CENG 222
 Statistical Methods for Computer Engineering

Week 9

Chapter 9
Statistical Inference I

Outline

- Parameter estimation
- Method of moments
- Method of maximum likelihood
- Confidence intervals
- Unknown standard deviation
- Hypothesis testing

Recall from Chapter 8: Estimation of population mean

- $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$
- Sample mean is unbiased, consistent, and asymptotically Normal.
$-\mathrm{E}(\hat{\theta})=\theta$
$-\operatorname{Bias}(\hat{\theta})=\mathrm{E}(\hat{\theta}-\theta)$

Recall from Chapter 8: Estimation of population variance

- $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- $1 / n-1$ needed for an unbiased estimator
- This estimator is also consistent and asymptotically Normal

Estimation of distribution parameters

- Example:
- Consider a Poisson variable. How should we estimate the parameter λ ?
- Sample mean?
- Sample variance?
- Both of them are equal to λ.
- Two generic methods of estimation will be discussed
- Method of moments
- Method of maximum likelihood

Moments

- The k-th population moment is defined as:
- $\mu_{k}=\mathrm{E}\left(X^{k}\right)$
- The k-th sample moment is computed as:
- $m_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$
and it estimates μ_{k} from a sample $\left(X_{1}, \ldots, X_{n}\right)$

Central Moments

- For $k \geq 2$, The k-th population central moment is defined as:
$-\mu_{k}^{\prime}=\mathrm{E}\left(X-\mu_{1}\right)^{k}$
- The k-th sample moment is computed as:
$-m_{k}^{\prime}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{k}$
and it estimates μ_{k}^{\prime} from a sample $\left(X_{1}, \ldots, X_{n}\right)$

Method of moments

- To estimate k parameters of a distribution, equate the first k population and sample moments and solve a system of k equations and k unknowns.
- $\left\{\begin{array}{ccc}\mu_{1} & = & m_{1} \\ \cdots & \cdots & \cdots \\ \mu_{k} & = & m_{k}\end{array}\right.$

Example 9.5 Pareto Distribution

- cdf of Pareto distribution
$-F(x)=1-\left(\frac{x}{\sigma}\right)^{-\theta}$ for $x>\sigma$
- Two parameters
- Solution:
- Find the equations of the first and second population moments, μ_{1} and μ_{2}
- Solve for θ and σ in terms of m_{1} and m_{2}.

Example 9.5 Pareto Distribution

- In order to find the moments using expectation, we need the pdf:

$$
-f(x)=F^{\prime(x)}=\frac{\theta}{\sigma}\left(\frac{x}{\sigma}\right)^{-\theta-1}=\theta \sigma^{\theta} x^{-\theta-1}
$$

- $\mu_{1}=\mathrm{E}(X)=\int_{\sigma}^{\infty} x f(x) d x=\frac{\theta \sigma}{\theta-1}$ for $\theta>1$
- $\mu_{2}=\mathrm{E}\left(X^{2}\right)=\int_{\sigma}^{\infty} x^{2} f(x) d x=\frac{\theta \sigma^{2}}{\theta-2}$ for $\theta>2$

Example 9.5 Pareto Distribution

- $\left\{\begin{array}{l}\mu_{1}=\frac{\theta \sigma}{\theta-1}=m_{1} \\ \mu_{2}=\frac{\theta \sigma^{2}}{\theta-2}=m_{2}\end{array}\right.$
- $\hat{\theta}_{\text {mom }}=\sqrt{\frac{m_{2}}{m_{2}-m_{1}^{2}}}+1$
- $\hat{\sigma}_{\text {mom }}=\frac{m_{1}(\hat{\theta}-1)}{\hat{\theta}}$

Method of maximum likelihood

- Maximum likelihood estimator is the parameter value that maximizes the likelihood of the observed sample.
- For a discrete distribution, maximize the joint pmf of the data $f\left(X_{1}, \ldots, X_{n}\right)$
- For a continuous distribution, maximize the joint pdf of the data $f\left(X_{1}, \ldots, X_{n}\right)$

Discrete distributions

- Since we use simple random sampling, each observed X_{i} is independent of the others. Therefore, the joint pmf is equal to:
- $\prod_{i=1}^{n} f\left(X_{i}\right)=\prod_{i=1}^{n} P\left(X=X_{i}\right)$
- In order to maximize this, with respect to a parameter. We take the derivative of this wrt that parameter and equate to 0 .
- Taking logarithms of the joint pmf is helpful (the maximizing value will be the same)
$-\ln \prod_{i=1}^{n} f\left(X_{i}\right)=\sum_{i=1}^{n} \ln f\left(X_{i}\right)$

