Algorithm Analysis

CENG 707 Data Structures and Algorithms 1

Algorithm

- An *algorithm* is a set of instructions to be followed to solve a problem.
 - There can be more than one solution (more than one algorithm) to solve a given problem.
 - An algorithm can be implemented using different programming languages on different platforms.
- An algorithm must be correct. It should correctly solve the problem.
 - e.g. For sorting, this means even if (1) the input is already sorted, or (2) it contains repeated elements.
- Once we have a correct algorithm for a problem, we have to determine the efficiency of that algorithm.

Algorithmic Performance

There are *two aspects* of algorithmic performance:

- Time
 - Instructions take time.
 - How fast does the algorithm perform?
 - What affects its runtime?
- Space
 - Data structures take space
 - What kind of data structures can be used?
 - How does choice of data structure affect the runtime?
- \succ We will focus on time:
 - How to estimate the time required for an algorithm
 - How to reduce the time required

Analysis of Algorithms

- *Analysis of Algorithms* is the area of computer science that provides tools to analyze the efficiency of different methods of solutions.
- How do we compare the time efficiency of two algorithms that solve the same problem?

Naïve Approach: implement these algorithms in a programming language (C++), and run them to compare their time requirements. Comparing the programs (instead of algorithms) has difficulties.

- *How are the algorithms coded?*
 - Comparing running times means comparing the implementations.
 - We should not compare implementations, because they are sensitive to programming style that may cloud the issue of which algorithm is inherently more efficient.
- What computer should we use?
 - We should compare the efficiency of the algorithms independently of a particular computer.
- What data should the program use?
 - Any analysis must be independent of specific data.

CENG 707 Data Structures and Algorithms

Analysis of Algorithms

- When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of *specific implementations, computers, or data.*
- To analyze algorithms:
 - First, we start to count the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

The Execution Time of Algorithms

Each operation in an algorithm (or a program) has a cost.
→ Each operation takes a certain of time.

 $count = count + 1; \rightarrow take a certain amount of time, but it is constant$

A sequence of operations:

$$count = count + 1; Cost: c_1$$

sum = sum + count; Cost: c_2

→ Total Cost = $c_1 + c_2$

The Execution Time of Algorithms (cont.)

Example: Simple If-Statement

	<u>Cost</u>	<u>Times</u>
if (n < 0)	c1	1
absval = -n	c2	1
else		
absval = n;	c3	1

Total Cost $\leq c1 + max(c2,c3)$

The Execution Time of Algorithms (cont.)

Example: Simple Loop

	<u>Cost</u>	<u>Times</u>
i = 1;	c1	1
sum = 0;	c2	1
while (i <= n) {	c3	n+1
i = i + 1;	c4	n
sum = sum + i;	c5	n
}		

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5

 \rightarrow The time required for this algorithm is proportional to n

The Execution Time of Algorithms (cont.)

Example: Nested Loop

	<u>Cost</u>	<u>Times</u>
i=1;	c1	1
sum = 0;	c2	1
while (i <= n) {	с3	n+1
j=1;	с4	n
while (j <= n) {	c5	n*(n+1)
sum = sum + i;	сб	n*n
j = j + 1;	с7	n*n
}		
i = i +1;	C8	n
}		

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 + n*n*c6 + n*n*c7 + n*c8The time required for this algorithm is proportional to n^2

