Trees

Outline

- Preliminaries
- What is Tree?
- Implementation of Trees using C++
- Tree traversals and applications
- Binary Trees
- Binary Search Trees
- Structure and operations
- Analysis

What is a Tree?

- A tree is a collection of nodes with the following properties:
- The collection can be empty.
- Otherwise, a tree consists of a distinguished node r , called root, and zero or more nonempty sub-trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}}$, each of whose roots are connected by a directed edge from r .
- The root of each sub-tree is said to be child of r , and r is the parent of each sub-tree root.
- If a tree is a collection of N nodes, then it has $\mathrm{N}-1$ edges.

Preliminaries

- Node A has 6 children: B, C, D, E, F, G.
- B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.
- K, L, M are siblings since F is parent of all of them.

Preliminaries (continued)

- A path from node n_{1} to n_{k} is defined as a sequence of nodes $n_{1}, n_{2}, \ldots, n_{k}$ such that n_{i} is parent of $n_{i+1}(1 \leq i<k)$
- The length of a path is the number of edges on that path.
- There is a path of length zero from every node to itself.
- There is exactly one path from the root to each node.
- The depth of node n_{i} is the length of the path from root to node n_{i}
- The height of node n_{i} is the length of longest path from node n_{i} to a leaf.
- If there is a path from n_{1} to n_{2}, then n_{1} is ancestor of n_{2}, and n_{2} is descendent of n_{1}.
- If $\mathrm{n}_{1} \neq \mathrm{n}_{2}$ then n_{1} is proper ancestor of n_{2}, and n_{2} is proper descendent of n_{1}.

Figure 1
A tree, with height and depth information

Implementation of Trees

Figure 2: The Unix directory with file sizes

Listing a directory

```
// Algorithm (not a complete C code)
listAll ( struct TreeNode *t, int depth)
{
    printName (t, depth );
    if (isDirectory())
        for each file c in this directory (for each child)
        listAlI(c, depth+1 );
}
```

- printName() function prints the name of the object after "depth" number of tabs -indentation. In this way, the output is nicely formatted on the screen.
- The order of visiting the nodes in a tree is important while traversing a tree.
- Here, the nodes are visited according to preorder traversal strategy.

Figure 3: The directory listing for the tree shown in Figure 2

$$
\begin{aligned}
& \text { mark } \\
& \text { books } \\
& \text { dsaa } \\
& \text { ch1 } \\
& \text { ch2 } \\
& \text { ecp } \\
& \text { ch1 } \\
& \text { ch2 } \\
& \text { ipps } \\
& \text { ch1 } \\
& \text { ch2 } \\
& \text { courses } \\
& \text { cop3223 } \\
& \text { sy] } \\
& \text { cop3530 } \\
& \text { syl }
\end{aligned}
$$

Size of a directory

```
int FileSystem::size () const
{
    int totalSize = sizeOfThisFile();
    if (isDirectory())
        for each file c in this directory (for each child)
        totalSize += c.size();
    return totalSize;
}
```

-The nodes are visited using postorder strategy.
-The work at a node is done after processing each child of that node.

Figure 18.9

A trace of the size method

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)

visit(v)
for each child \boldsymbol{w} of \boldsymbol{v}
preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v) for each child \boldsymbol{w} of \boldsymbol{v}
postOrder (w)
visit(v)

Binary Trees

- A binary tree is a tree in which no node can have more than two children
- The depth can be as large as $N-1$ in the worst case.

A binary tree consisting of a root and two subtrees T_{L} and T_{R}, both of which could possibly be empty.

Binary Tree Terminology

Left Child - The left child of node n is a node directly below and to the left of node n in a binary tree.
Right Child - The right child of node n is a node directly below and to the right of node n in a binary tree.
Left Subtree - In a binary tree, the left subtree of node n is the left child (if any) of node n plus its descendants.
Right Subtree - In a binary tree, the right subtree of node n is the right child (if any) of node n plus its descendants.

