CENG 222

Statistical Methods for Computer Engineering

Week 9

Chapter 9
Statistical Inference |



Outline

Parameter estimation
— Method of moments
— Method of maximum likelihood

Confidence intervals
Unknown standard deviation
Hypothesis testing



Recall from Chapter 8:
Estimation of population mean

= Xit++Xp

o X =

n
« Sample mean is unbiased, consistent, and
asymptotically Normal.

-E(6) =06
- Bias(é) = E(é — 0)



Recall from Chapter 8:
Estimation of population variance
o 52 =— WL (X; — X)?
» 1/n-1 needed for an unbiased estimator

e This estimator Is also consistent and
asymptotically Normal



Estimation of distribution parameters

« Example:

— Consider a Poisson variable. How should we
estimate the parameter A?

« Sample mean?
« Sample variance?
 Both of them are equal to A.
* Two generic methods of estimation will be
discussed
— Method of moments

— Method of maximum likelihood



Moments

» The k-th population moment is defined as:
- Uk = E(Xk)
* The k-th sample moment is computed as:

_ 1 k
- My =~ =1 X

and It estimates u; from a sample (X4, ..., X;,)



Central Moments

* For k = 2,The k-th population central moment
IS defined as:

-ty = E(X — uy)”

* The k-th sample moment Is computed as:

—m;{—l n(X; — X)X

and it estimates y,;, from a sample (X4, ..., X;,)



Method of moments

* To estimate k parameters of a distribution,
equate the first k population and sample
moments and solve a system of k equations
and k unknowns.

Hi = My

Uk myg



Example 9.5 Pareto Distribution

e cdf of Pareto distribution

o

-0
- F(x) = 1—(5) forx >0
— Two parameters

e Solution:

— Find the equations of the first and second
population moments, u, and u,

— Solve for 8 and o in terms of m, and m,.



Example 9.5 Pareto Distribution

* In order to find the moments using
expectation, we need the pdf:

—6-1
- f(x) = F'® = 2(5) = 0o9x=0-1

O \O

00 6
e u; = E(X) =f0 xf(x)dx=9—_01for9 > 1

e 1y = E(X?) = [P x2f(0)dx = 2Z for 6 > 2
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Example 9.5 Pareto Distribution

Hi = 57— M
© 0 g2
Ho = 5= My

¢ § —
mom 0
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Method of maximum likelihood

« Maximum likelithood estimator Is the
parameter value that maximizes the likelihood
of the observed sample.

 For a discrete distribution, maximize the joint
omf of the data f (X4, ..., X};,)

e For a continuous distribution, maximize the
joint pdf of the data f (X3, ..., X;;)
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Discrete distributions

 Since we use simple random sampling, each
observed X; is independent of the others.

herefore, the joint pmf is equal to:
- [z f X)) =1l PX = X))

* In order to maximize this, with respect to a
parameter. We take the derivative of this wrt
that parameter and equate to O.

 Taking logarithms of the joint pmf is helpful
(the maximizing value will be the same)

- In[[;=, f(Xy) =X In f(X;)
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Example 9.7 Poisson distribution

* pmf of Poisson Is:

- f(x) = e‘Ai—T

e Inf(x) =—-A+xInA —In(x!)
* The joint pmfis:

e Y . A+ X;InA—In(X;!) =

e =—nA+InAYL X;+C
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Example 9.7 Poisson distribution

 Differentiate wrt A and equate to O
- Nn +%Z?:1Xi = (

* Only one solution:

~ _1 n T
- Ante = - i=1 Xi = X

n

e Method of moments and the method of
maximum likelihood have the same estimator
for A.
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Continuous distributions

e P(X; = x) i1s 0 for continuous distributions, so
the joint pdf will be 0. We will use
P(X—h<Xl' <X+h)

Instead

——— 2h——

This area = P{r—h< X <z+h}
~ (20)f(2)
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Continuous distributions

 Probability of almost observing a point is
proportional to the pdf at that point; therefore,
as In the discrete case, we will maximize the
product of individual pdfs.

- [Tie, F (X))
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Example 9.8 Exponential

 pdf of Exponential distribution Is:
- f() = e
e Inf(x) =InA—Ax
* The joint pdf Is:
e YL . InA—-AX; =nlnA—-AY"1, X;
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Example 9.8 Exponential

 Differentiate wrt A and equate to O

n
n
P
=1

* Only one solution:

2 n 1
- Amie = Tn — 5

19



Estimation of standard errors

» What is the standard error of A,,,;, = %We

found on Example 9.87
- lLe, O-O\\mle):?

