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GRAPHS – Definitions  

• A graph G = (V, E) consists of 

– a set of vertices, V, and 

– a set of edges, E, where each edge is a pair (v,w) s.t. v,w  V 

• Vertices are sometimes called nodes, edges are sometimes called arcs. 

• If the edge pair is ordered then the graph is called a directed graph 

(also called digraphs) . 

• We also call a normal graph (which is not a directed graph) an 

undirected graph. 

– When we say graph we mean that it is an undirected graph. 
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Graph – Definitions 

• Two vertices of a graph are adjacent if they are joined by an edge. 

• Vertex w is adjacent to v  iff (v,w)  E. 
– In an undirected graph with edge (v, w) and hence (w,v) w is adjacent to v and v is 

adjacent to w. 

• A path between two vertices is a sequence of edges that begins at one 

vertex and ends at another vertex.  

– i.e. w1, w2, …, wN is a path if (wi, wi+1)  E for 1  i . N-1 

• A simple path passes through a vertex only once. 

• A cycle is a path that begins and ends at the same vertex. 

• A simple cycle is a cycle that does not pass through other vertices more 

than once. 
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Graph – An Example 
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A graph G (undirected) 

The graph G= (V,E) has 5 vertices and 6 edges: 

   V = {1,2,3,4,5} 

   E = { (1,2),(1,3),(1,4),(2,5),(3,4),(4,5), (2,1),(3,1),(4,1),(5,2),(4,3),(5,4) } 

  

•  Adjacent: 

1 and 2 are adjacent  -- 1 is adjacent to 2 and 2 is adjacent to 1 

•  Path: 

1,2,5 ( a simple path),     1,3,4,1,2,5 (a path but not a simple path) 

•  Cycle: 

       1,3,4,1 (a simple cycle),  1,3,4,1,4,1 (cycle, but not simple cycle) 
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Graph -- Definitions 

• A connected graph has a path between each pair of distinct vertices. 

• A complete graph has an edge between each pair of distinct vertices. 

– A complete graph is also a connected graph. But a connected graph may not be a complete 

graph. 

connected disconnected complete 
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Directed Graphs 

• If the edge pair is ordered then the graph is called a directed graph 
(also called digraphs) . 

• Each edge in a directed graph has a direction, and each edge is called a 
directed edge. 

• Definitions given for undirected graphs apply also to directed graphs, 
with changes that account for direction. 

• Vertex w is adjacent to v  iff (v,w)  E. 

– i.e. There is a direct edge from  v to w 

– w is successor of v 

– v is predecessor of w 

• A directed path between two vertices is a sequence of directed edges 
that begins at one vertex and ends at another vertex. 
– i.e. w1, w2, …, wN is a path if (wi, wi+1)  E for 1  i . N-1 
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Directed Graphs 

• A cycle in a directed graph is a path of length at least 1 such that        

w1 = wN. 

– This cycle is simple if the path is simple. 

– For undirected graphs, the edges must be distinct 

• A directed acyclic graph (DAG) is a type of directed graph having no 

cycles. 

• An undirected graph is connected if there is a path from every vertex 

to every other vertex.  

• A directed graph with this property is called strongly connected. 

– If a directed graph is not strongly connected, but the underlying 

graph (without direction to arcs) is connected then the graph is 

weakly connected. 
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Directed Graph – An Example 
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The graph G= (V,E) has 5 vertices and 6 edges: 

   V = {1,2,3,4,5} 

   E = { (1,2),(1,4),(2,5),(4,5),(3,1),(4,3) } 

  

•  Adjacent: 

2 is adjacent to 1, but 1 is NOT adjacent to 2 

•  Path: 

1,2,5 ( a directed path),      

•  Cycle: 

       1,4,3,1 (a directed cycle),   
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Weighted Graph 

• We can label the edges of a graph with numeric values, the graph is 

called a weighted graph. 
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Weighted (Undirected) Graph 

Weighted Directed Graph 
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Graph Implementations 

• The two most common implementations of a graph are: 

– Adjacency Matrix 

• A two dimensional array 

– Adjacency List 

• For each vertex we keep a list of adjacent vertices 
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Adjacency Matrix 

• An adjacency matrix for a graph with n vertices numbered 0,1,...,n-1 is 

an n by n array matrix such that matrix[i][j] is 1 (true) if there is an 

edge from vertex i to vertex j, and 0 (false) otherwise. 

