
Introduction to C++

CENG 707 Data Structures and Algorithms 1

CENG 213 Data Structures 2

Programming in C++

• C++

– Improves on many of C's features

– Has object-oriented capabilities

• Increases software quality and reusability

– Developed by Bjarne Stroustrup at Bell Labs

• Called "C with classes"

• C++ (increment operator) - enhanced version of C

– Superset of C

• Can use a C++ compiler to compile C programs

• Gradually evolve the C programs to C++

CENG 213 Data Structures 3

Clean Interface
 The emphasis is on creating a set of tools which can be used

cleanly, with a minimum knowledge about implementation
in the user’s driver files. The following concepts are
relevant to accomplishing clean interface:

• Data Abstraction

– Define an object by its data and allowable operations: an
abstract data type.

• Information hiding

– Restrict access to data so that it can be manipulated only
in authorized ways. Separate class declarations from
implementation.

• Encapsulation

– Bundle data and operations into one logical unit.

CENG 213 Data Structures 4

C++ Techniques
 Relevant techniques include:

1. C++ classes, with private and public members

2. Function and operator name overloading to give
"natural" function calls

3. Templates to allow the same code to be used on a
variety of different data types

4. A clean built-in I/O interface, which itself
involves overloading the input and output
operators

 Learning these techniques is much of what C++
is all about.

CENG 213 Data Structures 5

A Basic C++ Program
#include <iostream>

#include <math.h>

int main()

{

 float x;

 std::cout << "Enter a real number: " << std::endl;

 std::cin >> x;

 std::cout << "The square root of " << x << " is: "

 << sqrt(x) << std::endl;

 return 0;

}

CENG 213 Data Structures 6

Classes and Objects

• Class: a type definition that includes both

– data properties, and

– operations permitted on that data

• Object: a variable that

– is declared to be of some Class

– therefore includes both data and operations for that data

• Appropriate usage:

―A variable is an instance of a type.‖

―An object is an instance of a class.‖

CENG 213 Data Structures 7

Basic Class Syntax

• A class in C++ consists of its members.

– A member can be either data or functions.

• The functions are called member functions

(or methods)

• Each instance of a class is an object.

– Each object contains the data components

specified in class.

– Methods are used to act on an object.

CENG 213 Data Structures 8

Class syntax - Example
// A class for simulating an integer memory cell

class IntCell

{

 public:

 IntCell()

 { storedValue = 0; }

 IntCell(int initialValue)

 { storedValue = initialValue;}

 int read()

 { return storedValue; }

 void write(int x)

 { storedValue = x;}

 private:

 int storedValue;

};

constructors

CENG 213 Data Structures 9

Class Members

• Public member is visible to all routines and may

be accessed by any method in any class.

• Private member is not visible to non-class

routines and may be accessed only by methods in

its class.

• Typically,

– Data members are declared private

– Methods are made public.

• Restricting access is known as information hiding.

CENG 213 Data Structures 10

Constructors
• A constructor is a method that executes when an

object of a class is declared and sets the initial state
of the new object.

• A constructor

– has the same name with the class,

– No return type

– has zero or more parameters (the constructor
without an argument is the default constructor)

• There may be more than one constructor defined for
a class.

• If no constructor is explicitly defined, one that
initializes the data members using language defaults
is automatically generated.

CENG 213 Data Structures 11

Extra Constructor Syntax

// A class for simulating an integer memory cell

class IntCell

{

 public:

 IntCell(int initialValue = 0)

 : storedValue(initialValue) { }

 int read() const

 { return storedValue; }

 void write(int x)

 { storedValue = x; }

 private:

 int storedValue;

};

Single

constructor

(instead of

two)

CENG 213 Data Structures 12

Accessor and Modifier Functions

• A method that examines but does not

change the state of its object is an accessor.

– Accessor function headings end with the word
const

• A member function that changes the state of

an object is a mutator.

