
1

Trees

2

Outline

• Preliminaries

– What is Tree?

– Implementation of Trees using C++

– Tree traversals and applications

• Binary Trees

• Binary Search Trees

– Structure and operations

– Analysis

3

What is a Tree?

• A tree is a collection of nodes with the following properties:
– The collection can be empty.

– Otherwise, a tree consists of a distinguished node r, called root, and
zero or more nonempty sub-trees T1, T2, … , Tk, each of whose roots

are connected by a directed edge from r.
• The root of each sub-tree is said to be child of r, and r is the

parent of each sub-tree root.

• If a tree is a collection of N nodes, then it has N-1 edges.

root

T1
T2 Tk

...

4

Preliminaries

– Node A has 6 children: B, C, D, E, F, G.

– B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.

– K, L, M are siblings since F is parent of all of them.

A

B C D E F G

H I J K L M N

P Q

5

Preliminaries (continued)

• A path from node n1 to nk is defined as a sequence of
nodes n1, n2, …, nk such that ni is parent of ni+1 (1 ≤i < k)

– The length of a path is the number of edges on that
path.

– There is a path of length zero from every node to itself.

– There is exactly one path from the root to each node.

• The depth of node ni is the length of the path from root to
node ni

• The height of node ni is the length of longest path from
node ni to a leaf.

• If there is a path from n1 to n2, then n1 is ancestor of n2,
and n2 is descendent of n1.

– If n1 ≠ n2 then n1 is proper ancestor of n2, and n2 is
proper descendent of n1.

6

Figure 1
A tree, with height and depth information

7

Implementation of Trees

struct TreeNode {
 Object element;
 struct TreeNode *firstChild;
 struct TreeNode *nextSibling;
};

A

B C D E F G

H I J K L M N

P Q

A

NULL

B
NULL

C
NULL

D

H
NULL

NULL

element

firstChild

nextSibling

8

Figure 2: The Unix directory with file sizes

9

Listing a directory

• printName() function prints the name of the object after
“depth” number of tabs -indentation. In this way, the
output is nicely formatted on the screen.

• The order of visiting the nodes in a tree is important while
traversing a tree.
– Here, the nodes are visited according to preorder traversal

strategy.

// Algorithm (not a complete C code)
listAll (struct TreeNode *t, int depth)
{
 printName (t, depth);
 if (isDirectory())
 for each file c in this directory (for each child)
 listAll(c, depth+1);
}

10

Figure 3: The directory listing for the tree shown in Figure 2

11

Size of a directory

•The nodes are visited using postorder strategy.

•The work at a node is done after processing each

child of that node.

int FileSystem::size () const
{
 int totalSize = sizeOfThisFile();

 if (isDirectory())
 for each file c in this directory (for each child)
 totalSize += c.size();
 return totalSize;
}

12

Figure 18.9
A trace of the size method

13

Preorder Traversal

• A traversal visits the nodes of a tree

in a systematic manner

• In a preorder traversal, a node is

visited before its descendants

• Application: print a structured

document

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

 preorder (w)

14

Postorder Traversal

• In a postorder traversal, a node is

visited after its descendants

• Application: compute space used

by files in a directory and its

subdirectories

Algorithm postOrder(v)

for each child w of v

 postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

15

Binary Trees

• A binary tree is a tree in which no node can have more

than two children

• The depth can be as large as N-1 in the worst case.

root

TL

TR

A binary tree consisting

of a root and

two subtrees TL and TR,

both of which could

possibly be empty.

16

Binary Tree Terminology

Left Child – The left child of node n is a node directly below

and to the left of node n in a binary tree.

Right Child – The right child of node n is a node directly

below and to the right of node n in a binary tree.

Left Subtree – In a binary tree, the left subtree of node n is

the left child (if any) of node n plus its descendants.

Right Subtree – In a binary tree, the right subtree of node n is

the right child (if any) of node n plus its descendants.

17

Binary Tree -- Example

 A

 D

 C

 E

 G F H

 B

 I

• A is the root.

• B is the left child of A, and

 C is the right child of A.

• D doesn’t have a right child.

• H doesn’t have a left child.

• B, F, G and I are leaves.

18

Binary Tree – Representing Algebraic

Expressions

19

Height of Binary Tree

• The height of a binary tree T can be defined recursively as:

– If T is empty, its height is -1.

– If T is non-empty tree, then since T is of the form

 r

 TL TR

the height of T is 1 greater than the height of its root’s taller
subtree; i.e.

 height(T) = 1 + max{height(TL),height(TR)}

20

Height of Binary Tree (cont.)

