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What is a Tree? 

• A tree is a collection of nodes with the following properties:  
– The collection can be empty.  

– Otherwise, a tree consists of a distinguished node r, called root, and 
zero or more nonempty sub-trees T1, T2, … , Tk, each of whose roots 

are connected by a directed edge from r.  
• The root of each sub-tree is said to be child of r, and r is the 

parent of each sub-tree root.  

• If a tree is a collection of N nodes, then it has N-1 edges.  

root 

T1 
T2 Tk 

... 
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Preliminaries 

– Node A has 6 children: B, C, D, E, F, G.  

– B, C, H, I, P, Q, K, L, M, N are leaves in the tree above. 

– K, L, M are siblings since F is parent of all of them.  

A 

B C D E F G 

H I J K L M N 

P Q 
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Preliminaries (continued) 

• A path from node n1 to nk is defined as a sequence of 
nodes n1, n2, …, nk such that ni is parent of ni+1 (1 ≤i < k) 

– The length of a path is the number of edges on that 
path.  

– There is a path of length zero from every node to itself.  

– There is exactly one path from the root to each node.  

• The depth of node ni is the length of the path from root to 
node ni 

• The height of node ni is the length of longest path from 
node ni to a leaf.  

• If there is a path from n1 to n2, then n1 is ancestor of n2, 
and n2 is descendent of n1.  

– If n1 ≠ n2 then n1 is proper ancestor of n2, and n2 is 
proper descendent of n1.  
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Figure 1 
A tree, with height and depth information 
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Implementation of Trees 

struct TreeNode { 
     Object       element;  
     struct TreeNode *firstChild;  
     struct TreeNode *nextSibling;  
}; 

A 

B C D E F G 

H I J K L M N 

P Q 
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Figure 2: The Unix directory with file sizes 



9 

Listing a directory 

• printName() function prints the name of the object after 
“depth” number of tabs -indentation. In this way, the 
output is nicely formatted on the screen.  

• The order of visiting the nodes in a tree is important while 
traversing a tree.  
– Here, the nodes are visited according to preorder traversal 

strategy.  

 

// Algorithm (not a complete C code)  
listAll ( struct TreeNode *t, int depth) 
{ 
     printName ( t, depth );    
     if (isDirectory()) 
        for each file c in  this directory (for each child) 
  listAll(c, depth+1 ); 
} 
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Figure 3: The directory listing for the tree shown in Figure 2 
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Size of a directory 

•The nodes are visited using postorder strategy.  

•The work at a node  is done after  processing each 

child of that node.  

 

int FileSystem::size () const 
{ 
     int totalSize   = sizeOfThisFile();  
 
     if (isDirectory()) 
        for each file c in  this directory (for each child) 
   totalSize += c.size();  
     return totalSize;  
} 
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Figure 18.9 
A trace of the size method 
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Preorder Traversal 

• A traversal visits the nodes of a tree 

in a systematic manner 

• In a preorder traversal, a node is 

visited before its descendants  

• Application: print a structured 

document 

Make Money Fast! 

1. Motivations References 2. Methods 

2.1 Stock 
Fraud 

2.2 Ponzi 
Scheme 

1.1 Greed 1.2 Avidity 
2.3 Bank 
Robbery 

1 

2 

3 

5 

4 
6 7 8 

9 

Algorithm preOrder(v) 

visit(v) 

for each child w of v 

 preorder (w) 
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Postorder Traversal 

• In a postorder traversal, a node is 

visited after its descendants 

• Application: compute space used 

by files in a directory and its 

subdirectories 

Algorithm postOrder(v) 

for each child w of v 

 postOrder (w) 

visit(v) 

cs16/ 

homeworks/ 
todo.txt 

1K 
programs/ 

DDR.java 
10K 

Stocks.java 
25K 

h1c.doc 
3K 

h1nc.doc 
2K 

Robot.java 
20K 

9 

3 

1 

7 

2 4 5 6 

8 
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Binary Trees 

• A binary tree is a tree in which no node can have more 

than two children 

• The depth can be as large as N-1 in the worst case.    