» The k-th moment of A,,,;, can be computed by

using the fact that A,,,;, = 1/X and that
i1 X;1sa Gammarv.

» First moment: EQA,,,;,) = nn_}l
Tl27\2

(n—1)(n—-2)

- Second moment: E(AZ%,;,) =

20



Estimation of standard errors

o 0(Amie) = \/ E(A%e) — E2(Amie)
2 naA
L U(}\mle) — (n—1)\/ﬁ
» \We do not know the parameter A in this

expression; so, use the estimator 1/X to have
an “estimator” for the standard error:

n

- 5(Amie) = X(m-1Vn-2
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Confidence Iintervals

* An interval [a,b] Isa (1 — a)100% confidence
Interval for the parameter 0, If it contains the
parameter with probability (1 — a)
-Pla<6<bh)=1—-a«a

— The coverage probability (1 — «) Is also called a
confidence level.

—aand b are computed from sample data and
therefore, they are random, but 0 is not.
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Confidence Iintervals
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A generic methodology to construct
confidence intervals

e Find an unbiased estimator for 0.

e Check iIf the estimator has a Normal
distribution.

e Find the standard error of the estimator.

- Obtain the quantiles +z, ,,from the standard
Normal table

A (1 — a)100% confidence interval for 0 Is:
10— 22 0(8),0 + 22 o(9),
2 2
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Confidence interval for
the population mean

0 =u=EWNX)
~ = 1
 |If the sample comes from Normal distribution, then the

estimator Is also normal. If the sample comes from any
distribution, X will be normally distributed if n is large.

- E(X) = u (thus it is unbiased)
V) = 2
- 0(X) = N

Y — 7q o —— ¥ 4 7q 2| _ 0
21X ZE W,X‘l‘ZE 7 Isa (1 — a)100%

confidence interval for u  (See Example 9.13) N



Confidence interval for
the difference between two means

( Population I \ Population II \
P Parameters: py, oy |

\ arameters: [1x. af;’{j \ \I ,_ /

Collect independent samples

Sample (X1,...,X,) Sample (Y1,...,Ym)

Statistics: Xr._ s% Statistics: YV, s%

k ﬁ‘onhdence mter&h /
\tOI‘ 0= ux —,Lfy/
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Confidence interval for
the difference between two means

» Propose an estimator:
- 0 = X — Y (unbiased using linearity of E)
« Compute standard error:
-a(0) = \/Var()? —Y) = /Var(X) + Var(Y))

- o(0) = %+

2 2 -
. [X—Y—Za-\/x “YX Y+Za‘ x4 Ss a

> n o m n o m

(1 — a)100% confidence mterval for 6
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Sample size vs. margin

« Margin (4) is the length, our estimator Is the
center Is of the confidence interval.

o\ 2
-z (%)

— If we want to decrease the margin, we need to
Increase the sample size

— |f we want to increase the confidence level, we
need to increase the sample size

« Example 9.15
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When o I1s unknown

 Estimate it from the sample

« We will focus on two cases:
— Large samples from any distribution
— Samples of any size from a Normal distribution
» We will not consider small non-Normal
samples

— Special methods, such as the bootstrap method, are
needed for such cases.
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Large samples

» Instead of (@) use the estimator s(8) and
obtain an approximate confidence interval

10— 22 +5(0),0 + za - 5(0)]
2 2

« Example 9.16

« When estimating proportions, i.e., the success
probability of a Bernoulli variable, we do not know
the standard deviation (mean and standard deviation
are both functions of the parameter to be estimated).

— Example 9.17
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Sample size for estimating proportions

en=p(l—p) (Z(Z/Z)Z

« But, we cannot compute p before deciding on
the sample size, n.

« Use the maximum value of p(1 — p) instead,
which is 0.25.

-n = 0.25 (Z‘Z/Z)Z
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Small samples

e Use Student’s t distribution instead of the
normal distribution.

o |f the sample X, ..., X;, Is from Normal
distribution with unknown u and o:

. 1 —
— Estimate o by s = \/E X —X)?

— Use t-distribution with (n-1) degrees of freedom
— Confidence interval for the mean:

[X—ta-— X+ta-—]
2
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Small samples:
comparing means of two populations

 Equal variances:

—[X—Y—tgc Sp /—+ X — Y+tzc Sp /—+ ]

- S, Is the pooled standard deviation:

n—-1)sy+(m-—1)s
. 52 = (ke OmoDs]

n+m-—2

 Unequal variances:

2

Y _ Vv SY Sy
- | X =Y — ta X Y-l-ta X 4 X

2 n m 2 n m
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