• When the graph is weighted, we can let matrix[i][j] be the weight that 

labels the edge from vertex i to vertex j, instead of simply 1, and let 

matrix[i][j] equal to  instead of 0 when there is no edge from vertex i 

to vertex j. 

• Adjacency matrix for an undirected graph is symmetrical. 

– i.e. matrix[i][j] is equal to matrix[j][i] 

• Space requirement O(|V|2) 

• Acceptable if the graph is dense. 
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Adjacency Matrix – Example1 

A directed graph Its adjacency matrix 
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Adjacency Matrix – Example2 

An Undirected Weighted Graph Its Adjacency Matrix 
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Adjacency List 

• An adjacency list for a graph with n vertices numbered 0,1,...,n-1 

consists of n linked lists. The ith linked list has a node for vertex j if and 

only if the graph contains an edge from vertex i to vertex j. 

• Adjacency list is a better solution if the graph is sparse. 

• Space requirement is O(|E| + |V|), which is linear in the size of the 

graph.  

• In an undirected graph each edge (v,w) appears in two lists.    

– Space requirement is doubled.  
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Adjacency List – Example1 

A directed graph Its Adjacency List 
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Adjacency List – Example2 

An Undirected Weighted Graph Its Adjacency List 
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Adjacency Matrix vs Adjacency List 

• Two common graph operations: 

1. Determine whether there is an edge from vertex i to vertex j. 

2. Find all vertices adjacent to a given vertex i. 

 

• An adjacency matrix supports operation 1 more efficiently. 

• An adjacency list supports operation 2 more efficiently. 

 

• An adjacency list often requires less space than an adjacency matrix. 

– Adjacency Matrix: Space requirement is O(|V|2) 

– Adjacency List : Space requirement is O(|E| + |V|), which is linear in the size of the graph. 

– Adjacency matrix is better if the graph is dense (too many edges) 

– Adjacency list is better if the graph is sparse (few edges) 
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Graph Traversals 

• A graph-traversal algorithm starts from a vertex v, visits all of the 

vertices that can be reachable from the vertex v. 

• A graph-traversal algorithm visits all vertices if and only if the graph is 

connected. 

• A connected component is the subset of vertices visited during a 

traversal algorithm that begins at a given vertex. 

• A graph-traversal algorithm must mark each vertex during a visit and 

must never visit a vertex more than once. 

– Thus, if a graph contains a cycle, the graph-traversal algorithm can avoid infinite loop. 

• We look at two graph-traversal algorithms: 

– Depth-First Traversal 

– Breadth-First Traversal 
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Depth-First Traversal 

• For a given vertex v, the depth-first traversal algorithm proceeds along 

a path from v as deeply into the graph as possible before backing up.  

• That is, after visiting a vertex v, the depth-first traversal algorithm 

visits (if possible) an unvisited adjacent vertex to vertex v. 

• The depth-first traversal algorithm does not completely specify the 

order in which it should visit the vertices adjacent to v. 

– We may visit the vertices adjacent to v in sorted order. 
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Depth-First Traversal – Example  

• A depth-first traversal of the  

graph starting from vertex v. 

 

• Visit a vertex, then visit a vertex 

adjacent to that vertex. 

 

• If there is no unvisited vertex adjacent  

to visited vertex, back up to the previous 

step. 
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Recursive Depth-First Traversal Algorithm 

dft(in v:Vertex) { 

// Traverses a graph beginning at vertex v  

// by using depth-first strategy 

// Recursive Version 

 Mark v as visited; 

 for (each unvisited vertex u adjacent to v) 

  dft(u) 

} 
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Iterative Depth-First Traversal Algorithm 

dft(in v:Vertex) { 

// Traverses a graph beginning at vertex v  

// by using depth-first strategy: Iterative Version 

 s.createStack(); 

 // push v into the stack and mark it 

 s.push(v); 

 Mark v as visited;  

 while (!s.isEmpty()) { 

    if (no unvisited vertices are adjacent to the vertex on  

        the top of stack) 

       s.pop();  // backtrack 

    else { 

       Select an unvisited vertex u adjacent to the vertex  

          on the top of the stack; 

       s.push(u); 

       Mark u as visited; 

    } 

 } 

} 
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Trace of Iterative DFT – starting from vertex a 
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Breath-First Traversal 

• After visiting a given vertex v, the breadth-first traversal algorithm 

visits every vertex adjacent to v that it can before visiting any other 

vertex. 

• The breath-first traversal algorithm does not completely specify the 

order in which it should visit the vertices adjacent to v. 