Binary Tree -- Example

- A is the root.
- B is the left child of A , and C is the right child of A .
- D doesn't have a right child.
- H doesn't have a left child.
$-\mathrm{B}, \mathrm{F}, \mathrm{G}$ and I are leaves.

Binary Tree - Representing Algebraic Expressions

$a-b / c$

(b)
$(a-b) * c$

(c)

Height of Binary Tree

- The height of a binary tree T can be defined recursively as:
- If T is empty, its height is -1 .
- If T is non-empty tree, then since T is of the form

the height of T is 1 greater than the height of its root's taller subtree; i.e.

$$
\operatorname{height}(T)=1+\max \left\{\operatorname{height}\left(T_{L}\right), \operatorname{height}\left(T_{R}\right)\right\}
$$

Height of Binary Tree (cont.)

Binary trees with the same nodes but different heights

Number of Binary trees with Same \# of Nodes

Full Binary Tree

- In a full binary tree of height h , all nodes that are at a level less than h have two children each.
- Each node in a full binary tree has left and right subtrees of the same height.
- Among binary trees of height h , a full binary tree has as many leaves as possible, and they all are at level h .
- A full binary has no missing nodes.
- Recursive definition of full binary tree:
- If T is empty, T is a full binary tree of height -1 .
- If T is not empty and has height $\mathrm{h}>0, \mathrm{~T}$ is a full binary tree if its root's subtrees are both full binary trees of height $\mathrm{h}-1$.

Full Binary Tree - Example

A full binary tree of height 2

Complete Binary Tree

- A complete binary tree of height h is a binary tree that is full down to level h-1, with level h filled in from left to right.
- A binary tree T of height h is complete if

1. All nodes at level h-2 and above have two children each, and
2. When a node at level h-1 has children, all nodes to its left at the same level have two children each, and
3. When a node at level $\mathrm{h}-1$ has one child, it is a left child.

- A full binary tree is a complete binary tree.

Complete Binary Tree - Example

Balanced Binary Tree

- A binary tree is height balanced (or balanced), if the height of any node's right subtree differs from the height of the node's left subtree by no more than 1.
- A complete binary tree is a balanced tree.
- Other height balanced trees:
- AVL trees
- Red-Black trees
- B-trees

A Pointer-Based Implementation of Binary Trees

struct BinaryNode \{ Object element; struct BinaryNode *left; struct BinaryNode *right;
\};

Binary Tree Traversals

- Preorder Traversal
- the node is visited before its left and right subtrees,
- Postorder Traversal
- the node is visited after both subtrees.
- Inorder Traversal
- the node is visited between the subtrees,
- Visit left subtree, visit the node, and visit the right subtree.

Binary Tree Traversals

(a) Preorder: $60,20,10,40,30,50,70$

(b) Inorder: $10,20,30,40,50,60,70$

(c) Postorder: $10,30,50,40,20,70,60$
(Numbers beside nodes indicate traversal order.)

Preorder

```
void preorder(struct tree_node * p)
{ if (p !=NULL) {
    printf("%d\n", p->data);
    preorder(p->left_child);
    preorder(p->right_child);
}
}
```


Inorder

```
void inorder(struct tree_node *p)
{ if (p !=NULL) {
    inorder(p->left_child);
    printf("%d\n", p->data);
        inorder(p->right_child);
}
}
```


Postorder

```
void postorder(struct tree_node *p)
{ if (p !=NULL) {
    postorder(p->left_child);
    postorder(p->right_child);
    printf("%d\n", p->data);
}
}
```


Finding the maximum value in a binary tree

```
int FindMax(struct tree_node *p)
{
int root_val, left, right, max;
max = -1; // Assuming all values are positive integers
if (p!=NULL) {
    root_val = p -> data;
    left = FindMax(p ->left_child);
    right = FindMax(p->right_child);
    // Find the largest of the three values.
    if (left > right)
        max = left;
    else
        max = right;
    if (root_val > max)
        max = root_val;
}
return max;
}
```


Adding up all values in a Binary Tree

```
int add(struct tree_node *p)
{
    if (p == NULL)
    return 0;
    else
        return (p->data + add(p->left_child)+
        add(p->right_child));
```


Exercises

1. Write a function that will count the leaves of a binary tree.
2. Write a function that will find the height of a binary tree.
3. Write a function that will interchange all left and right subtrees in a binary tree.

