
1

Algorithm Analysis

CENG 707 Data Structures and

Algorithms

2

Algorithm

• An algorithm is a set of instructions to be followed to
solve a problem.

– There can be more than one solution (more than one
algorithm) to solve a given problem.

– An algorithm can be implemented using different
programming languages on different platforms.

• An algorithm must be correct. It should correctly solve
the problem.

– e.g. For sorting, this means even if (1) the input is already
sorted, or (2) it contains repeated elements.

• Once we have a correct algorithm for a problem, we
have to determine the efficiency of that algorithm.

 CENG 707 Data Structures and

Algorithms

3

Algorithmic Performance
There are two aspects of algorithmic performance:

• Time
• Instructions take time.

• How fast does the algorithm perform?

• What affects its runtime?

• Space
• Data structures take space

• What kind of data structures can be used?

• How does choice of data structure affect the runtime?

We will focus on time:
– How to estimate the time required for an algorithm

– How to reduce the time required

CENG 707 Data Structures and

Algorithms

4

Analysis of Algorithms

• Analysis of Algorithms is the area of computer science that
provides tools to analyze the efficiency of different methods of
solutions.

• How do we compare the time efficiency of two algorithms that
solve the same problem?

 Naïve Approach: implement these algorithms in a programming
language (C++), and run them to compare their time
requirements. Comparing the programs (instead of algorithms)
has difficulties.

– How are the algorithms coded?
• Comparing running times means comparing the implementations.

• We should not compare implementations, because they are sensitive to programming
style that may cloud the issue of which algorithm is inherently more efficient.

– What computer should we use?
• We should compare the efficiency of the algorithms independently of a particular

computer.

– What data should the program use?
• Any analysis must be independent of specific data.

CENG 707 Data Structures and

Algorithms

5

Analysis of Algorithms

• When we analyze algorithms, we should employ
mathematical techniques that analyze algorithms
independently of specific implementations,
computers, or data.

• To analyze algorithms:

– First, we start to count the number of significant
operations in a particular solution to assess its
efficiency.

– Then, we will express the efficiency of algorithms

using growth functions.

CENG 707 Data Structures and

Algorithms

6

The Execution Time of Algorithms

• Each operation in an algorithm (or a program) has a cost.

  Each operation takes a certain of time.

 count = count + 1;  take a certain amount of time, but it is constant

A sequence of operations:

 count = count + 1; Cost: c1

 sum = sum + count; Cost: c2

  Total Cost = c1 + c2

CENG 707 Data Structures and

Algorithms

7

The Execution Time of Algorithms (cont.)

Example: Simple If-Statement

 Cost Times

 if (n < 0) c1 1

 absval = -n c2 1

 else

 absval = n; c3 1

Total Cost <= c1 + max(c2,c3)

CENG 707 Data Structures and

Algorithms

8

The Execution Time of Algorithms (cont.)

Example: Simple Loop

 Cost Times

 i = 1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 i = i + 1; c4 n

 sum = sum + i; c5 n

 }

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5

  The time required for this algorithm is proportional to n

CENG 707 Data Structures and

Algorithms

9

The Execution Time of Algorithms (cont.)

Example: Nested Loop

 Cost Times

 i=1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 j=1; c4 n

 while (j <= n) { c5 n*(n+1)

 sum = sum + i; c6 n*n

 j = j + 1; c7 n*n

 }

 i = i +1; c8 n

 }

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

  The time required for this algorithm is proportional to n2

CENG 707 Data Structures and

Algorithms

10

General Rules for Estimation

• Loops: The running time of a loop is at most the running time

of the statements inside of that loop times the number of

iterations.

• Nested Loops: Running time of a nested loop containing a

statement in the inner most loop is the running time of statement

multiplied by the product of the sized of all loops.

• Consecutive Statements: Just add the running times of those

consecutive statements.

• If/Else: Never more than the running time of the test plus the

larger of running times of S1 and S2.

CENG 707 Data Structures and

Algorithms

CENG 707 Data Structures and Algorithms 11

Algorithm Growth Rates

• We measure an algorithm’s time requirement as a function of the
problem size.

– Problem size depends on the application: e.g. number of elements in a list for a
sorting algorithm, the number disks for towers of hanoi.