– We may visit the vertices adjacent to v in sorted order. 
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Breath-First Traversal – Example 

• A breath-first traversal of the  

graph starting from vertex v. 

 

• Visit a vertex, then visit all vertices 

adjacent to that vertex. 
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Iterative Breath-First Traversal Algorithm 

bft(in v:Vertex) { 

// Traverses a graph beginning at vertex v  

// by using breath-first strategy: Iterative Version 

 q.createQueue(); 

 // add v to the queue and mark it 

 q.enqueue(v); 

 Mark v as visited;  

 while (!q.isEmpty()) { 

    q.dequeue(w); 

    for (each unvisited vertex u adjacent to w) { 

       Mark u as visited; 

       q.enqueue(u); 

    }     

 } 

} 
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Trace of Iterative BFT – starting from vertex a 
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Some Graph Algorithms 

• Shortest Path Algorithms 

– Unweighted shortest paths 

– Weighted shortest paths (Dijkstra’s Algorithm) 

• Topological sorting 

• Network Flow Problems 

• Minimum Spanning Tree 

• Depth-first search Applications  
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Unweighted Shortest-Path problem 

• Find the shortest path (measured by number of 

edges) from a designated vertex S to every 

vertex. 
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Algorithm 

1. Start with an initial node s.  

– Mark the distance of s to s, Ds as 0.  

– Initially Di =  for all i  s. 

2. Traverse all nodes starting from s as follows: 

1. If the node we are currently visiting is v, for all w that are 

adjacent to v:  

• Set Dw = Dv + 1 if Dw = . 

2. Repeat step 2.1 with another vertex u that has not been 

visited yet, such that Du = Dv (if any).  

3. Repeat step 2.1 with another unvisited vertex u that 

satisfies Du = Dv +1.(if any) 
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Figure 14.21A 
Searching the graph in the unweighted shortest-path computation. The darkest-

shaded vertices have already been completely processed, the lightest-shaded 

vertices have not yet been used as v, and the medium-shaded vertex is the current 

vertex, v. The stages proceed left to right, top to bottom, as numbered (continued). 
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Figure 14.21B 
Searching the graph in the unweighted shortest-path computation. The darkest-

shaded vertices have already been completely processed, the lightest-shaded 

vertices have not yet been used as v, and the medium-shaded vertex is the current 

vertex, v. The stages proceed left to right, top to bottom, as numbered. 
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Unweighted shortest path algorithm 
void Graph::unweighted_shortest_paths(vertex s) 

{ 

 Queue q(NUM_VERTICES);  

 Vertex v,w;  

  

 q.enqueue(s);  

 s.dist = 0;  

 while (!q.isEmpty()) 

 { 

  v= q.dequeue();  

  v.known = true; // not needed anymore 

  for each w adjacent to v 

   if (w.dist == INFINITY) 

   {  

    w.dist = v.dist + 1;  

    w.path = v;  

    q.enqueue(w);  

   }  

 } 

} 
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Weighted Shortest-path Problem 

• Find the shortest path (measured by total cost) 

from a designated vertex S to every vertex. All 

edge costs are nonnegative. 
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Weighted Shortest-path Problem 

• The method used to solve this problem is 
known as Dijkstra’s algorithm. 

– An example of a greedy algorithm 

– Use the local optimum at each step 

• Solution is similar to the solution of unweighted 
shortest path problem. 

• The following issues must be examined: 

– How do we adjust Dw? 

– How do we find the vertex v to visit next? 
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Figure 14.23 
The eyeball is at v and w is adjacent, so Dw should be lowered to 6. 
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Dijkstra’s algorithm 

• The algorithm proceeds in stages. 

• At each stage, the algorithm  

– selects a vertex v, which has the smallest distance Dv among 

all the unknown vertices, and  

– declares that the shortest path from s to v is known. 

– then for the adjacent nodes of v (which are denoted as w) Dw 

is updated with new distance information 

• How do we change Dw? 

– If its current value is larger than Dv + c v,w we change it. 
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Figure 14.25A 
Stages of Dijkstra’s algorithm. The conventions are the same as those in  

Figure 14.21 (continued). 
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Figure 14.25B 
Stages of Dijkstra’s algorithm. The conventions are the same as those in  

Figure 14.21. 
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Implementation 

• A queue is no longer appropriate for storing 

vertices to be visited. 

• The priority queue is an appropriate data 

structure. 

• Add a new entry consisting of a vertex and a 

distance, to the priority queue every time a 

vertex has its distance lowered.  