CENG 213 Data Structures 13

Object Declaration

• In C++, an object is declared just like a

primitive type.

int main()

{

 //correct declarations

 IntCell m1;

 IntCell m2 (12);

 IntCell *m3;

 // incorrect declaration

 Intcell m4(); // this is a function declaration,

 // not an object

Object Access

 m1.write(44);

 m2.write(m2.read() +1);

 std::cout << m1.read() << " " << m2.read()

 << std::endl;

 m3 = new IntCell;

 std::cout << "m3 = " << m3->read() << std::endl;

CENG 213 Data Structures 14

CENG 213 Data Structures 15

Example: Class Time

class Time {

public:

 Time(int = 0, int = 0, int = 0); //default

 //constructor

 void setTime(int, int, int); //set hr, min,sec

 void printMilitary(); // print am/pm format

 void printStandard(); // print standard format

private:

 int hour;

 int minute;

 int second;

};

CENG 213 Data Structures 16

Declaring Time Objects

int main()

{

 Time t1, // all arguments defaulted

 t2(2), // min. and sec. defaulted

 t3(21, 34), // second defaulted

 t4(12, 25, 42); // all values specified

 . . .

}

CENG 213 Data Structures 17

Destructors
• Member function of class

• Performs termination housekeeping before the

system reclaims the object’s memory

• Complement of the constructor

• Name is tilde (~) followed by the class name

• E.g. ~IntCell();

 ~ Time();

• Receives no parameters, returns no value

• One destructor per class

CENG 213 Data Structures 18

When are Constructors and Destructors Called

• Global scope objects
• Constructors called before any other function (including main)

• Destructors called when main terminates (or exit function
called)

• Automatic local objects
• Constructors called when objects defined

• Destructors called when objects leave scope (when the block in
which they are defined is exited)

• static local objects
• Constructors called when execution reaches the point where

the objects are defined

• Destructors called when main terminates or the exit function is
called

CENG 213 Data Structures 19

Class Interface and Implementation

• In C++, separating the class interface from its

implementation is common.

– The interface remains the same for a long time.

– The implementations can be modified independently.

– The writers of other classes and modules have to know the

interfaces of classes only.

• The interface lists the class and its members (data

and function prototypes) and describes what can be

done to an object.

• The implementation is the C++ code for the member

functions.

CENG 213 Data Structures 20

Separation of Interface and Implementation

• It is a good programming practice for large-scale
projects to put the interface and implementation of
classes in different files.

• For small amount of coding it may not matter.

• Header File: contains the interface of a class.
Usually ends with .h (an include file)

• Source-code file: contains the implementation of a
class. Usually ends with .cpp (.cc or .C)

• .cpp file includes the .h file with the preprocessor command
#include.

» Example: #include ”myclass.h”

CENG 213 Data Structures 21

Separation of Interface and Implementation

• A big complicated project will have files that

contain other files.

– There is a danger that an include file (.h file) might be

read more than once during the compilation process.

• It should be read only once to let the compiler learn the

definition of the classes.

• To prevent a .h file to be read multiple times, we

use preprocessor commands #ifndef and

#define in the following way.

CENG 213 Data Structures 22

Class Interface

#ifndef _IntCell_H_

#define _IntCell_H_

class IntCell

{

 public:

 IntCell(int initialValue = 0);

 int read() const;

 void write(int x);

 private:

 int storedValue;

};

#endif

IntCell class Interface in the file IntCell.h

CENG 213 Data Structures 23

Class Implementation
#include <iostream>

#include “IntCell.h”

using std::cout;

//Construct the IntCell with initialValue

IntCell::IntCell(int initialValue)

 : storedValue(initialValue) {}

//Return the stored value.

int IntCell::read() const

{

 return storedValue;

}

//Store x.

void IntCell::write(int x)

{

 storedValue = x;

}

IntCell class implementation in file IntCell.cpp

Scope operator:

ClassName :: member

CENG 213 Data Structures 24

A driver program

#include <iostream>

#include “IntCell.h”

using std::cout;

using std::endl;

int main()

{

 IntCell m; // or IntCell m(0);

 m.write (5);

 cout << “Cell content : “ << m.read() << endl;

 return 0;

}

A program that uses IntCell in file TestIntCell.cpp

CENG 213 Data Structures 25

Another Example: Complex Class
#include <iostream>

#ifndef _Complex_H

#define _Complex_H

using namespace std;

class Complex

{ private: // default

 float Re, Imag;

 public:

 Complex(float x = 0, float y = 0)

 { Re = x; Imag = y;}

 ~Complex() { }

 Complex operator* (Complex & rhs);

 float modulus();

 friend ostream & operator<< (ostream &os, Complex & rhs);

};