Binary Search Trees

- An important application of binary trees is their use in searching.
- Binary search tree is a binary tree in which every node X contains a data value that satisfies the following:
a) all data values in its left subtree are smaller than the data value in X
b) the data value in X is smaller than all the values in its right subtree.
c) the left and right subtrees are also binary search tees.

Example

A binary search tree
Not a binary search tree, but a binary tree

Binary Search Trees - containing same data

(a)

Operations on BSTs

- Most of the operations on binary trees are $\mathrm{O}(\log N)$.
- This is the main motivation for using binary trees rather than using ordinary lists to store items.
- Most of the operations can be implemented using recursion.
- we generally do not need to worry about running out of stack space, since the average depth of binary search trees is $\mathrm{O}(\log N)$.

The BinaryNode class

```
template <class Comparable>
class BinaryNode
{
    Comparable element; // this is the item stored in the node
    BinaryNode *left;
    BinaryNode *right;
    BinaryNode( const Comparable & theElement, BinaryNode *lt,
        BinaryNode *rt ) : element( theElement ), left( lt ),
        right( rt ) { }
```


find

```
/**
    * Method to find an item in a subtree.
    * x is item to search for.
    * t is the node that roots the tree.
    * Return node containing the matched item.
    */
template <class Comparable>
BinaryNode<Comparable> *
find( const Comparable & x, BinaryNode<Comparable> *t ) const
{
    if( t == NULL )
            return NULL;
    else if( x < t->element )
            return find( x, t->left );
    else if( t->element < x )
            return find( x, t->right );
    else
        return t; // Match
}
```


findMin (recursive implementation)

```
/**
    * method to find the smallest item in a subtree t.
    * Return node containing the smallest item.
    */
template <class Comparable>
BinaryNode<Comparable> *
findMin( BinaryNode<Comparable> *t ) const
{
if( t == NULL )
    return NULL;
    if( t->left == NULL )
    return t;
return findMin( t->left );
}
```


findMax (nonrecursive implementation)

```
/**
    *method to find the largest item in a subtree t.
    *Return node containing the largest item.
    */
template <class Comparable>
BinaryNode<Comparable> *
findMax( BinaryNode<Comparable> *t ) const
{
    if( t != NULL )
        while( t->right != NULL )
            t = t->right;
    return t;
}
```


Insert operation

Algorithm for inserting X into tree T :

- Proceed down the tree as you would with a find operation.
- if X is found
do nothing, (or "update" something) else
insert X at the last spot on the path traversed.

Insert 5

Example

- What about duplicates?

Insertion into a BST

```
/* method to insert into a subtree.
    * x is the item to insert.
    * t is the node that roots the tree.
    * Set the new root.
    */
template <class Comparable>
void insert( const Comparable & x,
                        BinaryNode<Comparable> * & t ) const
{
    if( t == NULL )
    t = new BinaryNode<Comparable>( x, NULL, NULL );
    else if( x < t->element )
    insert( x, t->left );
    else if( t->element < x )
        insert( x, t->right );
    else
        ; // Duplicate; do nothing
}
```


Deletion operation

There are three cases to consider:

1. Deleting a leaf node

- Replace the link to the deleted node by NULL.

2. Deleting a node with one child:

- The node can be deleted after its parent adjusts a link to bypass the node.

3. Deleting a node with two children:

- The deleted value must be replaced by an existing value that is either one of the following:
- The largest value in the deleted node's left subtree
- The smallest value in the deleted node's right subtree.

Deletion - Case1: A Leaf Node

To remove the leaf containing the item, we have to set the pointer in its parent to NULL.

Deletion - Case2: A Node with only a left child

Deletion - Case2: A Node with only a right child

42

Deletion - Case3: A Node with two children

- Locate the inorder successor of the node.
- Copy the item in this node into the node which contains the item which will be deleted.
- Delete the node of the inorder successor.

