
1

Hashing

2

Hash Tables

• We’ll discuss the hash table ADT which supports only

a subset of the operations allowed by binary search

trees.

• The implementation of hash tables is called hashing.

• Hashing is a technique used for performing insertions,

deletions and finds in constant average time (i.e. O(1))

• This data structure, however, is not efficient in

operations that require any ordering information among

the elements, such as findMin, findMax and printing the

entire table in sorted order.

3

General Idea
• The ideal hash table structure is merely an array of some fixed

size, containing the items.

• A stored item needs to have a data member, called key, that will
be used in computing the index value for the item.

– Key could be an integer, a string, etc

– e.g. a name or Id that is a part of a large employee structure

• The size of the array is TableSize.

• The items that are stored in the hash table are indexed by values
from 0 to TableSize – 1.

• Each key is mapped into some number in the range 0 to
TableSize – 1.

• The mapping is called a hash function.

4

Example

Hash

Function

mary 28200

dave 27500

phil 31250

john 25000

Items

Hash

Table

key

key

0

1

2

3

4

5

6

7

8

9

mary 28200

dave 27500

phil 31250

john 25000

5

Hash Function

• The hash function:

– must be simple to compute.

– must distribute the keys evenly among the cells.

• If we know which keys will occur in

advance we can write perfect hash

functions, but we don’t.

6

Hash function

Problems:

• Keys may not be numeric.

• Number of possible keys is much larger than the

space available in table.

• Different keys may map into same location

– Hash function is not one-to-one => collision.

– If there are too many collisions, the performance of

the hash table will suffer dramatically.

7

Hash Functions

• If the input keys are integers then simply

Key mod TableSize is a general strategy.

– Unless key happens to have some undesirable

properties. (e.g. all keys end in 0 and we use

mod 10)

• If the keys are strings, hash function needs

more care.

– First convert it into a numeric value.

8

Some methods

• Truncation:

– e.g. 123456789 map to a table of 1000 addresses by
picking 3 digits of the key.

• Folding:

– e.g. 123|456|789: add them and take mod.

• Key mod N:

– N is the size of the table, better if it is prime.

• Squaring:

– Square the key and then truncate

• Radix conversion:

– e.g. 1 2 3 4 treat it to be base 11, truncate if necessary.

9

Hash Function 1
• Add up the ASCII values of all characters of the key.

 int hash(const string &key, int tableSize)
{

 int hasVal = 0;

 for (int i = 0; i < key.length(); i++)

 hashVal += key[i];

 return hashVal % tableSize;

}

• Simple to implement and fast.

• However, if the table size is large, the function does not

distribute the keys well.

• e.g. Table size =10000, key length <= 8, the hash function can

assume values only between 0 and 1016

10

Hash Function 2
• Examine only the first 3 characters of the key.

int hash (const string &key, int tableSize)

{

 return (key[0]+27 * key[1] + 729*key[2]) % tableSize;

}

• In theory, 26 * 26 * 26 = 17576 different words can be

generated. However, English is not random, only 2851

different combinations are possible.

• Thus, this function although easily computable, is also not
appropriate if the hash table is reasonably large.

11

Hash Function 3

int hash (const string &key, int tableSize)

{

 int hashVal = 0;

 for (int i = 0; i < key.length(); i++)

 hashVal = 37 * hashVal + key[i];

 hashVal %=tableSize;

 if (hashVal < 0) /* in case overflows occurs */

 hashVal += tableSize;

 return hashVal;

};

1

0

37]1[)(
KeySize

i

iiKeySizeKeykeyhash

12

Hash function for strings:

a l i key

KeySize = 3;

98 108 105

hash(“ali”) = (105 * 1 + 108*37 + 98*372) % 10,007 = 8172

0 1 2 i

key[i]

hash

function
ali

……

……

0

1
2

8172

10,006 (TableSize)

“ali”

13

Collision Resolution

• If, when an element is inserted, it hashes to the

same value as an already inserted element, then we

have a collision and need to resolve it.

• There are several methods for dealing with this:

– Separate chaining

– Open addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

14

Separate Chaining

• The idea is to keep a list of all elements that hash
to the same value.

– The array elements are pointers to the first nodes of the
lists.

– A new item is inserted to the front of the list.

• Advantages:

– Better space utilization for large items.

– Simple collision handling: searching linked list.