#endif
Complex class Interface in the file Complex.h

CENG 213 Data Structures 26

Using the class in a Driver File
#include <iostream>

#include "Complex.h"

int main()

{

 Complex c1, c2(1), c3(1,2);

 float x;

 // overloaded * operator!!

 c1 = c2 * c3 * c2;

 // mistake! The compiler will stop here, since the

 // Re and Imag parts are private.

 x = sqrt(c1.Re*c1.Re + c1.Imag*c1.Imag);

 // OK. Now we use an authorized public function

 x = c1.modulus();

 std::cout << c1 << " " << c2 << std::endl;

 return 0;

} A program that uses Complex in file TestComplex.cpp

CENG 213 Data Structures 27

Implementation of Complex Class
// File complex.cpp

#include <iostream>

#include “Complex.h"

Complex Complex:: operator*(Complex & rhs)

{

 Complex prod; //someplace to store the results...

 prod.Re = (Re*rhs.Re - Imag*rhs.Imag);

 prod.Imag = (Imag*rhs.Re + Re*rhs.Imag);

 return prod;

}

float Complex:: modulus()

{ // this is not the real def of complex modulus

 return Re / Imag;

}

ostream & operator<< (ostream & out, Complex & rhs)

{ out << "(" << rhs.Re <<"," << rhs.Imag << ")";

 return out; // allow for concat of << operators

} Complex class implementation in file Complex.cpp

CENG 213 Data Structures 28

Parameter Passing

• Call by value

– Copy of data passed to function

– Changes to copy do not change original

• Call by reference

– Use &

– Avoids a copy and allows changes to the original

• Call by constant reference

– Use const

– Avoids a copy and guarantees that actual parameter will
not be changed

CENG 213 Data Structures 29

Example
#include <iostream>

using std::cout;

using std::endl;

int squareByValue(int);

void squareByReference(int &);

int squareByConstReference (const int &);

int main()

{ int x = 2, z = 4, r1, r2;

 r1 = squareByValue(x);

 squareByReference(z);

 r2 = squareByConstReference(x);

 cout << "x = " << x << " z = “ << z << endl;

 cout << “r1 = " << r1 << " r2 = " << r2 << endl;

 return 0;

}

CENG 213 Data Structures 30

Example (cont.)

int squareByValue(int a)

{

 return a *= a; // caller's argument not modified

}

void squareByReference(int &cRef)

{

 cRef *= cRef; // caller's argument modified

}

int squareByConstReference (const int& a)

{

 return a * a;

}

CENG 213 Data Structures 31

The uses of keyword const
1. const reference parameters

 These may not be modified in the body of a function to
which they are passed. Idea is to enable pass by reference
without the danger of incorrect changes to passed
variables.

2. const member functions or operators

 These may not modify any member of the object which
calls the function.

3. const objects

1. These are not supposed to be modified by any function
to which they are passed.

2. May not be initialized by assignment; only by
constructors.

CENG 213 Data Structures 32

Dynamic Memory Allocation with
Operators new and delete

• new and delete

– new - automatically creates object of proper size, calls
constructor, returns pointer of the correct type

– delete - destroys object and frees space

– You can use them in a similar way to malloc and free in
C.

• Example:

– TypeName *typeNamePtr;

– typeNamePtr = new TypeName;

– new creates TypeName object, returns pointer (which
typeNamePtr is set equal to)

– delete typeNamePtr;

– Calls destructor for TypeName object and frees memory

CENG 213 Data Structures 33

More examples

// declare a ptr to user-defined data type

Complex *ptr1;

int *ptr2;

// dynamically allocate space for a Complex;

// initialize values; return pointer and assign

// to ptr1

ptr1 = new Complex(1,2);

// similar for int:

ptr2 = new int(2);

// free up the memory that ptr1 points to

delete ptr1;

CENG 213 Data Structures 34

// dynamically allocate array of 23

// Complex slots

// each will be initialized to 0

ptr1 = new Complex[23];

// similar for int

ptr2 = new int[12];

// free up the dynamically allocated array

delete [] ptr1;

CENG 213 Data Structures 35

Default Arguments and Empty

Parameter Lists

• If function parameter omitted, gets default value
– Can be constants, global variables, or function calls

– If not enough parameters specified, rightmost go to their defaults

• Set defaults in function prototype
int myFunction(int x = 1, int y = 2, int z = 3);

