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Algorithm 

• An algorithm is a set of instructions to be followed to 
solve a problem. 

– There can be more than one solution (more than one 
algorithm) to solve a given problem. 

– An algorithm can be implemented using different 
programming languages on different platforms. 

• An algorithm must be correct. It should correctly solve 
the problem. 

– e.g. For sorting, this means even if (1) the input is already 
sorted, or (2) it contains repeated elements.  

• Once we have a correct algorithm for a problem, we 
have to determine the efficiency of that algorithm. 
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Algorithmic Performance  
There are two aspects of algorithmic performance: 

• Time 
• Instructions take time. 

• How fast does the algorithm perform? 

• What affects its runtime?  

• Space 
• Data structures take space 

• What kind of data structures can be used? 

• How does choice of data structure affect the runtime? 

We will focus on time:  
– How to estimate the time required for an algorithm 

– How to reduce the time required 
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Analysis of Algorithms 

• Analysis of Algorithms is the area of computer science that 
provides tools to analyze the efficiency of different methods of 
solutions. 

• How do we compare the time efficiency of two algorithms that 
solve the same problem? 

 Naïve Approach: implement these algorithms in a programming 
language (C++), and run them to compare their time 
requirements. Comparing the programs (instead of algorithms) 
has difficulties.  

– How are the algorithms coded? 
• Comparing running times means comparing the implementations. 

• We should not compare implementations, because they are sensitive to programming 
style that may cloud the issue of which algorithm is inherently more efficient. 

– What computer should we use? 
• We should compare the efficiency of the algorithms independently of a particular 

computer. 

– What data should the program use? 
• Any analysis must be independent of specific data. 
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Analysis of Algorithms 

• When we analyze algorithms, we should employ 
mathematical techniques that analyze algorithms 
independently of specific implementations, 
computers, or data. 

 

• To analyze algorithms: 

– First, we start to count the number of significant 
operations in a particular solution to assess its 
efficiency. 

– Then, we will express the efficiency of algorithms 

using growth functions. 
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The Execution Time of Algorithms 

• Each operation in an algorithm (or a program) has a cost.  

   Each operation takes a certain of time. 

 

 count = count + 1;   take a certain amount of time, but it is constant 

 

A sequence of  operations: 

 

 count = count + 1;  Cost: c1 

 sum = sum + count;  Cost: c2 

   

   Total Cost = c1 + c2 

                 
CENG 707 Data Structures and 

Algorithms 



7 

The Execution Time of Algorithms (cont.) 

Example: Simple If-Statement 

     Cost  Times 

 if (n < 0)  c1     1 

    absval = -n  c2     1 

 else    

  absval = n;  c3     1  

  

Total Cost  <=  c1 + max(c2,c3) 
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The Execution Time of Algorithms (cont.) 

Example: Simple Loop 

       Cost  Times 

 i = 1;      c1     1 

 sum = 0;      c2     1 

 while (i <= n) {    c3     n+1 

  i = i + 1;     c4     n  

  sum = sum + i;    c5     n 

 } 

 

Total Cost  =  c1 + c2 + (n+1)*c3 + n*c4 + n*c5 

  The time required for this algorithm is proportional to n 
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The Execution Time of Algorithms (cont.) 

Example: Nested Loop 

      Cost  Times 

 i=1;     c1    1 

 sum = 0;      c2    1 

 while (i <= n) {    c3    n+1 

  j=1;     c4    n 

  while (j <= n) {    c5    n*(n+1) 

      sum = sum + i;  c6    n*n 

      j = j + 1;     c7    n*n 

    } 

    i = i +1;    c8    n 

 } 

Total Cost  =  c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8 

  The time required for this algorithm is proportional to n2 
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General Rules for Estimation 

• Loops: The running time of a loop is at most the running time 

of the statements inside of that loop times the number of 

iterations. 

•  Nested Loops: Running time of a nested loop containing a 

statement in the inner most loop is the running time of statement 

multiplied by the product of the sized of all loops.  

• Consecutive Statements: Just add the running times of those 

consecutive statements.  

