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Hashing 
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Hash Tables  

• We’ll discuss the hash table ADT which supports only 

a subset of the operations allowed by binary search 

trees. 

• The implementation of hash tables is called hashing. 

• Hashing is a technique used for performing insertions, 

deletions and finds in constant average time (i.e. O(1)) 

• This data structure, however, is not efficient in 

operations that require any ordering information among 

the elements, such as findMin, findMax and printing the 

entire table in sorted order. 
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General Idea 
• The ideal hash table structure is merely an array of some fixed 

size, containing the items. 

• A stored item needs to have a data member, called key, that will 
be used in computing the index value for the item. 

– Key could be an integer, a string, etc 

– e.g. a name or Id that is a part of a large employee structure  

• The size of the array is TableSize. 

• The items that are stored in the hash table are indexed by values 
from 0 to TableSize – 1. 

• Each key is mapped into some number in the range 0 to 
TableSize – 1. 

• The mapping is called a hash function. 
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Hash Function 

• The hash function:  

– must be simple to compute. 

– must distribute the keys evenly among the cells. 

• If we know which keys will occur in 

advance we can write perfect hash 

functions, but we don’t. 



6 

Hash function 

Problems: 

• Keys may not be numeric. 

• Number of possible keys is much larger than the 

space available in table. 

• Different keys may map into same location 

– Hash function is not one-to-one => collision. 

– If there are too many collisions, the performance of 

the hash table will suffer dramatically. 
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Hash Functions 

• If the input keys are integers then simply 

Key mod TableSize is a general strategy. 

– Unless key happens to have some undesirable 

properties. (e.g. all keys end in 0 and we use 

mod 10) 

• If the keys are strings, hash function needs 

more care.   

– First convert it into a numeric value. 
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Some methods 

• Truncation:  

– e.g. 123456789  map to a table of 1000 addresses by 
picking 3 digits of the key. 

• Folding: 

– e.g. 123|456|789: add them and take mod. 

• Key mod N: 

– N is the size of the table, better if it is prime. 

• Squaring: 

– Square the key and then truncate 

• Radix conversion:  

– e.g. 1 2 3 4  treat it to be base 11, truncate if necessary. 
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Hash Function 1 
• Add up the ASCII values of all  characters of the key. 

 int hash(const string &key, int tableSize) 
{ 

 int hasVal = 0;  

  

 for (int i = 0; i < key.length(); i++) 

  hashVal += key[i];  

 return hashVal % tableSize;  

} 

• Simple to implement and fast. 

• However, if the table size is large, the function does not 

distribute the keys well. 

• e.g. Table size =10000, key length <= 8, the hash function can 

assume values only between 0 and 1016 
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Hash Function 2 
• Examine only the first 3 characters of the key. 

int hash (const string &key, int tableSize) 

{ 

 return (key[0]+27 * key[1] + 729*key[2]) % tableSize; 

  

} 

• In theory, 26 * 26 * 26 = 17576 different words can be 

generated. However, English is not random, only  2851 

different combinations are possible.  

• Thus, this function although easily computable, is also not 
appropriate if the hash table is reasonably large.   
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Hash Function 3 

int hash (const string &key, int tableSize) 

{ 

   int hashVal = 0;  

  

   for (int i = 0; i < key.length(); i++) 

 hashVal = 37 * hashVal + key[i]; 

  

   hashVal %=tableSize;  

   if (hashVal < 0)   /* in case overflows occurs */ 

 hashVal += tableSize;  

 

   return hashVal;    

}; 
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Hash function for strings: 

a l i key 

KeySize = 3;  

98 108 105 

hash(“ali”) = (105 * 1  +  108*37  +   98*372) % 10,007 = 8172   
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Collision Resolution 

• If, when an element is inserted, it hashes to the 

same value as an already inserted element, then we 

have a collision and need to resolve it. 

• There are several methods for dealing with this: 

– Separate chaining 

– Open addressing 

• Linear Probing 

• Quadratic Probing 

• Double Hashing 
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Separate Chaining 

• The idea is to keep a list of all elements that hash 
to the same value. 

– The array elements are  pointers to the first nodes of the 
lists.  

– A new item is inserted to the front of the list.  

• Advantages: 

– Better space utilization for large items. 

– Simple collision handling: searching linked list. 

– Overflow: we can store more items than the hash table 
size. 