• Empty parameter lists
– In C, empty parameter list means function takes any argument

– In C++ it means function takes no arguments

– To declare that a function takes no parameters:

• Write void or nothing in parentheses

Prototypes: void print1(void);

 void print2();

CENG 213 Data Structures 36

// Using default arguments

#include <iostream>

using std::cout;

using std::endl;

int boxVolume(int length = 1,int width = 1,int height = 1);

int main()

{ cout << "The default box volume is: " << boxVolume()

 << "\n\nThe volume of a box with length 10,\n"

 << "width 1 and height 1 is: " << boxVolume(10)

 << "\n\nThe volume of a box with length 10,\n"

 << "width 5 and height 1 is: " << boxVolume(10, 5)

 << "\n\nThe volume of a box with length 10,\n"

 << "width 5 and height 2 is: " << boxVolume(10,5,2)

 << endl;

 return 0;

}

// Calculate the volume of a box

int boxVolume(int length, int width, int height)

{ return length * width * height;

}

CENG 213 Data Structures 37

Function Overloading

• Function overloading:

– Functions with same name and different parameters

– Overloaded functions performs similar tasks

• Function to square ints and function to square floats

 int square(int x) {return x * x;}

 float square(float x) { return x * x; }

– Program chooses function by signature

• Signature determined by function name and parameter types

• Type safe linkage - ensures proper overloaded function called

CENG 213 Data Structures 38

// Using overloaded functions

#include <iostream>

using std::cout;

using std::endl;

int square(int x) { return x * x; }

double square(double y) { return y * y; }

int main()

{

 cout << "The square of integer 7 is " << square(7)

 << "\nThe square of double 7.5 is " << square(7.5)

 << endl;

 return 0;

}

CENG 213 Data Structures 39

Overloaded Operators

• An operator with more than one meaning is said to be

overloaded.

 2 + 3 3.1 + 3.2 + is an overloaded operator

• To enable a particular operator to operate correctly on

instances of a class, we may define a new meaning

for the operator.

 we may overload it

CENG 213 Data Structures 40

Operator Overloading
• Format

– Write function definition as normal

– Function name is keyword operator followed by the

symbol for the operator being overloaded.

– operator+ would be used to overload the addition

operator (+)

• No new operators can be created

– Use only existing operators

• Built-in types

– Cannot overload operators

– You cannot change how two integers are added

CENG 213 Data Structures 41

Overloaded Operators -- Example

class A {

public:

 A(int xval, int yval) { x=xval; y=yval; }

 bool operator==(const A& rhs) const{

 return ((x==rhs.x) && (y==rhs.y));

}

private:

 int x;

 int y;

};

CENG 213 Data Structures 42

Overloaded Operators – Example (cont.)

int main() {

 A a1(2,3);

 A a2(2,3);

 A a3(4,5);

 if (a1.operator==(a2)){ cout << "Yes" << endl;}

 else { cout << "No" << endl; }

 if (a1 == a2) { cout << "Yes" << endl; }

 else { cout << "No" << endl; }

 if (a1 == a3) { cout << "Yes" << endl; }

 else { cout << "No" << endl; }

 return 0;

}

CENG 213 Data Structures 43

Copy Constructor

 The copy constructor for a class is responsible for

creating copies of objects of that class type whenever

one is needed. This includes:

1. when the user explicitly requests a copy of an

object,

2. when an object is passed to function by value, or

3. when a function returns an object by value.

CENG 213 Data Structures 44

Copy constructor
 The copy constructor does the following:

1. takes another object of the same class as an
argument, and

2. initialize the data members of the calling object to
the same values as those of the passed in
parameter.

 If you do not define a copy constructor, the
compiler will provide one, it is very important to
note that compiler provided copy constructor
performs member-wise copying of the elements of
the class.

CENG 213 Data Structures 45

Syntax

A(const A& a2) {

…

}

• Note that the parameter must be a const reference.

CENG 213 Data Structures 46

Example
//The following is a copy constructor
//for Complex class. Since it is same
//as the compiler’s default copy
//constructor for this class, it is
//actually redundant.

Complex::Complex(const Complex & C)

{

 Re = C.Re;

 Imag = C.Imag;

}

CENG 213 Data Structures 47

Example

class MyString

{

 public:

 MyString(const char* s = ””);

 MyString(const MyString& s);

 ...

 private:

 int length;

 char* str;

};

CENG 213 Data Structures 48

Example (cont.)