• So, for instance, we say that (if the problem size is n)
– Algorithm A requires 5*n2 time units to solve a problem of size n.

– Algorithm B requires 7*n time units to solve a problem of size n.

• The most important thing to learn is how quickly the algorithm’s
time requirement grows as a function of the problem size.

– Algorithm A requires time proportional to n2.

– Algorithm B requires time proportional to n.

• An algorithm’s proportional time requirement is known as
growth rate.

• We can compare the efficiency of two algorithms by comparing
their growth rates.

CENG 707 Data Structures and Algorithms 12

Algorithm Growth Rates (cont.)

Time requirements as a function

 of the problem size n

CENG 707 Data Structures and

Algorithms

13

Common Growth Rates

Function Growth Rate Name

c Constant

log N Logarithmic

log2N Log-squared

N Linear

N log N

N2 Quadratic

N3 Cubic

2N Exponential

CENG 707 Data Structures and

Algorithms

14

Figure 6.1
Running times for small inputs

CENG 707 Data Structures and

Algorithms

15

Figure 6.2
Running times for moderate inputs

CENG 707 Data Structures and Algorithms 16

Order-of-Magnitude Analysis and Big O

Notation

• If Algorithm A requires time proportional to f(n), Algorithm A is

said to be order f(n), and it is denoted as O(f(n)).

• The function f(n) is called the algorithm’s growth-rate

function.

• Since the capital O is used in the notation, this notation is called

the Big O notation.

• If Algorithm A requires time proportional to n2, it is O(n2).

• If Algorithm A requires time proportional to n, it is O(n).

CENG 707 Data Structures and Algorithms 17

Definition of the Order of an Algorithm

Definition:

 Algorithm A is order f(n) – denoted as O(f(n)) –

 if constants k and n0 exist such that A requires

 no more than k*f(n) time units to solve a problem

 of size n  n0.

• The requirement of n  n0 in the definition of O(f(n)) formalizes

the notion of sufficiently large problems.

– In general, many values of k and n can satisfy this definition.

CENG 707 Data Structures and Algorithms 18

Order of an Algorithm

• If an algorithm requires n2–3*n+10 seconds to solve a problem

size n. If constants k and n0 exist such that

 k*n2 > n2–3*n+10 for all n  n0 .

 the algorithm is order n2
 (In fact, k is 3 and n0 is 2)

 3*n2 > n2–3*n+10 for all n  2 .

 Thus, the algorithm requires no more than k*n2 time units for n 

n0 ,

 So it is O(n2)

CENG 707 Data Structures and Algorithms 19

Order of an Algorithm (cont.)

CENG 707 Data Structures and Algorithms 20

A Comparison of Growth-Rate Functions

CENG 707 Data Structures and Algorithms 21

A Comparison of Growth-Rate Functions (cont.)

CENG 707 Data Structures and Algorithms 22

Growth-Rate Functions

O(1) Time requirement is constant, and it is independent of the problem’s size.

O(log2n) Time requirement for a logarithmic algorithm increases increases slowly

 as the problem size increases.

O(n) Time requirement for a linear algorithm increases directly with the size

 of the problem.

O(n*log2n) Time requirement for a n*log2n algorithm increases more rapidly than

 a linear algorithm.

O(n2) Time requirement for a quadratic algorithm increases rapidly with the

 size of the problem.

O(n3) Time requirement for a cubic algorithm increases more rapidly with the

 size of the problem than the time requirement for a quadratic algorithm.

O(2n) As the size of the problem increases, the time requirement for an

 exponential algorithm increases too rapidly to be practical.

CENG 707 Data Structures and Algorithms 23

Growth-Rate Functions

• If an algorithm takes 1 second to run with the problem size 8,

what is the time requirement (approximately) for that algorithm

with the problem size 16?

• If its order is:

 O(1)  T(n) = 1 second

 O(log2n)  T(n) = (1*log216) / log28 = 4/3 seconds

 O(n)  T(n) = (1*16) / 8 = 2 seconds

 O(n*log2n)  T(n) = (1*16*log216) / 8*log28 = 8/3 seconds

 O(n2)  T(n) = (1*162) / 82 = 4 seconds

 O(n3)  T(n) = (1*163) / 83 = 8 seconds

 O(2n)  T(n) = (1*216) / 28 = 28 seconds = 256 seconds

CENG 707 Data Structures and Algorithms 24

Properties of Growth-Rate Functions

1. We can ignore low-order terms in an algorithm’s growth-rate

function.