– Deletion is quick and easy: deletion from the linked list. 
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Example 
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Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 

hash(key) = key % 10.  
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Operations 

• Initialization: all entries are set to NULL 

• Find:  

– locate the cell using hash function. 

– sequential search on the linked list in that cell. 

• Insertion:  

– Locate the cell using hash function. 

– (If the item does not exist) insert it as the first item in 
the list. 

• Deletion: 

–  Locate the cell using hash function. 

– Delete the item from the linked list. 
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Analysis of Separate Chaining 

• Collisions are very likely. 

– How likely and what is the average length of 

lists? 

• Load factor  definition: 

– Ratio of number of elements (N) in a hash table 

to the hash TableSize.  

• i.e.     = N/TableSize 

– The average length of a list is also 

– For chaining  is not bound by 1; it can be > 1. 
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Cost of searching 

• Cost = Constant time to evaluate the hash function 

+ time to traverse the list.  

• Unsuccessful search: 
– We have to traverse the entire list, so we need to compare  nodes on 

the average. 

• Successful search: 
– List contains the one node that stores the searched item + 0 or more 

other nodes. 

– Expected # of other nodes = x = (N-1)/M which is essentially since 

M is presumed large. 

– On the average, we need to check half of the other nodes while 

searching for a certain element 

– Thus average search cost = 1 + /2 
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Summary 

• The analysis shows us that the table size is 

not really important, but the load factor is. 

• TableSize should be as large as the number 

of expected elements in the hash table.  

– To keep load factor around 1. 

• TableSize should be prime for even 

distribution of keys to hash table cells.  
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Hashing: Open Addressing 
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Collision Resolution with  

Open Addressing 

• Separate chaining has the disadvantage of 
using linked lists. 

– Requires the implementation of a second data 
structure. 

• In an open addressing hashing system, all 
the data go inside the table. 

– Thus, a bigger table is needed. 

• Generally the load factor should be below 0.5. 

– If a collision occurs, alternative cells are tried 
until an empty cell is found. 
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Open Addressing 

• More formally: 

– Cells h0(x), h1(x), h2(x), …are tried in succession where 

hi(x) = (hash(x) + f(i)) mod TableSize, with f(0) = 0. 

– The function f is the collision resolution strategy. 

• There are three common collision resolution 

strategies: 

– Linear Probing 

– Quadratic probing  

– Double hashing 
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Linear Probing 

• In linear probing, collisions are resolved by 
sequentially scanning an array (with 
wraparound) until an empty cell is found. 

– i.e. f is a linear function of i, typically f(i)= i. 

• Example:  

– Insert items with keys: 89, 18, 49, 58, 9 into an 
empty hash table.  

– Table size is 10.  

– Hash function is hash(x) = x mod 10.  

• f(i) = i;  
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Figure 20.4 
Linear probing 

hash table after 

each insertion 



25 

Find and Delete 

• The find algorithm follows the same probe 

sequence as the insert algorithm. 

– A find for 58 would involve 4 probes. 

– A find for 19 would involve 5 probes. 

• We must use lazy deletion (i.e. marking 

items as deleted) 

– Standard deletion (i.e. physically removing the 

item) cannot be performed. 

– e.g. remove 89 from hash table.   
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Clustering Problem 

• As long as table is big enough, a free cell 
can always be found, but the time to do so 
can get quite large. 

• Worse, even if the table is relatively empty, 
blocks of occupied cells start forming. 

• This effect is known as primary clustering. 

• Any key that hashes into the cluster will 
require several attempts to resolve the 
collision, and then it will add to the cluster. 
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Analysis of insertion 

• The average number of cells that are examined in 

an insertion using linear probing is roughly 

(1 + 1/(1 – λ)2) / 2 
• Proof is beyond the scope of text book. 

• For a half full table we obtain 2.5 as the average 

number of cells examined during an insertion. 

• Primary clustering is a problem at high load 

factors. For half empty tables the effect is not 

disastrous. 
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Analysis of Find 

• An unsuccessful search costs the same as 
insertion. 

• The cost of a successful search of X is equal to the 
cost of inserting X at the time X was inserted. 

• For λ = 0.5 the average cost of insertion is 2.5. 
The average cost of finding the newly inserted 
item will be 2.5 no matter how many insertions 
follow. 

• Thus the average cost of a successful search is an 
average of the insertion costs over all smaller load 
factors. 
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Average cost of find 

• The average number of cells that are examined in 

an unsuccessful search using linear probing is 

roughly (1 + 1/(1 – λ)2) / 2. 