MyString::MyString(const MyString& s)

{

 length = s.length;

 str = new char[length + 1];

 strcpy(str, s.str);

}

CENG 213 Data Structures 49

Calling the copy constructor

• Automatically called:

 A x(y); // Where y is of type A.

 f(x); // A copy constructor is called

 // for value parameters.

 x = g(); // A copy constructor is called

 // for value returns.

• More examples:
 MyObject a; // default constructor call

 MyObject b(a); // copy constructor call

 MyObject bb = a; // identical to bb(a) : copy

 //constructor call

 MyObject c; // default constructor call

 c = a; // assignment operator call

CENG 213 Data Structures 50

Assignment by Default:
Memberwise Copy

• Assignment operator (=)

– Sets variables equal, i.e., x = y;

– Can be used to assign an object to another

object of the same type

– Memberwise copy — member by member copy

 myObject1 = myObject2;

– This is shallow copy.

CENG 213 Data Structures 51

12345 12345

―Gizem‖

―Cicekli‖

firstname

lastname

number

Shallow copy: only pointers are copied

CENG 213 Data Structures 52

Shallow versus Deep copy

• Shallow copy is a copy of pointers rather

than data being pointed at.

• A deep copy is a copy of the data being

pointed at rather than the pointers.

CENG 213 Data Structures 53

Deep copy semantics

• How to write the copy constructor in a
class that has dynamically allocated
memory:

1. Dynamically allocate memory for data of the
calling object.

2. Copy the data values from the passed-in
parameter into corresponding locations in the
new memory belonging to the calling object.

3. A constructor which does these tasks is called
a deep copy constructor.

CENG 213 Data Structures 54

Deep vs Shallow Assignment

• Same kind of issues arise in the assignment.

• For shallow assignments, the default

assignment operator is OK.

• For deep assignments, you have to write

your own overloaded assignment operator
(operator=)

– The copy constructor is not called when doing

an object-to-object assignment.

CENG 213 Data Structures 55

this Pointer

• Each class object has a pointer which

automatically points to itself. The pointer is

identified by the keyword this.

• Another way to think of this is that each member

function (but not friends) has an implicit first

parameter; that parameter is this, the pointer to

the object calling that function.

CENG 213 Data Structures 56

Example
// defn of overloaded assignment operator

Complex & Complex :: operator = (const Complex & rhs)

{

 // don't assign to yourself!

 if (this != &rhs) // note the "address of"

 // rhs, why?

 {

 this -> Re = rhs.Re; // correct but

 //redundant: means Re = rhs.Re

 this -> Imag = rhs.Imag;

 }

 return *this; // return the calling class
 // object: enable cascading

}

CENG 213 Data Structures 57

Example

const MyString& operator=(const MyString& rhs)

{

 if (this != &rhs) {

 delete[] this->str; // donate back useless memory

 // allocate new memory

 this->str = new char[strlen(rhs.str) + 1];
 strcpy(this->str, rhs.str); // copy characters

 this->length = rhs.length; // copy length

 }

 return *this; // return self-reference so cascaded

 //assignment works

}

CENG 213 Data Structures 58

Copy constructor and assignment operator

• Copying by initialisation corresponds to creating an object

and initialising its value through the copy constructor.

• Copying by assignment applies to an existing object and is

performed through the assignment operator (=).

class MyObject {

public:

 MyObject(); // Default constructor

MyObject(MyObject const & a); // Copy constructor

 MyObject & operator = (MyObject const & a)

 // Assignment operator

}

CENG 213 Data Structures 59

static Class Members

• Shared by all objects of a class

– Normally, each object gets its own copy of each variable

• Efficient when a single copy of data is enough

– Only the static variable has to be updated

• May seem like global variables, but have class scope

– Only accessible to objects of same class

• Initialized at file scope

• Exist even if no instances (objects) of the class exist

• Can be variables or functions
• public, private, or protected

CENG 213 Data Structures 60

Example

In the interface file:

private:

 static int count;

 ...

public:

 static int getCount();

 ...