– If an algorithm is O(n3+4n2+3n), it is also O(n3).

– We only use the higher-order term as algorithm’s growth-rate function.

2. We can ignore a multiplicative constant in the higher-order term

of an algorithm’s growth-rate function.

– If an algorithm is O(5n3), it is also O(n3).

3. O(f(n)) + O(g(n)) = O(f(n)+g(n))

– We can combine growth-rate functions.

– If an algorithm is O(n3) + O(4n), it is also O(n3 +4n2)  So, it is O(n3).

– Similar rules hold for multiplication.

CENG 707 Data Structures and Algorithms 25

Some Mathematical Facts

• Some mathematical equalities are:

22

)1(*
...21

2

1

nnn
ni

n

i







36

)12(*)1(*
...41

3

1

22 nnnn
ni

n

i







122...2102
1

0

1 





n

i

nni

CENG 707 Data Structures and Algorithms 26

Growth-Rate Functions – Example1

 Cost Times

 i = 1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 i = i + 1; c4 n

 sum = sum + i; c5 n

 }

T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5

 = (c3+c4+c5)*n + (c1+c2+c3)

 = a*n + b

  So, the growth-rate function for this algorithm is O(n)

CENG 707 Data Structures and Algorithms 27

Growth-Rate Functions – Example2

 Cost Times

 i=1; c1 1

 sum = 0; c2 1

 while (i <= n) { c3 n+1

 j=1; c4 n

 while (j <= n) { c5 n*(n+1)

 sum = sum + i; c6 n*n

 j = j + 1; c7 n*n

 }

 i = i +1; c8 n

 }

T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

 = (c5+c6+c7)*n2 + (c3+c4+c5+c8)*n + (c1+c2+c3)

 = a*n2 + b*n + c

  So, the growth-rate function for this algorithm is O(n2)

CENG 707 Data Structures and Algorithms 28

Growth-Rate Functions – Example3

 Cost Times

 for (i=1; i<=n; i++) c1 n+1

 for (j=1; j<=i; j++) c2

 for (k=1; k<=j; k++) c3

 x=x+1; c4

T(n) = c1*(n+1) + c2*() + c3* () + c4*()

 = a*n3 + b*n2 + c*n + d

  So, the growth-rate function for this algorithm is O(n3)





n

j

j
1

)1(


 


n

j

j

k

k
1 1

)1(


 

n

j

j

k

k
1 1





n

j

j
1

)1(
 


n

j

j

k

k
1 1

)1(
 

n

j

j

k

k
1 1

CENG 707 Data Structures and Algorithms 29

Growth-Rate Functions – Recursive Algorithms

void hanoi(int n, char source, char dest, char spare) { Cost

 if (n > 0) { c1

 hanoi(n-1, source, spare, dest); c2

 cout << "Move top disk from pole " << source c3

 << " to pole " << dest << endl;

 hanoi(n-1, spare, dest, source); c4

} }

• The time-complexity function T(n) of a recursive algorithm is

defined in terms of itself, and this is known as recurrence equation

for T(n).

• To find the growth-rate function for a recursive algorithm, we have

to solve its recurrence relation.

CENG 707 Data Structures and Algorithms 30

Growth-Rate Functions – Hanoi Towers

• What is the cost of hanoi(n,’A’,’B’,’C’)?

when n=0

 T(0) = c1

when n>0

 T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)

 = 2*T(n-1) + (c1+c2+c3+c4)

 = 2*T(n-1) + c  recurrence equation for the growth-rate
 function of hanoi-towers algorithm

• Now, we have to solve this recurrence equation to find the growth-rate
function of hanoi-towers algorithm

CENG 707 Data Structures and Algorithms 31

Growth-Rate Functions – Hanoi Towers (cont.)

• There are many methods to solve recurrence equations, but we will use a simple

method known as repeated substitutions.