– Overflow: we can store more items than the hash table
size.

– Deletion is quick and easy: deletion from the linked list.

15

Example

0

1

2

3

4

5

6

7

8

9

0

81 1

64 4

25

36 16

49 9

Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

hash(key) = key % 10.

16

Operations

• Initialization: all entries are set to NULL

• Find:

– locate the cell using hash function.

– sequential search on the linked list in that cell.

• Insertion:

– Locate the cell using hash function.

– (If the item does not exist) insert it as the first item in
the list.

• Deletion:

– Locate the cell using hash function.

– Delete the item from the linked list.

17

Analysis of Separate Chaining

• Collisions are very likely.

– How likely and what is the average length of

lists?

• Load factor definition:

– Ratio of number of elements (N) in a hash table

to the hash TableSize.

• i.e. = N/TableSize

– The average length of a list is also

– For chaining is not bound by 1; it can be > 1.

18

Cost of searching

• Cost = Constant time to evaluate the hash function

+ time to traverse the list.

• Unsuccessful search:
– We have to traverse the entire list, so we need to compare nodes on

the average.

• Successful search:
– List contains the one node that stores the searched item + 0 or more

other nodes.

– Expected # of other nodes = x = (N-1)/M which is essentially since

M is presumed large.

– On the average, we need to check half of the other nodes while

searching for a certain element

– Thus average search cost = 1 + /2

19

Summary

• The analysis shows us that the table size is

not really important, but the load factor is.

• TableSize should be as large as the number

of expected elements in the hash table.

– To keep load factor around 1.

• TableSize should be prime for even

distribution of keys to hash table cells.

20

Hashing: Open Addressing

21

Collision Resolution with

Open Addressing

• Separate chaining has the disadvantage of
using linked lists.

– Requires the implementation of a second data
structure.

• In an open addressing hashing system, all
the data go inside the table.

– Thus, a bigger table is needed.

• Generally the load factor should be below 0.5.

– If a collision occurs, alternative cells are tried
until an empty cell is found.

22

Open Addressing

• More formally:

– Cells h0(x), h1(x), h2(x), …are tried in succession where

hi(x) = (hash(x) + f(i)) mod TableSize, with f(0) = 0.

– The function f is the collision resolution strategy.

• There are three common collision resolution

strategies:

– Linear Probing

– Quadratic probing

– Double hashing

23

Linear Probing

• In linear probing, collisions are resolved by
sequentially scanning an array (with
wraparound) until an empty cell is found.

– i.e. f is a linear function of i, typically f(i)= i.

• Example:

– Insert items with keys: 89, 18, 49, 58, 9 into an
empty hash table.

– Table size is 10.

– Hash function is hash(x) = x mod 10.

• f(i) = i;

24

Figure 20.4
Linear probing

hash table after

each insertion

25

Find and Delete

• The find algorithm follows the same probe

sequence as the insert algorithm.

– A find for 58 would involve 4 probes.

– A find for 19 would involve 5 probes.

• We must use lazy deletion (i.e. marking

items as deleted)

– Standard deletion (i.e. physically removing the

item) cannot be performed.

– e.g. remove 89 from hash table.

26

Clustering Problem

• As long as table is big enough, a free cell
can always be found, but the time to do so
can get quite large.

• Worse, even if the table is relatively empty,
blocks of occupied cells start forming.

• This effect is known as primary clustering.

• Any key that hashes into the cluster will
require several attempts to resolve the
collision, and then it will add to the cluster.

27

Analysis of insertion

• The average number of cells that are examined in

an insertion using linear probing is roughly

(1 + 1/(1 – λ)2) / 2
• Proof is beyond the scope of text book.

• For a half full table we obtain 2.5 as the average

number of cells examined during an insertion.

• Primary clustering is a problem at high load

factors. For half empty tables the effect is not

disastrous.

28

Analysis of Find

• An unsuccessful search costs the same as
insertion.

• The cost of a successful search of X is equal to the
cost of inserting X at the time X was inserted.

• For λ = 0.5 the average cost of insertion is 2.5.
The average cost of finding the newly inserted
item will be 2.5 no matter how many insertions
follow.

• Thus the average cost of a successful search is an
average of the insertion costs over all smaller load
factors.

29

Average cost of find

• The average number of cells that are examined in

an unsuccessful search using linear probing is

roughly (1 + 1/(1 – λ)2) / 2.