• If/Else: Never more than the running time of the test plus the 

larger of running times of S1 and S2.  
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Algorithm Growth Rates 

• We measure an algorithm’s time requirement as a function of the 
problem size. 

– Problem size depends on the application: e.g. number of elements in a list for a  
sorting algorithm, the number disks for towers of hanoi. 

• So, for instance, we say that (if the problem size is n) 
– Algorithm A requires 5*n2 time units to solve a problem of size n. 

– Algorithm B requires 7*n  time units to solve a problem of size n. 

• The most important thing to learn is how quickly the algorithm’s 
time requirement grows as a function of the problem size. 

– Algorithm A requires time proportional to n2. 

– Algorithm B requires time proportional to n. 

• An algorithm’s proportional time requirement is known as 
growth rate.  

• We can compare the efficiency of two algorithms by comparing 
their growth rates. 
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Algorithm Growth Rates (cont.) 

Time requirements as a function 

 of the problem size n 
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Common Growth Rates  

Function Growth Rate Name 

c Constant 

log N Logarithmic 

log2N Log-squared 

N Linear 

N log N 

N2 Quadratic 

N3 Cubic 

2N Exponential 
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Figure 6.1 
Running times for small inputs 
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Figure 6.2 
Running times for moderate inputs 
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Order-of-Magnitude Analysis and Big O 

Notation 

• If  Algorithm A requires time proportional to f(n), Algorithm A is 

said to be order f(n), and it is denoted as O(f(n)). 

• The function f(n) is called the algorithm’s growth-rate 

function. 

• Since the capital O is used in the notation,  this notation is called 

the Big O notation. 

• If Algorithm A requires time proportional to n2, it is O(n2). 

• If Algorithm A requires time proportional to n, it is O(n). 
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Definition of the Order of an Algorithm 

Definition: 

   Algorithm A is order f(n)  – denoted as O(f(n)) –  

   if constants k and n0 exist such that A requires  

   no more than  k*f(n)  time units to solve a problem  

   of size  n   n0. 

 

• The requirement of n   n0 in the definition of O(f(n)) formalizes 

the notion of sufficiently large problems. 

– In general, many values of k and  n can satisfy this definition. 



CENG 707 Data Structures and Algorithms 18 

Order of an Algorithm 

• If an algorithm requires n2–3*n+10 seconds to solve a problem 

size n. If constants k and n0 exist such that 

   k*n2  >  n2–3*n+10  for all n  n0 . 

 the algorithm is order n2
  (In fact, k is 3 and n0 is 2) 

  3*n2  >  n2–3*n+10  for all n  2 . 

 Thus, the algorithm requires no more than k*n2 time units for n  

n0 , 

 So it is  O(n2) 
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Order of an Algorithm (cont.) 
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A Comparison of Growth-Rate Functions 
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A Comparison of Growth-Rate Functions (cont.) 
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Growth-Rate Functions 

O(1)             Time requirement is constant, and it is independent of the problem’s size. 

O(log2n)      Time requirement for a logarithmic algorithm increases increases slowly  

       as the problem size increases. 

O(n)      Time requirement for a linear algorithm increases directly with the size  

       of the problem. 

O(n*log2n) Time requirement for a n*log2n algorithm increases more rapidly than  

       a linear algorithm. 

O(n2)       Time requirement for a quadratic algorithm increases rapidly with the  

       size of the problem. 

O(n3)       Time requirement for a cubic algorithm increases more rapidly with the  

       size of the problem than the time requirement for a quadratic algorithm. 

O(2n)      As the size of the problem increases, the time requirement for an  

       exponential algorithm increases too rapidly to be practical. 
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Growth-Rate Functions 

• If an algorithm takes 1 second to run with the problem size 8, 

what is the time requirement (approximately) for that algorithm 

with the problem size 16? 