 

root 

TL 

TR 

A binary tree consisting 

of a root and 

two subtrees TL and TR,  

both of which could 

possibly be empty.  
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Binary Tree Terminology 

Left Child – The left child of node n is a node directly below 

and to the left of node n in a binary tree. 

Right Child – The right child of node n is a node directly 

below and to the right of node n in a binary tree. 

Left Subtree – In a binary tree, the left subtree of node n is 

the left child (if any) of node n plus its descendants. 

Right Subtree – In a binary tree, the right subtree of node n is 

the right child (if any) of node n plus its descendants. 
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Binary Tree -- Example 

 A 

 D 

 C 

 E 

 G  F  H 

 B 

 I 

• A is the root. 

• B is the left child of A, and  

  C is the right child of A. 

• D doesn’t have a right child. 

• H doesn’t have a left child. 

• B, F, G and I are leaves. 
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Binary Tree – Representing Algebraic 

Expressions 
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Height of Binary Tree 

• The height of a binary tree T can be defined recursively as: 

– If T is empty, its height is -1. 

– If T is non-empty tree, then since T is of the form 

 

             r 

 

    TL           TR 

  

the height of T is 1 greater than the height of its root’s taller 
subtree; i.e. 

 

  height(T) = 1 + max{height(TL),height(TR)} 
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Height of Binary Tree (cont.) 

Binary trees with the same nodes but different heights 
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Number of Binary trees with Same # of Nodes 

n=0       empty tree 

n=1  

 

 

 

 

 

  

 

 
 

 

 

 

 

 

  

 

 

 

n=2  

n=3  

(1 tree) 

(2 trees) 

(5 trees) 
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Full Binary Tree 

• In a full binary tree of height h, all nodes that are at a level 
less than h have two children each. 

• Each node in a full binary tree has left and right subtrees of 
the same height. 

• Among binary trees of height h, a full binary tree has as 
many leaves as possible, and they all are at level h. 

• A full binary has no missing nodes. 

• Recursive definition of full binary tree: 

– If T is empty, T is a full binary tree of height -1. 

– If T is not empty and has height h>0, T is a full binary 
tree if its root’s subtrees are both full binary trees of 
height h-1. 
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Full Binary Tree – Example  

A full binary tree of height 2 
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Complete Binary Tree 

• A complete binary tree of height h is a binary tree that is 

full down to level h-1, with level h filled in from left to 

right. 

• A binary tree T of height h is complete if 

1. All nodes at level h-2 and above have two children 

each, and 

2. When a node at level h-1 has children, all nodes to its 

left at the same level have two children each, and 

3. When a node at level h-1 has one child, it is a left child. 

 

– A full binary tree is a complete binary tree. 
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Complete Binary Tree – Example  
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Balanced Binary Tree 

• A binary tree is height balanced (or balanced), if the 

height of any node’s right subtree differs from the height 

of the node’s left subtree by no more than 1. 

• A complete binary tree is a balanced tree. 

• Other height balanced trees: 

– AVL trees 

– Red-Black trees 

– B-trees 

 .... 
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A Pointer-Based Implementation of Binary Trees  

struct BinaryNode { 
   Object          element;  
   struct BinaryNode *left;  
   struct BinaryNode *right;     
}; 
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Binary Tree Traversals 

• Preorder Traversal 

–  the node is visited before its left and right subtrees,  

 

• Postorder Traversal 

–  the node is visited after both subtrees. 

 

• Inorder Traversal 

– the node is visited between the subtrees, 

– Visit left subtree, visit the node, and visit the right 

subtree. 
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Binary Tree Traversals 
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Preorder 

void preorder(struct tree_node * p) 

{ if (p !=NULL) { 

  printf(“%d\n”, p->data); 

  preorder(p->left_child); 

  preorder(p->right_child); 

} 

} 
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Inorder 

void inorder(struct tree_node *p) 

{ if (p !=NULL) { 

  inorder(p->left_child); 

  printf(“%d\n”, p->data); 

  inorder(p->right_child); 

} 

} 
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Postorder 

void postorder(struct tree_node *p) 

{ if (p !=NULL) { 

  postorder(p->left_child); 

  postorder(p->right_child); 

  printf(“%d\n”, p->data); 

  

} 

} 
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Finding the maximum value in a binary tree  

int FindMax(struct tree_node *p)  

