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CENG 222
Statistical Methods for Computer Engineering

Week 9

Chapter 9

Statistical Inference I
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Outline

• Parameter estimation

– Method of moments

– Method of maximum likelihood

• Confidence intervals

• Unknown standard deviation

• Hypothesis testing
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Recall from Chapter 8:
Estimation of population mean

•  𝑋 =
𝑋1+⋯+𝑋𝑛

𝑛

• Sample mean is unbiased, consistent, and 

asymptotically Normal.

– E  𝜃 = 𝜃

– Bias  𝜃 = E  𝜃 − 𝜃
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Recall from Chapter 8:
Estimation of population variance

• 𝑠2 =
1

𝑛−1
 𝑖=1
𝑛 𝑋𝑖 −  𝑋 2

• 1/n-1 needed for an unbiased estimator

• This estimator is also consistent and 

asymptotically Normal
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Estimation of distribution parameters

• Example:

– Consider a Poisson variable. How should we 

estimate the parameter λ?

• Sample mean?

• Sample variance?

• Both of them are equal to λ.

• Two generic methods of estimation will be 

discussed

– Method of moments

– Method of maximum likelihood
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Moments

• The k-th population moment is defined as:

– 𝜇𝑘 = E(𝑋𝑘)

• The k-th sample moment is computed as:

– 𝑚𝑘 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖

𝑘

and it estimates 𝜇𝑘from a sample (𝑋1, … , 𝑋𝑛)
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Central Moments

• For 𝑘 ≥ 2,The k-th population central moment 

is defined as:

– 𝜇𝑘
′ = E 𝑋 − 𝜇1

𝑘

• The k-th sample moment is computed as:

– 𝑚𝑘
′ =

1

𝑛
 𝑖=1
𝑛 𝑋𝑖 −  𝑋 𝑘

and it estimates 𝜇𝑘
′ from a sample (𝑋1, … , 𝑋𝑛)
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Method of moments

• To estimate k parameters of a distribution, 

equate the first k population and sample 

moments and solve a system of k equations 

and k unknowns.

•  

𝜇1 = 𝑚1

… … …
𝜇𝑘 = 𝑚𝑘
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Example 9.5 Pareto Distribution

• cdf of Pareto distribution

– 𝐹 𝑥 = 1 −
𝑥

𝜎

−𝜃
for 𝑥 > 𝜎

– Two parameters

• Solution:

– Find the equations of the first and second 

population moments, 𝜇1 and 𝜇2
– Solve for 𝜃 and 𝜎 in terms of 𝑚1 and 𝑚2.
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Example 9.5 Pareto Distribution

• In order to find the moments using 

expectation, we need the pdf:

– 𝑓 𝑥 = 𝐹′ 𝑥 =
𝜃

𝜎

𝑥

𝜎

−𝜃−1
= 𝜃𝜎𝜃𝑥−𝜃−1

• 𝜇1 = E 𝑋 =  𝜎
∞
𝑥𝑓 𝑥 𝑑𝑥 =

𝜃𝜎

𝜃−1
for 𝜃 > 1

• 𝜇2 = E 𝑋2 =  𝜎
∞
𝑥2𝑓 𝑥 𝑑𝑥 =

𝜃𝜎2

𝜃−2
for 𝜃 > 2
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Example 9.5 Pareto Distribution

•  
𝜇1 =

𝜃𝜎

𝜃−1
= 𝑚1

𝜇2 =
𝜃𝜎2

𝜃−2
= 𝑚2

•  𝜃𝑚𝑜𝑚 =
𝑚2

𝑚2−𝑚1
2 + 1

•  𝜎𝑚𝑜𝑚 =
𝑚1( 𝜃−1)

 𝜃



12

Method of maximum likelihood

• Maximum likelihood estimator is the 

parameter value that maximizes the likelihood 

of the observed sample.

• For a discrete distribution, maximize the joint 

pmf of the data 𝑓 𝑋1, … , 𝑋𝑛
• For a continuous distribution, maximize the 

joint pdf of the data 𝑓(𝑋1, … , 𝑋𝑛)
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Discrete distributions

• Since we use simple random sampling, each 

observed 𝑋𝑖 is independent of the others. 

Therefore, the joint pmf is equal to:

–  𝑖=1
𝑛 𝑓 𝑋𝑖 =  𝑖=1

𝑛 𝑃 𝑋 = 𝑋𝑖

• In order to maximize this, with respect to a 

parameter. We take the derivative of this wrt

that parameter and equate to 0.