• If its order is: 

 O(1)    T(n) = 1 second 

 O(log2n)   T(n) = (1*log216) / log28 = 4/3 seconds 

 O(n)   T(n) = (1*16) / 8 = 2 seconds 

 O(n*log2n)   T(n) = (1*16*log216) / 8*log28 = 8/3 seconds 

 O(n2)   T(n) = (1*162) / 82 = 4 seconds 

 O(n3)   T(n) = (1*163) / 83 = 8 seconds 

 O(2n)   T(n) = (1*216) / 28 = 28 seconds = 256 seconds 
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Properties of Growth-Rate Functions 

1. We can ignore low-order terms in an algorithm’s growth-rate 

function. 

– If an algorithm is O(n3+4n2+3n), it is also O(n3). 

– We only use the higher-order term as algorithm’s growth-rate function. 

 

2. We can ignore a multiplicative constant in the higher-order term 

of an algorithm’s growth-rate function. 

– If an algorithm is O(5n3), it is also O(n3). 

 

3. O(f(n)) + O(g(n)) = O(f(n)+g(n)) 

– We can combine growth-rate functions. 

– If an algorithm is O(n3) + O(4n), it is also O(n3 +4n2)  So, it is O(n3). 

– Similar rules hold for multiplication. 
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Some Mathematical Facts 

• Some mathematical equalities are: 
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Growth-Rate Functions – Example1 

       Cost  Times 

 i = 1;      c1     1 

 sum = 0;      c2     1 

 while (i <= n) {    c3     n+1 

  i = i + 1;     c4     n  

  sum = sum + i;    c5     n 

 } 

 

T(n)   =  c1 + c2 + (n+1)*c3 + n*c4 + n*c5  

  = (c3+c4+c5)*n + (c1+c2+c3) 

  = a*n + b 

  So, the growth-rate function for this algorithm is  O(n) 
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Growth-Rate Functions – Example2 

      Cost  Times 

 i=1;     c1    1 

 sum = 0;      c2    1 

 while (i <= n) {    c3    n+1 

  j=1;     c4    n 

  while (j <= n) {   c5    n*(n+1) 

      sum = sum + i;  c6    n*n 

      j = j + 1;    c7    n*n 

    } 

    i = i +1;    c8    n 

 } 

T(n)  =  c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8 

  = (c5+c6+c7)*n2 + (c3+c4+c5+c8)*n + (c1+c2+c3) 

  = a*n2 + b*n + c 

  So, the growth-rate function for this algorithm is  O(n2) 
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Growth-Rate Functions – Example3 

      Cost  Times 

 for (i=1; i<=n; i++)   c1   n+1 

 

   for (j=1; j<=i; j++)  c2     

 

     for (k=1; k<=j; k++)   c3   

 

    x=x+1;    c4     

 

 

T(n)  =  c1*(n+1) + c2*(                   ) + c3* (                      ) + c4*(               ) 

 

  = a*n3 + b*n2 + c*n + d 

  So, the growth-rate function for this algorithm is  O(n3) 
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Growth-Rate Functions – Recursive Algorithms 

void hanoi(int n, char source, char dest, char spare) {     Cost 

  if (n > 0) {         c1 

  hanoi(n-1, source, spare, dest);      c2 

    cout << "Move top disk from pole " << source    c3 

    << " to pole " << dest << endl; 

  hanoi(n-1, spare, dest, source);         c4 

} } 

 

• The time-complexity function T(n) of a recursive algorithm is 

defined in terms of itself, and this is known as recurrence equation 

for T(n). 

• To find the growth-rate function for a recursive algorithm, we have 

to solve its recurrence relation. 



CENG 707 Data Structures and Algorithms 30 

Growth-Rate Functions – Hanoi Towers 

• What is the cost of  hanoi(n,’A’,’B’,’C’)? 

 

when n=0  

 T(0) = c1 

 

when n>0 

 T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1) 

   = 2*T(n-1) + (c1+c2+c3+c4) 

   = 2*T(n-1) + c   recurrence equation for the growth-rate  
                      function of hanoi-towers algorithm 

 

• Now, we have to solve this recurrence equation to find the growth-rate 
function of hanoi-towers algorithm 
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Growth-Rate Functions – Hanoi Towers (cont.) 

• There are many methods to solve recurrence equations, but we will use a simple 

method known as repeated substitutions. 