{ 

     int root_val, left, right, max; 

     max = -1; // Assuming all values are positive integers 

 

     if (p!=NULL) { 

       root_val = p -> data;   

       left = FindMax(p ->left_child);   

       right = FindMax(p->right_child);   

  

       // Find the largest of the three values. 

       if (left > right) 

            max = left; 

       else  

           max = right; 

       if (root_val > max) 

           max = root_val; 

     } 

     return max; 

} 
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Adding up all values in a Binary Tree  

int add(struct tree_node *p)  

{ 

  

   if (p == NULL)  

      return 0; 

   else 

      return (p->data + add(p->left_child)+ 

        add(p->right_child)); 

} 
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Exercises 

1. Write a function that will count the leaves 

of a binary tree. 

2. Write a function that will find the height 

of a binary tree.  

3. Write a function that will interchange all 

left and right subtrees in a binary tree.  
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Binary Search Trees 

• An important application of binary trees is their 

use in searching. 

• Binary search tree is a binary tree in which every  

node X contains a data value that satisfies the 

following: 

a) all data values in its left subtree are smaller than the 

data value in X  

b) the data value in X is smaller than all the values in its 

right subtree. 

c) the left and right subtrees are also binary search tees. 
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Example 

6 

2 8 

1 4 

3 

6 

2 8 

1 4 

3 7 

A binary search tree Not a binary search tree, but a 

binary tree 
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Binary Search Trees – containing same data 
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Operations on BSTs 

• Most of the operations on binary trees are 
O(logN).  

– This is the main motivation for using binary 

trees rather than using ordinary lists to store 
items.  

• Most of the operations can be implemented 
using recursion.   

– we generally do not need to worry about 
running out of stack space, since the average 
depth of binary search  trees is O(logN). 
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The BinaryNode class 

 
template <class Comparable> 

class BinaryNode 

{ 

   Comparable element;   // this is the item stored in the node 

   BinaryNode *left; 

   BinaryNode *right; 

 

   BinaryNode( const Comparable & theElement, BinaryNode *lt,  

     BinaryNode *rt ) : element( theElement ), left( lt ),     

   right( rt ) { } 

}; 
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find 
/** 

 * Method to find an item in a subtree. 

 * x is item to search for. 

 * t is the node that roots the tree. 

 * Return node containing the matched item. 

 */ 

template <class Comparable> 

BinaryNode<Comparable> * 

find( const Comparable & x, BinaryNode<Comparable> *t ) const 

{ 

  if( t == NULL ) 

      return NULL; 

  else if( x < t->element ) 

      return find( x, t->left ); 

  else if( t->element < x ) 

      return find( x, t->right ); 

  else 

      return t;    // Match 

} 
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findMin (recursive implementation) 
/** 

 * method to find the smallest item in a subtree t. 

 * Return node containing the smallest item. 

 */ 

template <class Comparable> 

BinaryNode<Comparable> * 

findMin( BinaryNode<Comparable> *t ) const 

{ 

   if( t == NULL ) 

       return NULL; 

   if( t->left == NULL ) 

       return t; 

   return findMin( t->left ); 

} 
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findMax (nonrecursive implementation) 

/** 

 *method to find the largest item in a subtree t. 

 *Return node containing the largest item. 

 */ 

template <class Comparable> 

BinaryNode<Comparable> * 

findMax( BinaryNode<Comparable> *t ) const 

{ 

  if( t != NULL ) 

    while( t->right != NULL ) 

       t = t->right; 

  return t; 

} 
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Insert operation 

Algorithm for inserting X into tree T: 
– Proceed down the tree as you would with  

a find operation.  

– if X is found  

       do nothing, (or “update” something) 

 else 

        insert X at the last spot on the path traversed.  
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• What about duplicates?  

6 

2 8 

1 4 

3 5 

Insert 5 

Example 
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Insertion into a BST 
/* method to insert into a subtree. 

 * x is the item to insert. 

 * t is the node that roots the tree. 

 * Set the new root. 