Binary trees with the same nodes but different heights

21

Number of Binary trees with Same # of Nodes

n=0 empty tree

n=1

n=2

n=3

(1 tree)

(2 trees)

(5 trees)

22

Full Binary Tree

• In a full binary tree of height h, all nodes that are at a level
less than h have two children each.

• Each node in a full binary tree has left and right subtrees of
the same height.

• Among binary trees of height h, a full binary tree has as
many leaves as possible, and they all are at level h.

• A full binary has no missing nodes.

• Recursive definition of full binary tree:

– If T is empty, T is a full binary tree of height -1.

– If T is not empty and has height h>0, T is a full binary
tree if its root’s subtrees are both full binary trees of
height h-1.

23

Full Binary Tree – Example

A full binary tree of height 2

24

Complete Binary Tree

• A complete binary tree of height h is a binary tree that is

full down to level h-1, with level h filled in from left to

right.

• A binary tree T of height h is complete if

1. All nodes at level h-2 and above have two children

each, and

2. When a node at level h-1 has children, all nodes to its

left at the same level have two children each, and

3. When a node at level h-1 has one child, it is a left child.

– A full binary tree is a complete binary tree.

25

Complete Binary Tree – Example

26

Balanced Binary Tree

• A binary tree is height balanced (or balanced), if the

height of any node’s right subtree differs from the height

of the node’s left subtree by no more than 1.

• A complete binary tree is a balanced tree.

• Other height balanced trees:

– AVL trees

– Red-Black trees

– B-trees

27

A Pointer-Based Implementation of Binary Trees

struct BinaryNode {
 Object element;
 struct BinaryNode *left;
 struct BinaryNode *right;
};

28

Binary Tree Traversals

• Preorder Traversal

– the node is visited before its left and right subtrees,

• Postorder Traversal

– the node is visited after both subtrees.

• Inorder Traversal

– the node is visited between the subtrees,

– Visit left subtree, visit the node, and visit the right

subtree.

29

Binary Tree Traversals

30

Preorder

void preorder(struct tree_node * p)

{ if (p !=NULL) {

 printf(“%d\n”, p->data);

 preorder(p->left_child);

 preorder(p->right_child);

}

}

31

Inorder

void inorder(struct tree_node *p)

{ if (p !=NULL) {

 inorder(p->left_child);

 printf(“%d\n”, p->data);

 inorder(p->right_child);

}

}

32

Postorder

void postorder(struct tree_node *p)

{ if (p !=NULL) {

 postorder(p->left_child);

 postorder(p->right_child);

 printf(“%d\n”, p->data);

}

}

33

Finding the maximum value in a binary tree

int FindMax(struct tree_node *p)

{

 int root_val, left, right, max;

 max = -1; // Assuming all values are positive integers

 if (p!=NULL) {

 root_val = p -> data;

 left = FindMax(p ->left_child);

 right = FindMax(p->right_child);

 // Find the largest of the three values.

 if (left > right)

 max = left;

 else

 max = right;

 if (root_val > max)

 max = root_val;

 }

 return max;

}

34

Adding up all values in a Binary Tree

int add(struct tree_node *p)

{

 if (p == NULL)

 return 0;

 else

 return (p->data + add(p->left_child)+

 add(p->right_child));

}

35

Exercises

1. Write a function that will count the leaves

of a binary tree.

2. Write a function that will find the height

of a binary tree.

3. Write a function that will interchange all

left and right subtrees in a binary tree.

36

Binary Search Trees

• An important application of binary trees is their

use in searching.

• Binary search tree is a binary tree in which every

node X contains a data value that satisfies the

following:

a) all data values in its left subtree are smaller than the

data value in X

b) the data value in X is smaller than all the values in its

right subtree.

c) the left and right subtrees are also binary search tees.

37

Example

6

2 8

1 4

3

6

2 8

1 4

3 7

A binary search tree Not a binary search tree, but a

binary tree

38

Binary Search Trees – containing same data

39

Operations on BSTs

• Most of the operations on binary trees are
O(logN).

– This is the main motivation for using binary

trees rather than using ordinary lists to store
items.

• Most of the operations can be implemented
using recursion.

– we generally do not need to worry about
running out of stack space, since the average
depth of binary search trees is O(logN).

40

The BinaryNode class

template <class Comparable>

class BinaryNode

{

 Comparable element; // this is the item stored in the node

 BinaryNode *left;

 BinaryNode *right;

 BinaryNode(const Comparable & theElement, BinaryNode *lt,

 BinaryNode *rt) : element(theElement), left(lt),

 right(rt) { }

};

41

find
/**

 * Method to find an item in a subtree.

 * x is item to search for.

 * t is the node that roots the tree.