Delete 40 (A node with two children)

42

Deletion - Case3: A Node with two children

Deletion routine for BST

```
template <class Comparable>
void remove( const Comparable & x,
    BinaryNode<Comparable> * & t ) const
{
    if( t == NULL )
    return; // Item not found; do nothing
if( x < t->element )
    remove( x, t->left );
else if( t->element < x )
    remove( x, t->right );
else if( t->left != NULL && t->right != NULL {
        t->element = findMin( t->right )->element;
    remove( t->element, t->right );
}
else {
    BinaryNode<Comparable> *oldNode = t;
    t = ( t->left != NULL ) ? t->left : t->right;
    delete oldNode;
    }
}
```


Analysis of BST Operations

- The cost of an operation is proportional to the depth of the last accessed node.
- The cost is logarithmic for a well-balanced tree, but it could be as bad as linear for a degenerate tree.
- In the best case we have logarithmic access cost, and in the worst case we have linear access cost.

Figure 19.19
(a) The balanced tree has a depth of $\log N$; (b) the unbalanced tree has a depth of $N-1$.

(a)

(b)

Maximum and Minimum Heights of a Binary Tree

- The efficiency of most of the binary tree (and BST) operations depends on the height of the tree.
- The maximum number of key comparisons for retrieval, deletion, and insertion operations for BSTs is the height of the tree.
- The maximum of height of a binary tree with n nodes is $n-1$.
- Each level of a minimum height tree, except the last level, must contain as many nodes as possible.

Maximum and Minimum Heights of a Binary Tree

A maximum-height binary tree with seven nodes

(a)

(d)

(b)

(e)

(c)

Some binary trees of height 2

Counting the nodes in a full binary tree

Some Height Theorems

Theorem 10-2: A full binary of height $\mathrm{h} \geq 0$ has $2^{\mathrm{h}+1}-1$ nodes.

Theorem 10-3: The maximum number of nodes that a binary tree of height h can have is $2^{\mathrm{h}+1}-1$.
\rightarrow We cannot insert a new node into a full binary tree without increasing its height.

Some Height Theorems

Theorem 10-4: The minimum height of a binary tree with n nodes is $\left\lfloor\log _{2}(n+1)\right\rfloor$.
Proof: Let h be the smallest integer such that $\mathrm{n} \leq 2^{\mathrm{h}+1}-1$. We can establish following facts:
Fact 1 - A binary tree whose height is $\leq \mathrm{h}-1$ has $\leq \mathrm{n}$ nodes.

- Otherwise h cannot be smallest integer in our assumption.

Fact 2 - There exists a complete binary tree of height h that has exactly n nodes.

- A full binary tree of height $\mathrm{h}-1$ has $2^{\mathrm{h}}-1$ nodes.
- Since a binary tree of height h cannot have more than $2^{\text {h+1 }}-1$ nodes.
- At level h, we will reach n nodes.

Fact 3 - The minimum height of a binary tree with n nodes is the smallest integer h such that $\mathrm{n} \leq 2^{\mathrm{h}+1}-1$.
So,
$\rightarrow 2^{\mathrm{h}}-1<\mathrm{n} \leq 2^{\mathrm{h}+1}-1$
$\rightarrow 2^{\mathrm{h}}<\mathrm{n}+1 \leq 2^{\mathrm{h}+1}$
$\rightarrow \mathrm{h}<\log _{2}(\mathrm{n}+1) \leq \mathrm{h}+1$
Thus, $\quad \rightarrow \mathrm{h}=\left\lfloor\log _{2}(\mathrm{n}+1)\right\rfloor$ is the minimum height of a binary tree with n nodes.