• The average number of cells that are examined in a 

successful search is approximately  

(1 + 1/(1 – λ)) / 2. 

– Derived from: 
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Linear Probing – Analysis -- Example 
• What is the average number of probes for a successful 

search and an unsuccessful search for this hash table? 

– Hash Function:  h(x) = x mod 11 

Successful Search: 

– 20:  9  --  30:  8  --  2 :  2  --  13: 2, 3   --  25: 3,4  

– 24: 2,3,4,5  --  10: 10  --  9: 9,10, 0 

 Avg. Probe for SS = (1+1+1+2+2+4+1+3)/8=15/8 

Unsuccessful Search: 

– We assume that the hash function uniformly 
distributes the keys. 

– 0: 0,1  --  1: 1  --  2: 2,3,4,5,6  --  3: 3,4,5,6 

– 4: 4,5,6  --  5: 5,6  --  6: 6  --  7: 7  --  8: 8,9,10,0,1 

– 9: 9,10,0,1  --  10: 10,0,1 

 Avg. Probe for US =  

  (2+1+5+4+3+2+1+1+5+4+3)/11=31/11 
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Quadratic Probing 
• Quadratic Probing eliminates primary clustering 

problem of linear probing.  

• Collision function is quadratic.  

– The popular choice is f(i) = i2. 

• If the hash function evaluates to h and a search in 
cell h is inconclusive, we try cells h + 12, h+22, … 
h + i2. 

– i.e. It examines cells 1,4,9 and so on away from the 
original probe. 

•  Remember that subsequent probe points are a 
quadratic number of positions from the original 
probe point. 
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Figure 20.6 
A quadratic 

probing hash table 

after each 

insertion (note that 

the table size was 

poorly chosen 

because it is not a 

prime number). 
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Quadratic Probing 

• Problem:  

– We may not be sure that we will probe all locations in 

the table (i.e. there is no guarantee to find an empty cell 

if table is more than half full.)  

– If the hash table size is not prime this problem will be 

much severe. 

• However, there is a theorem stating that: 

– If the table size is prime and load factor is not larger 

than 0.5, all probes will be to different locations and an 

item can always be inserted. 
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Theorem 

• If quadratic probing is used, and the table 

size is prime, then a new element can 

always be inserted if the table is at least half 

empty. 
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Some considerations 

• How efficient is calculating the quadratic 

probes? 

– Linear probing is easily implemented. 

Quadratic probing appears to require * and % 

operations. 

– However by the use of the following trick, this 

is overcome: 

• Hi = Hi-1+2i – 1 (mod M) 
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Some Considerations 

• What happens if load factor gets too high? 

– Dynamically expand the table as soon as the 

load factor reaches 0.5, which is called 

rehashing. 

– Always double to a prime number. 

– When expanding the hash table, reinsert the 

new table by using the new hash function. 
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Analysis of Quadratic Probing 

• Quadratic probing has not yet been 

mathematically analyzed. 

• Although quadratic probing eliminates primary 

clustering, elements that hash to the same location 

will probe the same alternative cells. This is know 

as secondary clustering. 

• Techniques that eliminate secondary clustering are 

available. 

– the most popular is double hashing. 
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Double Hashing 

• A second hash function is used to drive the 
collision resolution. 

– f(i) = i * hash2(x) 

• We apply a second hash function to x and probe at 
a distance hash2(x), 2*hash2(x), … and so on. 

• The function hash2(x) must never evaluate to zero. 

– e.g. Let hash2(x) = x mod 9 and try to insert 99 in the 
previous example. 

• A function such as hash2(x) =  R – ( x mod R) with 
R a prime smaller than TableSize will work well. 

– e.g. try R = 7 for the previous example.(7 - x mode 7) 
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The relative efficiency of  

four collision-resolution methods 
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Hashing Applications 

• Compilers use hash tables to implement the 

symbol table (a data structure to keep track 

of declared variables). 

• Game programs use hash tables to keep 

track of positions it has encountered 

(transposition table) 

•  Online spelling checkers. 
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Summary 

• Hash tables can be used to implement the insert 
and find operations in constant average time. 
– it depends on the load factor not on the number of items 

in the table. 

• It is important to have a prime TableSize and a 
correct choice of load factor and hash function. 

• For separate chaining the load factor should be 
close to 1. 

• For open addressing load factor should not exceed 
0.5 unless this is completely unavoidable. 
– Rehashing can be implemented to grow (or shrink) the 

table.  