 * Return node containing the matched item.

 */

template <class Comparable>

BinaryNode<Comparable> *

find(const Comparable & x, BinaryNode<Comparable> *t) const

{

 if(t == NULL)

 return NULL;

 else if(x < t->element)

 return find(x, t->left);

 else if(t->element < x)

 return find(x, t->right);

 else

 return t; // Match

}

42

findMin (recursive implementation)
/**

 * method to find the smallest item in a subtree t.

 * Return node containing the smallest item.

 */

template <class Comparable>

BinaryNode<Comparable> *

findMin(BinaryNode<Comparable> *t) const

{

 if(t == NULL)

 return NULL;

 if(t->left == NULL)

 return t;

 return findMin(t->left);

}

43

findMax (nonrecursive implementation)

/**

 *method to find the largest item in a subtree t.

 *Return node containing the largest item.

 */

template <class Comparable>

BinaryNode<Comparable> *

findMax(BinaryNode<Comparable> *t) const

{

 if(t != NULL)

 while(t->right != NULL)

 t = t->right;

 return t;

}

44

Insert operation

Algorithm for inserting X into tree T:
– Proceed down the tree as you would with

a find operation.

– if X is found

 do nothing, (or “update” something)

 else

 insert X at the last spot on the path traversed.

45

• What about duplicates?

6

2 8

1 4

3 5

Insert 5

Example

46

Insertion into a BST
/* method to insert into a subtree.

 * x is the item to insert.

 * t is the node that roots the tree.

 * Set the new root.

 */

template <class Comparable>

void insert(const Comparable & x,

 BinaryNode<Comparable> * & t) const

{

 if(t == NULL)

 t = new BinaryNode<Comparable>(x, NULL, NULL);

 else if(x < t->element)

 insert(x, t->left);

 else if(t->element < x)

 insert(x, t->right);

 else

 ; // Duplicate; do nothing

}

47

Deletion operation

There are three cases to consider:

1. Deleting a leaf node

• Replace the link to the deleted node by NULL.

2. Deleting a node with one child:

• The node can be deleted after its parent adjusts a
link to bypass the node.

3. Deleting a node with two children:

• The deleted value must be replaced by an existing
value that is either one of the following:

– The largest value in the deleted node’s left subtree

– The smallest value in the deleted node’s right subtree.

48

Deletion – Case1: A Leaf Node

To remove the leaf containing the item, we have to set the pointer in its parent to NULL.

Delete 70 (A leaf node)

50

60

70

40

45 30

42

50

60 40

45 30

42

49

Deletion – Case2: A Node with only a left child

50

60

70

40

45 30

42

Delete 45 (A node with only a left child)

50

60

70

40

42 30

50

Deletion – Case2: A Node with only a right child

50

60

70

40

45 30

42

Delete 60 (A node with only a right child)

50

70 40

45 30

42

51

Deletion – Case3: A Node with two children

50

60

70

42

45 30

Delete 40 (A node with two children)

• Locate the inorder successor of the node.

• Copy the item in this node into the node which contains the item which will be deleted.

• Delete the node of the inorder successor.

50

60

70

40

45 30

42

52

Deletion – Case3: A Node with two children

53

Deletion routine for BST
template <class Comparable>

void remove(const Comparable & x,

 BinaryNode<Comparable> * & t) const

{

 if(t == NULL)

 return; // Item not found; do nothing

 if(x < t->element)

 remove(x, t->left);

 else if(t->element < x)

 remove(x, t->right);

 else if(t->left != NULL && t->right != NULL {

 t->element = findMin(t->right)->element;

 remove(t->element, t->right);

 }

 else {

 BinaryNode<Comparable> *oldNode = t;

 t = (t->left != NULL) ? t->left : t->right;

 delete oldNode;

 }

}

54

Analysis of BST Operations

• The cost of an operation is proportional to

the depth of the last accessed node.

• The cost is logarithmic for a well-balanced

tree, but it could be as bad as linear for a

degenerate tree.

• In the best case we have logarithmic access

cost, and in the worst case we have linear

access cost.

55

Figure 19.19
(a) The balanced tree has a depth of log N; (b) the unbalanced tree has a

depth of N – 1.

56

Maximum and Minimum Heights of a Binary Tree

• The efficiency of most of the binary tree (and BST) operations

depends on the height of the tree.

• The maximum number of key comparisons for retrieval, deletion,

and insertion operations for BSTs is the height of the tree.

• The maximum of height of a binary tree with n nodes is n-1.

• Each level of a minimum height tree, except the last level, must

contain as many nodes as possible.