 */ 

template <class Comparable> 

void insert( const Comparable & x,              

             BinaryNode<Comparable> * & t ) const 

{ 

   if( t == NULL ) 

      t = new BinaryNode<Comparable>( x, NULL, NULL ); 

   else if( x < t->element ) 

      insert( x, t->left ); 

   else if( t->element < x ) 

      insert( x, t->right ); 

   else 

      ;  // Duplicate; do nothing 

} 
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Deletion operation 

There are three cases to consider:  

1. Deleting a leaf node 

• Replace the link to the deleted node by NULL. 

2. Deleting a node with one child: 

• The node can be deleted after its parent adjusts a 
link to bypass the node.  

3. Deleting a node with two children:  

• The deleted value must be replaced by an existing 
value that is either one of the following: 

– The largest value in the deleted node’s left subtree 

– The smallest value in the deleted node’s right subtree. 
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Deletion – Case1: A Leaf Node 

To remove the leaf containing the item, we have to set the pointer in its parent to NULL. 

Delete 70 (A leaf node) 

 

50 

60 

70 

40 

45 30 

42 

50 

60 40 

45 30 

42 
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Deletion – Case2: A Node with only a left child 

50 

60 

70 

40 

45 30 

42 

Delete 45 (A  node with only a left child) 

50 

60 

70 

40 

42 30 
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Deletion – Case2: A Node with only a right child 

50 

60 

70 

40 

45 30 

42 

Delete 60 (A  node with only a right child) 

 

50 

70 40 

45 30 

42 
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Deletion – Case3: A Node with two children 

50 

60 

70 

42 

45 30 

Delete 40 (A  node with two children) 

• Locate the inorder successor of the node. 

• Copy the item in this node into the node which contains the item which will be deleted. 

• Delete the node of the inorder successor. 

 

50 

60 

70 

40 

45 30 

42 
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Deletion – Case3: A Node with two children 
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Deletion routine for BST 
template <class Comparable> 

void remove( const Comparable & x,  

             BinaryNode<Comparable> * & t ) const 

{ 

   if( t == NULL ) 

      return;   // Item not found; do nothing 

   if( x < t->element ) 

      remove( x, t->left ); 

   else if( t->element < x ) 

      remove( x, t->right ); 

   else if( t->left != NULL && t->right != NULL { 

       t->element = findMin( t->right )->element; 

       remove( t->element, t->right ); 

   } 

   else   { 

      BinaryNode<Comparable> *oldNode = t; 

      t = ( t->left != NULL ) ? t->left : t->right; 

      delete oldNode; 

    } 

} 
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Analysis of BST Operations 

• The cost of an operation is proportional to 

the depth of the last accessed node. 

• The cost is logarithmic for a well-balanced 

tree, but it could be as bad as linear for a 

degenerate tree.  

• In the best case we have logarithmic access 

cost, and in the worst case we have linear 

access cost. 
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Figure 19.19 
(a) The balanced tree has a depth of log N; (b) the unbalanced tree has a  

depth of N – 1. 
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Maximum and Minimum Heights of a Binary Tree 

• The efficiency of most of the binary tree (and BST) operations 

depends on the height of the tree. 

• The maximum number of key comparisons for retrieval, deletion, 

and insertion operations for BSTs is the height of the tree. 

 

• The maximum of height of a binary tree with n nodes is n-1. 

• Each level of a minimum height tree, except the last level, must 

contain as many nodes as possible. 
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Maximum and Minimum Heights of a Binary Tree 

A maximum-height binary tree  

with seven nodes Some binary trees of height 2 
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Counting the nodes in a full binary tree 
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Some Height Theorems 

Theorem 10-2: A full binary of height h 0 has 2h+1-1 nodes. 

 

Theorem 10-3: The maximum number of nodes that a binary tree of 

height h can have is 2h+1-1. 

 

We cannot insert a new node into a full binary tree without  

 increasing its height. 
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Some Height Theorems 

Theorem 10-4: The minimum height of a binary tree with n nodes is  log2(n+1)  . 

Proof: Let h be the smallest integer such that  n 2h+1-1. We can establish 
following facts: 

 Fact 1 – A binary tree whose height is  h-1 has  n nodes. 
– Otherwise h cannot be smallest integer in our assumption. 

 Fact 2 – There exists a complete binary tree of height h that has exactly n 
nodes. 

