,…,Xn be random variables from any

distribution with μ=E(Xi) and σ2=Var(Xi)       

(n rvs from the same distribution)

As n ∞,

𝑋1+⋯+𝑋𝑛 −𝑛𝜇

𝜎 𝑛
 Normal(0,1)

P
𝑋1+⋯+𝑋𝑛 −𝑛𝜇

𝜎 𝑛
≤ 𝑥 → 𝐹Normal 0,1 𝑥

Examples:

Binomial(n,p) ≈ Normal(μ,σ) for large n

Gamma(α,λ) ≈ Normal(μ,σ) for large α



14

Central Limit Theorem

• Example 4.13

• Example 4.14
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Normal Approximation to Binomial

• Binomial(n,p) ≈ Normal( μ=np,σ= 𝑛𝑝(1 − 𝑝) )

• We need continuity correction

– P(X=x) = 0 for a continuous variable X

– If we want to find 𝑓𝐵 𝑏 for a Binomial variable B

• 𝑓𝐵 𝑏 = 𝑃 𝐵 = 𝑏 = 𝑃(𝑏 − 0.5 < 𝐵 < 𝑏 + 05)

• We expand the interval for the discrete variable 0.5 units 

in each direction and use the Normal approximation to 

compute the probability of an interval, not the probability 

of a point.

• Example 4.15