 

T(n) = 2*T(n-1) + c 

    = 2 * (2*T(n-2)+c) + c 

    = 2 * (2* (2*T(n-3)+c) + c) + c  

    = 23 * T(n-3) + (22+21+20)*c  (assuming n>2) 

when substitution repeated i-1th times 

    = 2i * T(n-i) + (2i-1+ ... +21+20)*c 

when i=n 

    = 2n * T(0) + (2n-1+ ... +21+20)*c 

    = 2n * c1 + (       )*c 

 

    = 2n * c1 + ( 2n-1 )*c  = 2n*(c1+c) – c   So, the growth rate function is O(2n) 
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What to Analyze 

• An algorithm can require different times to solve different 
problems of the same size. 

– Eg. Searching an item in a list of n elements using sequential search.  Cost: 
1,2,...,n 

• Worst-Case Analysis –The maximum amount of time that an 
algorithm require to solve a problem of size n. 

– This gives an upper bound for the time complexity of an algorithm. 

– Normally, we try to find worst-case behavior of an algorithm. 

• Best-Case Analysis –The minimum amount of time that an 
algorithm require to solve a problem of size n. 

– The best case behavior of an algorithm is NOT so useful.  

• Average-Case Analysis –The average amount of time that an 
algorithm require to solve a problem of size n. 

– Sometimes, it is difficult to find the average-case behavior of an algorithm. 

– We have to look at all possible data organizations of a given size n, and their 
distribution probabilities of these organizations. 

– Worst-case analysis is more common than average-case analysis. 
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What is Important? 

• An array-based list retrieve operation is O(1), a linked-list-

based list retrieve operation is O(n). 

• But insert and delete operations are much easier on a linked-list-

based list implementation. 

    When selecting the implementation of an Abstract Data Type 

(ADT), we have to consider how frequently particular ADT 

operations occur in a given application. 

 

• If the problem size is always small, we can probably ignore the 

algorithm’s efficiency. 

– In this case, we should choose the simplest algorithm. 
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What is Important? (cont.) 

• We have to weigh the trade-offs between an algorithm’s time 

requirement and its memory requirements. 

• We have to compare algorithms for both style and efficiency. 

– The analysis should focus on gross differences in efficiency and not reward coding 

tricks that save small amount of time. 

– That is, there is no need for coding tricks if the gain is not too much.  

– Easily understandable program is also important. 

• Order-of-magnitude analysis focuses on large problems. 
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Sequential Search 

int sequentialSearch(const int a[], int item, int n){ 

 for (int i = 0; i < n && a[i]!= item; i++); 

 if (i == n) 

  return –1; 

 return i; 

} 

Unsuccessful Search:  O(n) 

 

Successful Search: 

 Best-Case:  item is in the first location of the array O(1) 

 Worst-Case: item is in the last location of the array O(n) 

 Average-Case: The number of key comparisons 1, 2, ..., n 
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Binary Search 

int binarySearch(int a[], int size, int x) { 

   int low =0; 

   int high = size –1; 

   int mid;    // mid will be the index of  

          // target when it’s found. 

   while (low <= high) { 

     mid = (low + high)/2; 

    if (a[mid] < x) 

        low = mid + 1; 

    else if (a[mid] > x) 

     high  = mid – 1;  

     else  

     return mid; 

   } 

   return –1; 

} 
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Binary Search – Analysis  

• For an unsuccessful search:  

– The number of iterations in the loop is  log2n + 1 

     O(log2n) 

• For a successful search: 

– Best-Case: The number of iterations is 1.     O(1) 

– Worst-Case: The number of iterations is  log2n +1   O(log2n) 

– Average-Case:  The avg. # of iterations < log2n    O(log2n) 

 

0  1  2  3  4  5  6  7   an array with size 8 

3  2  3  1  3  2  3  4   # of iterations 

The average # of iterations = 21/8 < log28 
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How much better is O(log2n)? 

 n     O(log2n) 

 16        4 

 64        6 

 256         8 

 1024 (1KB)     10 

 16,384      14 

 131,072      17 

 262,144      18 

 524,288      19 

 1,048,576 (1MB)     20 

 1,073,741,824 (1GB)   30 

 