CENG 213 Data Structures 61

Implementation File

int Complex::count = 0; //must be in file scope

int Complex::getCount()

{

 return count;

}

Complex::Complex()

{

 Re = 0;

 Imag = 0;

 count ++;

}

CENG 213 Data Structures 62

Driver Program

cout << Complex :: getCount() << endl;

Complex c1;

cout << c1.getCount();

CENG 213 Data Structures 63

Templates

• The template allows us to write routines that

work for arbitrary types without having to

know what these types will be.

– Similar to typedef but more powerful

• Two types:

– Function templates

– Class templates

CENG 213 Data Structures 64

Function Templates
• A function template is not an actual function;

instead it is a design (or pattern) for a function.

• This design is expanded (like a preprocessor

macro) as needed to provide an actual routine.

// swap function template.

// Object: must have copy constructor and operator =

template < class Object>

void swap(Object &lhs, Object &rhs)

{

 Object tmp = lhs;

 lhs = rhs;

 rhs = tmp;

}

The swap function template

CENG 213 Data Structures 65

Using a template

• Instantiation of a template with a particular type, logically

creates a new function.

• Only one instantiation is created for each parameter-type

combination.

int main()

{ int x = 5, y = 7;

 double a = 2, b = 4;

 swap(x,y);

 swap(x,y); //uses the same instantiation

 swap(a,b);

 cout << x << “ “ << y << endl;

 cout << a << “ “ << b << endl;

// swap(x, b); // Illegal: no match

 return 0;

}

CENG 213 Data Structures 66

Class templates
• Class templates are used to define more complicated data

abstractions.

– e.g. it may be possible to use a class that defines several operations

on a collection of integers to manipulate a collection of real

numbers.

 // Form of a template interface

template <class T>

class class-name

{

 public:

 // list of public members

 ...

 private:

 // private members

 ...

};

Interpretation:

Class class-name is a

template class with

parameter T. T is a

placeholder for a built-

in or user-defined data

type.

CENG 213 Data Structures 67

Implementation
• Each member function must be declared as a template.

// Typical member implementation.

template <class T>

ReturnType

class-name<T>::MemberName(Parameter List) /* const*/

{

 // Member body

}

CENG 213 Data Structures 68

Object declarations using

template classes

Form:

 class-name <type> an-object;

Interpretation:

– Type may be any defined data type. Class-name

is the name of a template class. The object

an-object is created when the arguments

specified between < > replace their

corresponding parameters in the template class.

CENG 213 Data Structures 69

Example

// Memory cell interface

template <class Object>

class MemoryCell

{

 public:

 MemoryCell(const Object & initVal = Object());

 const Object & read() const;

 void write(const Object & x);

 private:

 Object storedValue;

};

CENG 213 Data Structures 70

Class template implementation

// Implementation of class members.

#include “MemoryCell.h”

template <class Object>

MemoryCell<Object>::MemoryCell(const Object & initVal)

: storedValue(initVal){ }

template <class Object>

const Object & MemoryCell<Object> :: read() const

{

 return storedValue;

}

template <class Object>

void MemoryCell<Object>::write(const Object & x)

{

 storedValue = x;

}

CENG 213 Data Structures 71

A simple test routine

int main()

{

 MemoryCell<int> m;

 m. write(5);

 cout << “Cell content: ” << m.read() <<

endl;

 return 0;

}

C++ Exception Handling: try, throw, catch

• A function can throw an exception object if it detects an error

– Object typically a character string (error message) or class object

– If exception handler exists, exception caught and handled

– Otherwise, program terminates

• Format

– enclose code that may have an error in try block

– follow with one or more catch blocks

• each catch block has an exception handler

– if exception occurs and matches parameter in catch block, code in
catch block executed

– if no exception thrown, exception handlers skipped and control
resumes after catch blocks

– throw point - place where exception occurred

• control cannot return to throw point

 CENG 213 Data Structures 72

CENG 213 Data Structures 73

 1 // Fig. 23.1: fig23_01.cpp

 2 // A simple exception handling example.

 3 // Checking for a divide-by-zero exception.

 4 #include <iostream>

 5

 6 using std::cout;

 7 using std::cin;

 8 using std::endl;

 9

 10 // Class DivideByZeroException to be used in exception

 11 // handling for throwing an exception on a division by zero.

 12 class DivideByZeroException {

 13 public:

 14 DivideByZeroException()

 15 : message("attempted to divide by zero") { }

 16 const char *what() const { return message; }

 17 private:

 18 const char *message;

 19 };

 20

 21 // Definition of function quotient. Demonstrates throwing

 22 // an exception when a divide-by-zero exception is encountered.