• Taking logarithms of the joint pmf is helpful 

(the maximizing value will be the same)

– ln 𝑖=1
𝑛 𝑓 𝑋𝑖 = 𝑖=1

𝑛 ln 𝑓 𝑋𝑖



14

Example 9.7 Poisson distribution

• pmf of Poisson is:

– 𝑓 𝑥 = 𝑒−λ
λ𝑥

𝑥!

• ln 𝑓 𝑥 = −λ + 𝑥 ln λ − ln(𝑥!)

• The joint pmf is:

•  𝑖=1
𝑛 −λ + 𝑋𝑖 ln λ − ln(𝑋𝑖!) =

• = −𝑛λ + ln λ 𝑖=1
𝑛 𝑋𝑖 + 𝐶
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Example 9.7 Poisson distribution

• Differentiate wrt λ and equate to 0

– 𝑛 +
1

λ
 𝑖=1
𝑛 𝑋𝑖 = 0

• Only one solution:

–  λ𝑚𝑙𝑒 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖 =  𝑋

• Method of moments and the method of 

maximum likelihood have the same estimator 

for λ.
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Continuous distributions

• 𝑃 𝑋𝑖 = 𝑥 is 0 for continuous distributions, so 

the joint pdf will be 0. We will use 

𝑃 𝑥 − ℎ < 𝑋𝑖 < 𝑥 + ℎ

instead
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Continuous distributions

• Probability of almost observing a point is 

proportional to the pdf at that point; therefore, 

as in the discrete case, we will maximize the 

product of individual pdfs.

–  𝑖=1
𝑛 𝑓 𝑋𝑖
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Example 9.8 Exponential

• pdf of Exponential distribution is:

– 𝑓 𝑥 = λ𝑒−λ𝑥

• ln 𝑓 𝑥 = ln λ − λ𝑥

• The joint pdf is:

•  𝑖=1
𝑛 ln λ − λ𝑋𝑖 = 𝑛 ln λ − λ 𝑖=1

𝑛 𝑋𝑖
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Example 9.8 Exponential

• Differentiate wrt λ and equate to 0

𝑛

λ
− 

𝑖=1

𝑛

𝑋𝑖 = 0

• Only one solution:

–  λ𝑚𝑙𝑒 =
𝑛

 𝑖=1
𝑛 𝑋𝑖

=
1

 𝑋
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Estimation of standard errors

• What is the standard error of  λ𝑚𝑙𝑒 =
1

 𝑋
we 

found on Example 9.8?

– I.e., 𝜎( λ𝑚𝑙𝑒)=?

• The k-th moment of  λ𝑚𝑙𝑒 can be computed by 

using the fact that  λ𝑚𝑙𝑒 = 1/  𝑋 and that 

 𝑖=1
𝑛 𝑋𝑖 is a Gamma rv.

• First moment: E( λ𝑚𝑙𝑒) =
𝑛λ

𝑛−1

• Second moment: E( λ𝑚𝑙𝑒
2 ) =

𝑛2λ2

(𝑛−1)(𝑛−2)
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Estimation of standard errors

• 𝜎  λ𝑚𝑙𝑒 = E( λ𝑚𝑙𝑒
2 ) − E2( λ𝑚𝑙𝑒)

• 𝜎  λ𝑚𝑙𝑒 =
𝑛λ

(𝑛−1) 𝑛−2

• We do not know the parameter λ in this 

expression; so, use the estimator 1/  𝑋 to have 

an “estimator” for the standard error:

– 𝑠  λ𝑚𝑙𝑒 =
𝑛

 𝑋(𝑛−1) 𝑛−2
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Confidence intervals

• An interval [a,b] is a (1 − 𝛼)100% confidence 

interval for the parameter θ, if it contains the 

parameter with probability (1 − 𝛼)

– 𝑷 𝑎 ≤ 𝜃 ≤ 𝑏 = 1 − 𝛼

– The coverage probability (1 − 𝛼) is also called a 

confidence level.

– a and b are computed from sample data and 

therefore, they are random, but θ is not.
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Confidence intervals



24

A generic methodology to construct
confidence intervals

• Find an unbiased estimator for θ.

• Check if the estimator has a Normal 

distribution. 

• Find the standard error of the estimator.

• Obtain the quantiles ±𝑧𝛼/2from the standard 

Normal table

• A (1 − 𝛼)100% confidence interval for θ is:

 𝜃 − 𝑧𝛼
2
∙ 𝜎  𝜃 ,  𝜃 + 𝑧𝛼

2
∙ 𝜎  𝜃
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Confidence interval for
the population mean

• 𝜃 = 𝜇 = E 𝑋

•  𝜃 =  𝑋 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖

• If the sample comes from Normal distribution, then the 

estimator is also normal. If the sample comes from any 

distribution,  𝑋 will be normally distributed if n is large.