• The average number of cells that are examined in a

successful search is approximately

(1 + 1/(1 – λ)) / 2.

– Derived from:

dx

x
0x

2)1(

1
1

2

11

30

Linear Probing – Analysis -- Example
• What is the average number of probes for a successful

search and an unsuccessful search for this hash table?

– Hash Function: h(x) = x mod 11

Successful Search:

– 20: 9 -- 30: 8 -- 2 : 2 -- 13: 2, 3 -- 25: 3,4

– 24: 2,3,4,5 -- 10: 10 -- 9: 9,10, 0

 Avg. Probe for SS = (1+1+1+2+2+4+1+3)/8=15/8

Unsuccessful Search:

– We assume that the hash function uniformly
distributes the keys.

– 0: 0,1 -- 1: 1 -- 2: 2,3,4,5,6 -- 3: 3,4,5,6

– 4: 4,5,6 -- 5: 5,6 -- 6: 6 -- 7: 7 -- 8: 8,9,10,0,1

– 9: 9,10,0,1 -- 10: 10,0,1

 Avg. Probe for US =

 (2+1+5+4+3+2+1+1+5+4+3)/11=31/11

0 9

1

2 2

3 13

4 25

5 24

6

7

8 30

9 20

10 10

31

Quadratic Probing
• Quadratic Probing eliminates primary clustering

problem of linear probing.

• Collision function is quadratic.

– The popular choice is f(i) = i2.

• If the hash function evaluates to h and a search in
cell h is inconclusive, we try cells h + 12, h+22, …
h + i2.

– i.e. It examines cells 1,4,9 and so on away from the
original probe.

• Remember that subsequent probe points are a
quadratic number of positions from the original
probe point.

32

Figure 20.6
A quadratic

probing hash table

after each

insertion (note that

the table size was

poorly chosen

because it is not a

prime number).

33

Quadratic Probing

• Problem:

– We may not be sure that we will probe all locations in

the table (i.e. there is no guarantee to find an empty cell

if table is more than half full.)

– If the hash table size is not prime this problem will be

much severe.

• However, there is a theorem stating that:

– If the table size is prime and load factor is not larger

than 0.5, all probes will be to different locations and an

item can always be inserted.

34

Theorem

• If quadratic probing is used, and the table

size is prime, then a new element can

always be inserted if the table is at least half

empty.

35

Some considerations

• How efficient is calculating the quadratic

probes?

– Linear probing is easily implemented.

Quadratic probing appears to require * and %

operations.

– However by the use of the following trick, this

is overcome:

• Hi = Hi-1+2i – 1 (mod M)

36

Some Considerations

• What happens if load factor gets too high?

– Dynamically expand the table as soon as the

load factor reaches 0.5, which is called

rehashing.

– Always double to a prime number.

– When expanding the hash table, reinsert the

new table by using the new hash function.

37

Analysis of Quadratic Probing

• Quadratic probing has not yet been

mathematically analyzed.

• Although quadratic probing eliminates primary

clustering, elements that hash to the same location

will probe the same alternative cells. This is know

as secondary clustering.

• Techniques that eliminate secondary clustering are

available.

– the most popular is double hashing.

38

Double Hashing

• A second hash function is used to drive the
collision resolution.

– f(i) = i * hash2(x)

• We apply a second hash function to x and probe at
a distance hash2(x), 2*hash2(x), … and so on.

• The function hash2(x) must never evaluate to zero.

– e.g. Let hash2(x) = x mod 9 and try to insert 99 in the
previous example.

• A function such as hash2(x) = R – (x mod R) with
R a prime smaller than TableSize will work well.

– e.g. try R = 7 for the previous example.(7 - x mode 7)

39

The relative efficiency of

four collision-resolution methods

40

Hashing Applications

• Compilers use hash tables to implement the

symbol table (a data structure to keep track

of declared variables).

• Game programs use hash tables to keep

track of positions it has encountered

(transposition table)

• Online spelling checkers.

41

Summary

• Hash tables can be used to implement the insert
and find operations in constant average time.
– it depends on the load factor not on the number of items

in the table.

• It is important to have a prime TableSize and a
correct choice of load factor and hash function.

• For separate chaining the load factor should be
close to 1.

• For open addressing load factor should not exceed
0.5 unless this is completely unavoidable.
– Rehashing can be implemented to grow (or shrink) the

table.