 23 double quotient(int numerator, int denominator)

 24 {

 25 if (denominator == 0)

 26 throw DivideByZeroException();

 27

 28 return static_cast< double > (numerator) / denominator;

 29 }

EXAMPLE

• Class

definition

• Function

definition

CENG 213 Data Structures 74

30

 31 // Driver program

 32 int main()

 33 {

 34 int number1, number2;

 35 double result;

 36

 37 cout << "Enter two integers (end-of-file to end): ";

 38

 39 while (cin >> number1 >> number2) {

 40

 41 // the try block wraps the code that may throw an

 42 // exception and the code that should not execute

 43 // if an exception occurs

 44 try {

 45 result = quotient(number1, number2);

 46 cout << "The quotient is: " << result << endl;

 47 }

 48 catch (DivideByZeroException ex) { // exception handler

 49 cout << "Exception occurred: " << ex.what() << '\n';

 50 }

 51

 52 cout << "\nEnter two integers (end-of-file to end): ";

 53 }

 54

 55 cout << endl;

 56 return 0; // terminate normally

 57 }

• Initialize

variables

• Input data

• try and

catch blocks

• Function call

• Output result

Example of a try-catch Statement
 try

{

 // Statements that process personnel data and may throw

 // exceptions of type int, string, and SalaryError

}

catch (int)

{

 // Statements to handle an int exception

}

catch (string s)

{

 cout << s << endl; // Prints "Invalid customer age"

 // More statements to handle an age error

}

catch (SalaryError)

{

 // Statements to handle a salary error

}

Standard Template Library

• I/O Facilities: iostream

• Garbage-collected String class

• Containers

– vector, list, queue, stack, map, set

• Numerical

– complex

• General algorithms

– search, sort

 CENG 213 Data Structures 76

Using the vector

• Vector: Dynamically growing, shrinking array of elements

• To use it include library header file:

#include <vector>

• Vectors are declared as

vector<int> a(4); //a vector called a,

 //containing four integers

vector<int> b(4, 3); //a vector of four

 // elements, each initialized to 3.

vector<int> c; // 0 int objects

• The elements of an integer vector behave just like ordinary integer

variables
a[2] = 45;

CENG 213 Data Structures 77

Manipulating vectors

• The size() member function returns the

number of elements in the vector.

a.size() returns a value of 4.

• The = operator can be used to assign one

vector to another.

• e.g. v1 = v2, so long as they are vectors of

the same type.

• The push_back() member function allows

you to add elements to the end of a vector.

 CENG 213 Data Structures 78

push_back() and pop_back()

vector<int> v;

v.push_back(3);

v.push_back(2);

// v[0] is 3, v[1] is 2, v.size() is 2

v.pop_back();

int t = v[v.size()-1];

v.pop_back();

CENG 213 Data Structures 79

CENG 213 Data Structures 80

Inheritance

• Inheritance is the fundamental object-oriented

principle governing the reuse of code among

related classes.

• Inheritance models the IS-A relationship. In an

IS-A relationship, the derived class is a variation

of the base class.

– e.g. Circle IS-A Shape, car IS-A vehicle.

• Using inheritance a programmer creates new

classes from an existing class by adding additional

data or new functions, or by redefining functions.

CENG 213 Data Structures 81

Inheritance Hierarchy
• Inheritance allows the derivation of classes from a

base class without disturbing the implementation
of the base class.

• A derived class is a completely new class that
inherits the properties, public methods, and
implementations of the base class.

• The use of inheritance typically generates a
hierarchy of classes.

• In this hierarchy, the derived class is a subclass of
the base class and the base class is a superclass of
the derived class.

• These relationships are transitive.