– E  𝑋 = 𝜇 (thus it is unbiased)

– 𝜎  𝑋 =
𝜎

𝑛

  𝑋 − 𝑧𝛼
2
∙
𝜎

𝑛
,  𝑋 + 𝑧𝛼

2
∙
𝜎

𝑛
is a (1 − 𝛼)100% 

confidence interval for 𝜇 (See Example 9.13)
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Confidence interval for
the difference between two means
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• Propose an estimator:

–  𝜃 =  𝑋 −  𝑌 (unbiased using linearity of E)

• Compute standard error:

– 𝜎  𝜃 = Var(  𝑋 −  𝑌) = Var  𝑋 + Var  𝑌 )

– 𝜎  𝜃 =
𝜎𝑋
2

𝑛
+

𝜎𝑌
2

𝑚

•  𝑋 −  𝑌 − 𝑧𝛼
2
∙

𝜎𝑋
2

𝑛
+

𝜎𝑌
2

𝑚
,  𝑋 −  𝑌 + 𝑧𝛼

2
∙

𝜎𝑋
2

𝑛
+

𝜎𝑌
2

𝑚
is a 

(1 − 𝛼)100% confidence interval for 𝜃

Confidence interval for
the difference between two means
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Sample size vs. margin

• Margin (∆) is the length, our estimator is the 

center is of the confidence interval.

• 𝑛 ≥
𝑧𝛼/2∙𝜎

∆

2

– If we want to decrease the margin, we need to 

increase the sample size

– If we want to increase the confidence level, we 

need to increase the sample size

• Example 9.15
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When σ is unknown

• Estimate it from the sample

• We will focus on two cases:

– Large samples from any distribution

– Samples of any size from a Normal distribution

• We will not consider small non-Normal 

samples

– Special methods, such as the bootstrap method, are 

needed for such cases.
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Large samples

• Instead of 𝜎  𝜃 use the estimator 𝑠  𝜃 and 

obtain an approximate confidence interval

 𝜃 − 𝑧𝛼
2
∙ 𝑠  𝜃 ,  𝜃 + 𝑧𝛼

2
∙ 𝑠  𝜃

• Example 9.16

• When estimating proportions, i.e., the success 

probability of a Bernoulli variable, we do not know 

the standard deviation (mean and standard deviation 

are both functions of the parameter to be estimated).

– Example 9.17
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Sample size for estimating proportions

• 𝑛 ≥  𝑝(1 −  𝑝)
𝑧𝛼/2

∆

2

• But, we cannot compute  𝑝 before deciding on 

the sample size, n. 

• Use the maximum value of  𝑝(1 −  𝑝) instead, 

which is 0.25.

– 𝑛 ≥ 0.25
𝑧𝛼/2

∆

2
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Small samples

• Use Student’s t distribution instead of the 

normal distribution.

• If the sample 𝑋1, … , 𝑋𝑛 is from Normal 

distribution with unknown 𝜇 and σ:

– Estimate σ by 𝑠 =
1

𝑛−1
 𝑖=1
𝑛 𝑋𝑖 −  𝑋 2

– Use t-distribution with (n-1) degrees of freedom

– Confidence interval for the mean:

•  𝑋 − 𝑡𝛼
2
∙
𝑠

𝑛
,  𝑋 + 𝑡𝛼

2
∙
𝑠

𝑛
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Small samples:
comparing means of two populations

• Equal variances:

–  𝑋 −  𝑌 − 𝑡𝛼
2
∙ 𝑠𝑝

1

𝑛
+

1

𝑚
,  𝑋 −  𝑌 + 𝑡𝛼

2
∙ 𝑠𝑝

1

𝑛
+

1

𝑚

– 𝑠𝑝 is the pooled standard deviation:

• 𝑠𝑝
2 =

𝑛−1 𝑠𝑋
2+ 𝑚−1 𝑠𝑌

2

𝑛+𝑚−2

• Unequal variances:

–  𝑋 −  𝑌 − 𝑡𝛼
2

𝑠𝑋
2

𝑛
+

𝑠𝑌
2

𝑚
,  𝑋 −  𝑌 + 𝑡𝛼

2

𝑠𝑋
2

𝑛
+

𝑠𝑌
2

𝑚