– A full binary tree of height h-1 has 2h-1 nodes.  

– Since a binary tree of height h cannot have more than 2h+1-1 nodes.  

– At level h, we will reach n nodes. 

 Fact 3 – The minimum height of a binary tree with n nodes is the smallest 
integer h such that n 2h+1-1. 

So,    2h-1  <  n    2h+1-1    

     2h  <  n+1    2h+1    

    h  <  log2(n+1)    h+1 

Thus,   h = log2(n+1)    is the minimum height of a binary tree with n nodes. 
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Minimum Height 

• Complete trees and full trees have minimum height. 

• The height of an n-node binary search tree ranges  

 from log2(n+1)  to n-1. 

• Insertion in search-key order produces a maximum-height binary 

search tree. 

• Insertion in random order produces a near-minimum-height 

binary tree. 

• That is, the height of an n-node binary search tree  

– Best Case –     log2(n+1)      O(log2n) 

– Worst Case –  n-1      O(n) 

– Average Case – close to log2(n+1)     O(log2n) 

• In fact, 1.39log2n 
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Average Height 

Suppose we’re inserting n items into an empty binary search tree to create a  

binary search tree with n nodes, 

  How many different binary search trees with n nodes, and  

 What are their probabilities, 

 

There are n! different orderings of n keys.  

But how many different binary search trees with n nodes? 

n=0    1 BST (empty tree) 

n=1    1 BST (a binary tree with a single node) 

n=2    2 BSTs 

n=3    5 BSTs 
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Average Height (cont.) 

  

 

 
 

 

 

 

 

 

  

 

 

 

n=3  

Probabilities:     1/6         1/6       2/6          1/6         1/6 

Insertion Order:  3,2,1       3,1,2    2,1,3       1,3,2      1,2,3 

                                                       2,3,1 
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Order of Operations on BSTs 
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Treesort 

• We can use a binary search tree to sort an array. 

 

treesort(inout anArray:ArrayType, in n:integer)  

// Sorts n integers in an array anArray  

// into ascending order 

   Insert anArray’s elements into a binary search  

   tree bTree 

 

   Traverse bTree in inorder. As you visit bTree’s 

nodes,  

   copy their data items into successive locations of 

   anArray 
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Treesort Analysis 

• Inserting an item into a binary search tree: 

– Worst Case:  O(n) 

– Average Case:  O(log2n) 

• Inserting n items into a binary search tree: 

– Worst Case:  O(n2)   (1+2+...+n) = O(n2) 

– Average Case: O(n*log2n) 

• Inorder traversal and copy items back into array  O(n) 

• Thus, treesort is  

  O(n2)  in worst case, and 

  O(n*log2n) in average case. 

• Treesort makes exactly the same comparisons of keys as 

quicksort when the pivot for each sublist is chosen to be the first 

key. 
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Saving a BST into a file, and  

restoring it to its original shape 
• Save: 

– Use a preorder traversal to save the nodes of the BST into a 

file. 

 

• Restore: 

– Start with an empty BST. 

– Read the nodes from the file one by one, and insert them into 

the BST. 
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Saving a BST into a file, and  

restoring it to its original shape 

Preorder: 60 20 10 40 30  50 70 
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Saving a BST into a file, and  

restoring it to a minimum-height BST 

• Save: 

– Use an inorder traversal to save the nodes of the BST into a 

file. The saved nodes will be in ascending order. 

– Save the number of nodes (n) in somewhere. 

 

• Restore: 

– Read the number of nodes (n). 

– Start with an empty BST. 

– Read the nodes from the file one by one to create a minimum-

height binary search tree. 
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Building a minimum-height BST 

readTree(out treePtr:TreeNodePtr, in n:integer) 

// Builds a minimum-height binary search tree fro n sorted 

// values in a file. treePtr will point to the tree’s root. 

   

if (n>0) { 

    // construct the left subtree 

    treePtr = pointer to new node with NULL child pointers 

    readTree(treePtr->leftChildPtr, n/2) 

 

    // get the root 

    Read item from file into treePtr->item 

 

    // construct the right subtree 

    readTree(treePtr->rightChildPtr, (n-1)/2) 

  } 
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A full tree saved in a file by using inorder traversal 