CENG 213 Data Structures 82

Base and Derived Classes

• Often an object from a derived class (subclass) ―is an‖ object of a base

class (superclass)

Base class Derived classes

Student GraduateStudent

UndergraduateStudent

Shape Circle

Triangle

Rectangle

Loan CarLoan

HomeImprovementLoan

MortgageLoan

Employee FacultyMember

StaffMember

Account CheckingAccount

SavingsAccount

CENG 213 Data Structures 83

Illustration of Inheritance

class mammal // base class
{
 public:
 // manager functions
 mammal(int age = 0, int wt = 0):itsAge(age),

 itsWt(wt) { }
 ~mammal() { }

 // access functions
 int getAge() const { return itsAge; }
 int getWt() const { return itsWt; }

 // implementation functions
 void speak() const{ cout << "mammal sound!\n";}
 void sleep() const{ cout << zzzzzzzzzzzz!\n"; }

 protected:
 int itsAge, itsWt;
};

CENG 213 Data Structures 84

class dog : public mammal
{
 public:
 // manager functions
 dog(int age, int wt, string name) :
 mammal(age, wt)
 { itsName = name; }
 dog(int age=0, int wt=0) : mammal(age,wt)
 { itsName = ""; }
 ~dog() { } // nothing to do

 // implementation function
 void speak() const { cout << "ARF ARF\n"; }
 void wagtail() const { cout << "wag wag

wag\n"; }

 private:
 string itsName;
};

CENG 213 Data Structures 85

int main()

{

 dog bowser(3, 25, "Bowser");

 bowser.speak();

 bowser.mammal :: speak();

 bowser.wagtail();

 bowser.sleep();

 cout << "bowser is " << bowser.getAge() << "

years old!" << endl;

 return 0;

}

Here is the output of the sample code:

 ARF ARF

 mammal sound!

 wag wag wag

 zzzzzzzzzzzz!

 bowser is 3 years old!

CENG 213 Data Structures 86

Overriding Functions
• If derived class has a member function with the same name,

return type and parameter list as in the base class, then the

derived class function overrides the base class function.

• The base class function is hidden.

• The implementation of the base class function has been

changed by the derived class.

• Derived class objects invoke the derived version of the

function.

• If a derived class object wants to use the base class version,

then it can do so by using the scope resolution operator:

 bowser.speak() // derived class version is invoked

 bowser.mammal::speak() //base class version

CENG 213 Data Structures 87

Private vs protected class members

1. private base class member(s)
– derived class member functions can not access these

objects directly
– the member still exists in the derived class object
– because not directly accessible in the derived class,

the derived class object must use base class access
functions to access them

2. protected base class member(s)

– directly accessible in the derived class
– member becomes a protected member of the derived

class as well

CENG 213 Data Structures 88

Constructors and destructors
1. Constructors

– Constructors are not inherited.
– Base class constructor is called before the derived class

constructor (either explicitly, or if not then the compiler invokes
the default constructor).

– Base class constructor initializes the base class members.
– The derived class constructor initializes the derived class

members that are not in the base class.
– A derived class constructor can pass parameters to the base class

constructor as illustrated in the example.
– Rules of thumb for constructors under inheritance:

– Define a default constructor for every class.
– Derived class constructors should explicitly invoke one of the

base class constructors.

2. Destructors
– Derived class destructor is called before the base class destructor.
– Derived class destructor does cleanup chores for the derived class

members that are not in the base class.
– Base class destructor does the same chores for the base class

members.

CENG 213 Data Structures 89

Abstract Methods and Classes

• Delete this topic

• An abstract method is declared in the base class

and always defined in the derived class.

• It does not provide a default implementation, so

each derived class must provide its own

implementation.

• A class that has at least one abstract method is

called an abstract class.

• Abstract classes can never be instantiated.

CENG 213 Data Structures 90

Example

• An abstract class : Shape

• Derive specific shapes: Circle,
Rectangle

• Derive Square from Rectangle

• The Shape class can have data members
that are common to all classes:e.g. name,
positionOf.

• Abstract methods apply for each particular
type of object: e.g. area

CENG 213 Data Structures 91

Abstract base class Shape

class shape

{

 public:

 Shape(const string & shapeName = “”)

 : name(shapeName) {}

 virtual ~Shape() { }

 virtual double area() const = 0;

 bool operator< (const Shape & rhs) const

 { return area () < rhs.area (); }

 virtual void print(ostream & out = cout) const

 { out << name << “ of area “ << area();}

 private:

 string name;

}

CENG 213 Data Structures 92

Expanding Shape Class

const double PI = 3.1415927;

class Circle : public Shape

{

 public :

 Circle(double rad = 0.0)

 : Shape(“circle”), radius(rad) {}

 double area() const

 { return PI * radius * radius;}

 private:

 double radius;

};