T(n) = 2*T(n-1) + c

 = 2 * (2*T(n-2)+c) + c

 = 2 * (2* (2*T(n-3)+c) + c) + c

 = 23 * T(n-3) + (22+21+20)*c (assuming n>2)

when substitution repeated i-1th times

 = 2i * T(n-i) + (2i-1+ ... +21+20)*c

when i=n

 = 2n * T(0) + (2n-1+ ... +21+20)*c

 = 2n * c1 + ()*c

 = 2n * c1 + (2n-1)*c = 2n*(c1+c) – c  So, the growth rate function is O(2n)






1

0

2
n

i

i

CENG 707 Data Structures and Algorithms 32

What to Analyze

• An algorithm can require different times to solve different
problems of the same size.

– Eg. Searching an item in a list of n elements using sequential search.  Cost:
1,2,...,n

• Worst-Case Analysis –The maximum amount of time that an
algorithm require to solve a problem of size n.

– This gives an upper bound for the time complexity of an algorithm.

– Normally, we try to find worst-case behavior of an algorithm.

• Best-Case Analysis –The minimum amount of time that an
algorithm require to solve a problem of size n.

– The best case behavior of an algorithm is NOT so useful.

• Average-Case Analysis –The average amount of time that an
algorithm require to solve a problem of size n.

– Sometimes, it is difficult to find the average-case behavior of an algorithm.

– We have to look at all possible data organizations of a given size n, and their
distribution probabilities of these organizations.

– Worst-case analysis is more common than average-case analysis.

CENG 707 Data Structures and Algorithms 33

What is Important?

• An array-based list retrieve operation is O(1), a linked-list-

based list retrieve operation is O(n).

• But insert and delete operations are much easier on a linked-list-

based list implementation.

  When selecting the implementation of an Abstract Data Type

(ADT), we have to consider how frequently particular ADT

operations occur in a given application.

• If the problem size is always small, we can probably ignore the

algorithm’s efficiency.

– In this case, we should choose the simplest algorithm.

CENG 707 Data Structures and Algorithms 34

What is Important? (cont.)

• We have to weigh the trade-offs between an algorithm’s time

requirement and its memory requirements.

• We have to compare algorithms for both style and efficiency.

– The analysis should focus on gross differences in efficiency and not reward coding

tricks that save small amount of time.

– That is, there is no need for coding tricks if the gain is not too much.

– Easily understandable program is also important.

• Order-of-magnitude analysis focuses on large problems.

CENG 707 Data Structures and Algorithms 35

Sequential Search

int sequentialSearch(const int a[], int item, int n){

 for (int i = 0; i < n && a[i]!= item; i++);

 if (i == n)

 return –1;

 return i;

}

Unsuccessful Search:  O(n)

Successful Search:

 Best-Case: item is in the first location of the array O(1)

 Worst-Case: item is in the last location of the array O(n)

 Average-Case: The number of key comparisons 1, 2, ..., n

  O(n)
n

nn

n

i
n

i 2/)(2

1 





CENG 707 Data Structures and Algorithms 36

Binary Search

int binarySearch(int a[], int size, int x) {

 int low =0;

 int high = size –1;

 int mid; // mid will be the index of

 // target when it’s found.

 while (low <= high) {

 mid = (low + high)/2;

 if (a[mid] < x)

 low = mid + 1;

 else if (a[mid] > x)

 high = mid – 1;

 else

 return mid;

 }

 return –1;

}

CENG 707 Data Structures and Algorithms 37

Binary Search – Analysis

• For an unsuccessful search:

– The number of iterations in the loop is log2n + 1

  O(log2n)

• For a successful search:

– Best-Case: The number of iterations is 1.  O(1)

– Worst-Case: The number of iterations is log2n +1  O(log2n)

– Average-Case: The avg. # of iterations < log2n  O(log2n)

0 1 2 3 4 5 6 7  an array with size 8

3 2 3 1 3 2 3 4  # of iterations

The average # of iterations = 21/8 < log28

CENG 707 Data Structures and Algorithms 38

How much better is O(log2n)?

 n O(log2n)

 16 4

 64 6

 256 8

 1024 (1KB) 10

 16,384 14

 131,072 17

 262,144 18

 524,288 19

 1,048,576 (1MB) 20

 1,073,741,824 (1GB) 30