Minimum Height

- Complete trees and full trees have minimum height.
- The height of an n-node binary search tree ranges from $\left\lfloor\log _{2}(\mathrm{n}+1)\right\rfloor$ to $\mathrm{n}-1$.
- Insertion in search-key order produces a maximum-height binary search tree.
- Insertion in random order produces a near-minimum-height binary tree.
- That is, the height of an n-node binary search tree
- Best Case - $\left\lfloor\log _{2}(\mathrm{n}+1)\right\rfloor$
- Worst Case - n-1
- Average Case - close to $\left\lfloor\log _{2}(\mathrm{n}+1)\right\rfloor \quad \mathrm{O}\left(\log _{2} \mathrm{n}\right)$
- In fact, $1.39 \log _{2} n$

Average Height

Suppose we're inserting n items into an empty binary search tree to create a binary search tree with n nodes,
\rightarrow How many different binary search trees with n nodes, and \rightarrow What are their probabilities,

There are n ! different orderings of n keys.
But how many different binary search trees with n nodes?

```
n=0 -> 1 BST (empty tree)
n=1 }->1\mathrm{ BST (a binary tree with a single node)
n=2 -> 2 BSTs
n=3 -> 5 BSTs
```


Average Height (cont.)

$\mathrm{n}=3 \rightarrow$				
Probabilities:	$1 / 6$	$1 / 6$	$2 / 6$	$1 / 6$
Insertion Order:	$3,2,1$	$3,1,2$	$2,1,3$	$1,3,2$
$2,3,1$	$1,2,3$			

Order of Operations on BSTs

Operation	Average case	Worst case
Retrieval	O($\log \mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Insertion	O($\log \mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Deletion	O($\log \mathrm{n})$	O(n)
Traversal	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$

Treesort

- We can use a binary search tree to sort an array.
treesort(inout anArray:ArrayType, in $n: i n t e g e r)$
// Sorts n integers in an array anArray
// into ascending order
Insert anArray's elements into a binary search tree bTree

Traverse bTree in inorder. As you visit bTree's nodes,
copy their data items into successive locations of anArray

Treesort Analysis

- Inserting an item into a binary search tree:
- Worst Case: O(n)
- Average Case: $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
- Inserting n items into a binary search tree:
- Worst Case: $\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \rightarrow \quad(1+2+\ldots+\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Average Case: O(n* $\log _{2} n$)
- Inorder traversal and copy items back into array $\rightarrow \mathrm{O}(\mathrm{n})$
- Thus, treesort is
$\rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$ in worst case, and
$\rightarrow \mathrm{O}\left(\mathrm{n}^{*} \log _{2} \mathrm{n}\right)$ in average case.
- Treesort makes exactly the same comparisons of keys as quicksort when the pivot for each sublist is chosen to be the first key.

Saving a BST into a file, and restoring it to its original shape

- Save:
- Use a preorder traversal to save the nodes of the BST into a file.
- Restore:
- Start with an empty BST.
- Read the nodes from the file one by one, and insert them into the BST.

Saving a BST into a file, and restoring it to its original shape

(b) bst.searchTreeInsert(60); bst.searchTreeInsert(20); bst.searchTreeInsert(10); bst.searchTreeInsert(40); bst.searchTreeInsert(30); bst.searchTreeInsert(50); bst.searchTreeInsert(70);

Preorder: 60201040305070

Saving a BST into a file, and restoring it to a minimum-height BST

- Save:
- Use an inorder traversal to save the nodes of the BST into a file. The saved nodes will be in ascending order.
- Save the number of nodes (n) in somewhere.
- Restore:
- Read the number of nodes (n).
- Start with an empty BST.
- Read the nodes from the file one by one to create a minimumheight binary search tree.

Building a minimum-height BST

```
readTree(out treePtr:TreeNodePtr, in n:integer)
// Builds a minimum-height binary search tree fro n sorted
// values in a file. treePtr will point to the tree's root.
if (n>0) {
    // construct the left subtree
    treePtr = pointer to new node with NULL child pointers
    readTree(treePtr->leftChildPtr, n/2)
    // get the root
    Read item from file into treePtr->item
    // construct the right subtree
    readTree(treePtr->rightChildPtr, (n-1)/2)
    }
```

A full tree saved in a file by using inorder traversal

File