Example 9.7 Poisson distribution

- pmf of Poisson is:

$$
-f(x)=e^{-\lambda \frac{\lambda^{x}}{x!}}
$$

- $\ln f(x)=-\lambda+x \ln \lambda-\ln (x!)$
- The joint pmf is:
- $\sum_{i=1}^{n}-\lambda+X_{i} \ln \lambda-\ln \left(X_{i}!\right)=$
- $=-n \lambda+\ln \lambda \sum_{i=1}^{n} X_{i}+C$

Example 9.7 Poisson distribution

- Differentiate wrt λ and equate to 0
$-n+\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}=0$
- Only one solution:
- $\hat{\lambda}_{m l e}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}$
- Method of moments and the method of maximum likelihood have the same estimator for λ.

Continuous distributions

- $P\left(X_{i}=x\right)$ is 0 for continuous distributions, so the joint pdf will be 0 . We will use

$$
P\left(x-h<X_{i}<x+h\right)
$$

instead

Continuous distributions

- Probability of almost observing a point is proportional to the pdf at that point; therefore, as in the discrete case, we will maximize the product of individual pdfs.
- $\prod_{i=1}^{n} f\left(X_{i}\right)$

Example 9.8 Exponential

- pdf of Exponential distribution is:

$$
-f(x)=\lambda e^{-\lambda x}
$$

- $\ln f(x)=\ln \lambda-\lambda x$
- The joint pdf is:
- $\sum_{i=1}^{n} \ln \lambda-\lambda X_{i}=n \ln \lambda-\lambda \sum_{i=1}^{n} X_{i}$

Example 9.8 Exponential

- Differentiate wrt λ and equate to 0

$$
\frac{n}{\lambda}-\sum_{i=1}^{n} X_{i}=0
$$

- Only one solution:

$$
-\hat{\lambda}_{m l e}=\frac{n}{\sum_{i=1}^{n} X_{i}}=\frac{1}{\bar{X}}
$$

Estimation of standard errors

- What is the standard error of $\hat{\lambda}_{m l e}=\frac{1}{\bar{X}}$ we found on Example 9.8?
- I.e., $\sigma\left(\hat{\lambda}_{m l e}\right)=$?
- The k-th moment of $\hat{\lambda}_{m l e}$ can be computed by using the fact that $\hat{\lambda}_{m l e}=1 / \bar{X}$ and that $\sum_{i=1}^{n} X_{i}$ is a Gamma rv.
- First moment: $\mathrm{E}\left(\hat{\lambda}_{m l e}\right)=\frac{n \lambda}{n-1}$
- Second moment: $\mathrm{E}\left(\hat{\lambda}_{m l e}^{2}\right)=\frac{n^{2} \lambda^{2}}{(n-1)(n-2)}$

Estimation of standard errors

- $\sigma\left(\hat{\lambda}_{m l e}\right)=\sqrt{\mathrm{E}\left(\hat{\lambda}_{m l e}^{2}\right)-\mathrm{E}^{2}\left(\hat{\lambda}_{m l e}\right)}$
- $\sigma\left(\hat{\lambda}_{m l e}\right)=\frac{n \lambda}{(n-1) \sqrt{n-2}}$
- We do not know the parameter λ in this expression; so, use the estimator $1 / \bar{X}$ to have an "estimator" for the standard error:
$-s\left(\hat{\lambda}_{m l e}\right)=\frac{n}{\bar{X}(n-1) \sqrt{n-2}}$

Confidence intervals

- An interval $[a, b]$ is a $(1-\alpha) 100 \%$ confidence interval for the parameter θ, if it contains the parameter with probability $(1-\alpha)$
- $\boldsymbol{P}(a \leq \theta \leq b)=1-\alpha$
- The coverage probability $(1-\alpha)$ is also called a confidence level.
$-a$ and b are computed from sample data and therefore, they are random, but θ is not.