57

Maximum and Minimum Heights of a Binary Tree

A maximum-height binary tree

with seven nodes Some binary trees of height 2

58

Counting the nodes in a full binary tree

59

Some Height Theorems

Theorem 10-2: A full binary of height h 0 has 2h+1-1 nodes.

Theorem 10-3: The maximum number of nodes that a binary tree of

height h can have is 2h+1-1.

We cannot insert a new node into a full binary tree without

 increasing its height.

60

Some Height Theorems

Theorem 10-4: The minimum height of a binary tree with n nodes is log2(n+1) .

Proof: Let h be the smallest integer such that n 2h+1-1. We can establish
following facts:

 Fact 1 – A binary tree whose height is h-1 has n nodes.
– Otherwise h cannot be smallest integer in our assumption.

 Fact 2 – There exists a complete binary tree of height h that has exactly n
nodes.

– A full binary tree of height h-1 has 2h-1 nodes.

– Since a binary tree of height h cannot have more than 2h+1-1 nodes.

– At level h, we will reach n nodes.

 Fact 3 – The minimum height of a binary tree with n nodes is the smallest
integer h such that n 2h+1-1.

So, 2h-1 < n 2h+1-1

 2h < n+1 2h+1

 h < log2(n+1) h+1

Thus, h = log2(n+1) is the minimum height of a binary tree with n nodes.

61

Minimum Height

• Complete trees and full trees have minimum height.

• The height of an n-node binary search tree ranges

 from log2(n+1) to n-1.

• Insertion in search-key order produces a maximum-height binary

search tree.

• Insertion in random order produces a near-minimum-height

binary tree.

• That is, the height of an n-node binary search tree

– Best Case – log2(n+1) O(log2n)

– Worst Case – n-1 O(n)

– Average Case – close to log2(n+1) O(log2n)

• In fact, 1.39log2n

62

Average Height

Suppose we’re inserting n items into an empty binary search tree to create a

binary search tree with n nodes,

 How many different binary search trees with n nodes, and

 What are their probabilities,

There are n! different orderings of n keys.

But how many different binary search trees with n nodes?

n=0 1 BST (empty tree)

n=1 1 BST (a binary tree with a single node)

n=2 2 BSTs

n=3 5 BSTs

63

Average Height (cont.)

n=3

Probabilities: 1/6 1/6 2/6 1/6 1/6

Insertion Order: 3,2,1 3,1,2 2,1,3 1,3,2 1,2,3

 2,3,1

64

Order of Operations on BSTs

65

Treesort

• We can use a binary search tree to sort an array.

treesort(inout anArray:ArrayType, in n:integer)

// Sorts n integers in an array anArray

// into ascending order

 Insert anArray’s elements into a binary search

 tree bTree

 Traverse bTree in inorder. As you visit bTree’s

nodes,

 copy their data items into successive locations of

 anArray

66

Treesort Analysis

• Inserting an item into a binary search tree:

– Worst Case: O(n)

– Average Case: O(log2n)

• Inserting n items into a binary search tree:

– Worst Case: O(n2) (1+2+...+n) = O(n2)

– Average Case: O(n*log2n)

• Inorder traversal and copy items back into array O(n)

• Thus, treesort is

 O(n2) in worst case, and

 O(n*log2n) in average case.

• Treesort makes exactly the same comparisons of keys as

quicksort when the pivot for each sublist is chosen to be the first

key.

67

Saving a BST into a file, and

restoring it to its original shape
• Save:

– Use a preorder traversal to save the nodes of the BST into a

file.

• Restore:

– Start with an empty BST.

– Read the nodes from the file one by one, and insert them into

the BST.

68

Saving a BST into a file, and

restoring it to its original shape

Preorder: 60 20 10 40 30 50 70

69

Saving a BST into a file, and

restoring it to a minimum-height BST

• Save:

– Use an inorder traversal to save the nodes of the BST into a

file. The saved nodes will be in ascending order.

– Save the number of nodes (n) in somewhere.

• Restore:

– Read the number of nodes (n).

– Start with an empty BST.

– Read the nodes from the file one by one to create a minimum-

height binary search tree.

70

Building a minimum-height BST

readTree(out treePtr:TreeNodePtr, in n:integer)

// Builds a minimum-height binary search tree fro n sorted

// values in a file. treePtr will point to the tree’s root.

if (n>0) {

 // construct the left subtree

 treePtr = pointer to new node with NULL child pointers

 readTree(treePtr->leftChildPtr, n/2)

 // get the root

 Read item from file into treePtr->item

 // construct the right subtree

 readTree(treePtr->rightChildPtr, (n-1)/2)

 }

71

A full tree saved in a file by using inorder traversal

