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CENG 222
Statistical Methods for Computer Engineering

Week 6

Chapter 5

Computer Simulations and Monte Carlo Methods
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Outline

• Generation of random numbers from specific 

distributions

– Discrete distributions

– Continuous distributions

• Chebyshev’s inequality (3.3.7)

• Solving problems by Monte Carlo methods

– Estimating probabilities

– Estimating means and standard deviations
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Uniform Random Numbers

• Tables of random numbers

• Pseudo-random number generators

– Long sequences of random-looking numbers

– Seed: starting location in the sequence

• May use system time as seed

• Many systems provide standard uniform 

random number generators

– Uniform(0,1)

• Question: Can we generate random numbers 

from any distribution using Uniform(0,1) rvs?
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Bernoulli

• Let U be Uniform(0,1)

• 𝑋 =  
1, if 𝑈 < 𝑝
0, if 𝑈 ≥ 𝑝

• P ( success ) = P ( U < p ) = p
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Binomial

• Sum of n independent Bernoulli variables.

• Example

n = 20; p = 0.68;

U = rand(n,1); 

% generates an nx1 vector

% of uniform random numbers

X = sum(U < p);
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Geometric

• Iterate and count the number of generated rvs

until first success

• Example:

p = 0.16; X = 1;

while rand > p; 

X = X+1;

end;

X
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Negative Binomial

• Generate k independent Geometric(p) random 

numbers and sum them to get a 

NegativeBinomial(k,p) number.

• Example:
p = 0.16; X = 0; i = 0;

while i < k;

G = 1;

while rand > p; 

G = G+1;

end;

X = X+G;

end;

• How efficient is generating a Binomial, a Geometric, or a 

Negative Binomial random number?
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Arbitrary discrete distributions
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Algorithm 5.1

1. Divide the interval [0,1] into subintervals Ai as 

follows:

– Ai = [p0+p1+..+pi-1, p0+p1+..+pi)

2. Generate U, a standard uniform number

3. If U belongs to Ai then X = xi

• How efficient is this method?

– If you want to generate many Xs, efficiency is 

important.

• O(n), O(log n), O(1)?

• Check out the Alias Method, if you need an O(1) method.
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Poisson

• Using Algorithm 5.1 to generate Poisson 

numbers.

• Example:
lambda 5;

U = rand; i = 0;

F = exp(-lambda);   % F(0)

while (U >= F); 

i = i + 1;

F = F+exp(-lambda)*lamda^i/gamma(i+1);

end;

X = i;
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Inverse transform method

• Theorem:  U = FX(X) is Uniform(0,1)

• Proof:

– Note that the standard uniform cdf is FU(u) = u

(i.e., F’U(u) = fU(u) = 1). We will try to show this 

fact using the given definition of U = FX(X) 

– FU(u) = P(U ≤ u)

= P( FX(X) ≤ u )

= P( X ≤ FX
-1 (u) )

= FX( FX
-1 (u) )

= u
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Inverse transform method

• If U = FX(X) then X = FX
-1 (U)

• The method:

– Generate a uniform random number

– Plug it in FX
-1 to generate X (i.e. solve for X).

• Example 5.10 (Exponential):

– FX(X) = 1 − 𝑒−λ𝑋 = 𝑈

–  𝑋 = −
1

λ
ln 1 − 𝑈

– Can also use 𝑋 = −
1

λ
ln 𝑈 since 1-U is also 

Uniform(0,1).
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Inverse transform method

• Difficult to use if the inverse of the cdf is not 

easy to compute

• For example, for discrete distributions, FX
-1 (U) 

does not exist. U = FX(X) has no roots, because 

X (hence FX(X)) is finite and countable; 

whereas U is continuous.

• Therefore, for discrete rvs, we use the inverse 

method with a slight modification:

– X = min {x ∈ 𝑆 such that F(x) > U} where S is the 

set of possible values of X.



14

Example 5.12

• Using the inverse transform method for 

generating Geometric variables

• 𝑋 =
ln(1−𝑈)

ln(1−𝑝)

• The geometric variable is the ceiling of the 

exponential variable with λ = −ln(1 − 𝑝)

– Exponential is the continuous analogue of 

geometric

– Both have the memoryless property.
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Rejection method

• When the cdf is difficult to solve for X and the 

pdf fX is available, the rejection method can be 

used to generate random numbers from fX.

• Idea:

– Generate 2D uniform coordinates (X,Y) in the 

bounding box of fX and if Y ≤ fX (X) output X.
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Rejection method
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Example

• The figure in the previous slide is the pdf of 

Beta(α=5.5,β=3.1)

– 𝑓𝑋 =
Γ 𝛼+𝛽

Γ 𝛼 Γ 𝛽
𝑥𝛼−1(1 − 𝑥)𝛽−1 for 0 ≤ x ≤ 1

• Bounding box: m = 2.5, s = 0, t = 1.
a=5.5; b=3.1; s=0; t=1; m=2.5;

X = 0; Y = m;

F = gamma(a+b)/gamma(a)/gamma(b)*X^(a-1)*(1-X)^(b-1);

while (Y > F); 

U = rand; V = rand;

X = s+(t-s)*U; Y = m*V;

F = … % same as above;

end; X
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Example
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Monte Carlo methods

• Generate many random variables from a 

distribution and estimate probabilities, means, 

standard deviations, etc. by simulating what 

happens in the long run.

• Question: How many numbers needed for 

acceptable results?

– i.e., What will be the “size” of the Monte Carlo 

experiment?

– Revisit Chebyshev’s Inequality
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Chebyshev’s Inequality (3.3.7)

• For any distribution with expectation μ and 

variance σ2 and for any positive ε

– 𝑃 𝑋 − 𝜇 > 𝜀 ≤
𝜎

𝜀

2

– In other words: any random variable X from the 

distribution is within 𝜀 distance of the 𝜇 with 

probability of at least 1 − (𝜎 /𝜀)2
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Estimating probabilities

• The probability p=P(X ∈ A) can be estimated as 

 𝑝 by generating N random numbers and 

computing the proportion of random numbers 

that are in A.

• How accurate is the estimator?

– What is E(  𝑝) and Std(  𝑝)?

– The number of Xi that are in A among the N 

generated random numbers is Binomial(N,p) with 

expectation Np and variance Np(1-p)

 E(  𝑝) = p (unbiased estimator)

Std(  𝑝) = 
𝑝(1−𝑝)

𝑁
the error in  𝑝 decreases with 1/ 𝑁
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How large should N be?

• Given the error 𝜀 and the probability, 𝛼, to 

exceed this error limit

• If an intelligent guess p* on the value of p is 

available:

– 𝑁 ≥ 𝑝∗(1 − 𝑝∗)
𝑧𝛼/2

𝜀

2

• If not:

– 𝑁 ≥ 0.25
𝑧𝛼/2

𝜀

2

Example 5.14
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How large should N be?

• If the N returned by these equations are not 

large enough for Binomial approximation, we 

may use Chebyshev’s inequality:

– If an intelligent guess p* on the value of p is 

available:

• 𝑁 ≥
𝑝∗(1−𝑝∗)

𝛼𝜀2

– If not:

• 𝑁 ≥
1

4𝛼𝜀2
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Estimating
means and standard deviations

•  𝑋 =
1

𝑁
𝑋1 +⋯+ 𝑋𝑁

– also unbiased and its error decreases with 1/ 𝑁

• 𝑠2 =
1

𝑁−1
 𝑖=1
𝑁 𝑋𝑖 −  𝑋 2

– 1/N-1 needed so that E(s2) = σ2