Confidence intervals

A generic methodology to construct confidence intervals

- Find an unbiased estimator for θ.
- Check if the estimator has a Normal distribution.
- Find the standard error of the estimator.
- Obtain the quantiles $\pm z_{\alpha / 2}$ from the standard Normal table
- $\mathrm{A}(1-\alpha) 100 \%$ confidence interval for θ is:

$$
\left[\hat{\theta}-Z_{\frac{\alpha}{2}} \cdot \sigma(\hat{\theta}), \hat{\theta}+Z_{\frac{\alpha}{2}} \cdot \sigma(\hat{\theta})\right]
$$

Confidence interval for the population mean

- $\theta=\mu=\mathrm{E}(X)$
- $\hat{\theta}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- If the sample comes from Normal distribution, then the estimator is also normal. If the sample comes from any distribution, \bar{X} will be normally distributed if n is large.
$-\mathrm{E}(\bar{X})=\mu$ (thus it is unbiased)
$-\sigma(\bar{X})=\frac{\sigma}{\sqrt{n}}$
$\rightarrow\left[\bar{X}-Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$ is a $(1-\alpha) 100 \%$
confidence interval for μ (See Example 9.13)

Confidence interval for the difference between two means

Population I
Parameters: μ_{X}, σ_{X}^{2}

Collect independent samples

Sample $\left(X_{1}, \ldots, X_{n}\right)$ Statistics: \bar{X}, s_{X}^{2}

Population II
Parameters: μ_{Y}, σ_{Y}^{2}

Sample $\left(Y_{1}, \ldots, Y_{m}\right)$
Statistics: \bar{Y}, s_{Y}^{2}

Confidence interval for the difference between two means

- Propose an estimator:
- $\hat{\theta}=\bar{X}-\bar{Y}$ (unbiased using linearity of \mathbf{E})
- Compute standard error:
$-\sigma(\hat{\theta})=\sqrt{\operatorname{Var}(\bar{X}-\bar{Y})}=\sqrt{\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y}))}$
$-\sigma(\hat{\theta})=\sqrt{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}}$
- $\left[\bar{X}-\bar{Y}-z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}}, \bar{X}-\bar{Y}+z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}}\right]$ is a
$(1-\alpha) 100 \%$ confidence interval for θ

Sample size vs. margin

- Margin (Δ) is the length, our estimator is the center is of the confidence interval.
- $n \geq\left(\frac{z_{\alpha / 2} \cdot \sigma}{\Delta}\right)^{2}$
- If we want to decrease the margin, we need to increase the sample size
- If we want to increase the confidence level, we need to increase the sample size
- Example 9.15

When σ is unknown

- Estimate it from the sample
- We will focus on two cases:
- Large samples from any distribution
- Samples of any size from a Normal distribution
- We will not consider small non-Normal samples
- Special methods, such as the bootstrap method, are needed for such cases.

Large samples

- Instead of $\sigma(\hat{\theta})$ use the estimator $s(\hat{\theta})$ and obtain an approximate confidence interval

$$
\left[\hat{\theta}-z_{\frac{\alpha}{2}} \cdot s(\hat{\theta}), \hat{\theta}+z_{\frac{\alpha}{2}} \cdot s(\hat{\theta})\right]
$$

- Example 9.16
- When estimating proportions, i.e., the success probability of a Bernoulli variable, we do not know the standard deviation (mean and standard deviation are both functions of the parameter to be estimated).
- Example 9.17

Sample size for estimating proportions

- $n \geq \hat{p}(1-\hat{p})\left(\frac{z_{\alpha / 2}}{\Delta}\right)^{2}$
- But, we cannot compute \hat{p} before deciding on the sample size, n.
- Use the maximum value of $\hat{p}(1-\hat{p})$ instead, which is 0.25 .
$-n \geq 0.25\left(\frac{z_{\alpha / 2}}{\Delta}\right)^{2}$

Small samples

- Use Student's t distribution instead of the normal distribution.
- If the sample X_{1}, \ldots, X_{n} is from Normal distribution with unknown μ and σ :
- Estimate σ by $s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$
- Use t-distribution with ($n-1$) degrees of freedom
- Confidence interval for the mean:
- $\left[\bar{X}-t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}, \bar{X}+t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}\right]$

Small samples: comparing means of two populations

- Equal variances:
$-\left[\bar{X}-\bar{Y}-t_{\frac{\alpha}{2}} \cdot s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}, \bar{X}-\bar{Y}+t_{\frac{\alpha}{2}} \cdot s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}\right]$
- s_{p} is the pooled standard deviation:

$$
s_{p}^{2}=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{n+m-2}
$$

- Unequal variances:
$-\left[\bar{X}-\bar{Y}-t_{\frac{\alpha}{2}} \sqrt{\frac{s_{X}^{2}}{n}+\frac{s_{Y}^{2}}{m}}, \bar{X}-\bar{Y}+t_{\frac{\alpha}{2}} \sqrt{\frac{s_{X}^{2}}{n}+\frac{s_{Y}^{2}}{m}}\right]$