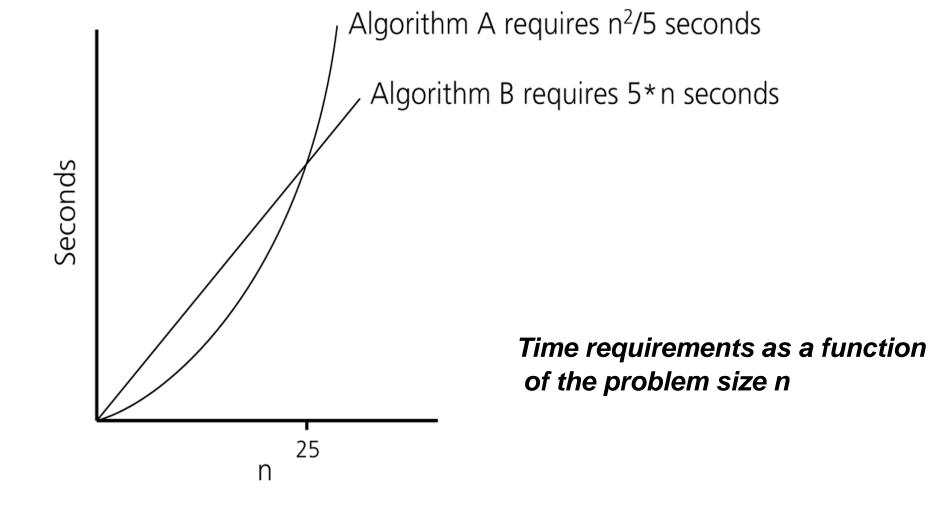
General Rules for Estimation

- **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.
- Nested Loops: Running time of a nested loop containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.
- **Consecutive Statements:** Just add the running times of those consecutive statements.
- **If/Else**: Never more than the running time of the test plus the larger of running times of S1 and S2.

Algorithm Growth Rates

- We measure an algorithm's time requirement as a function of the *problem size*.
 - Problem size depends on the application: e.g. number of elements in a list for a sorting algorithm, the number disks for towers of hanoi.
- So, for instance, we say that (if the problem size is n)
 - Algorithm A requires $5*n^2$ time units to solve a problem of size n.
 - Algorithm B requires 7*n time units to solve a problem of size n.
- The most important thing to learn is how quickly the algorithm's time requirement grows as a function of the problem size.
 - Algorithm A requires time proportional to n^2 .
 - Algorithm B requires time proportional to **n**.
- An algorithm's proportional time requirement is known as *growth rate*.
- We can compare the efficiency of two algorithms by comparing their growth rates.

Algorithm Growth Rates (cont.)



Common Growth Rates

Function	Growth Rate Name
C	Constant
log N	Logarithmic
log^2N	Log-squared
N	Linear
N log N	
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Figure 6.1 Running times for small inputs

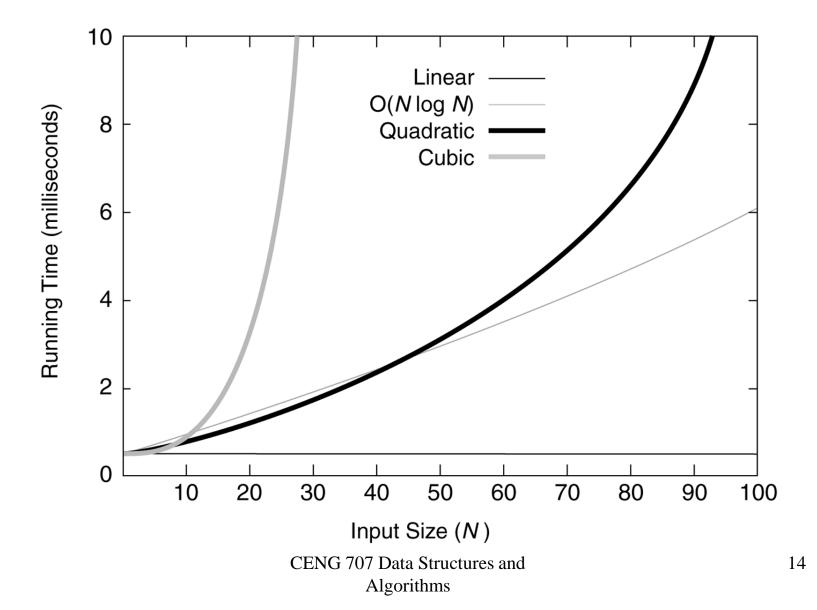
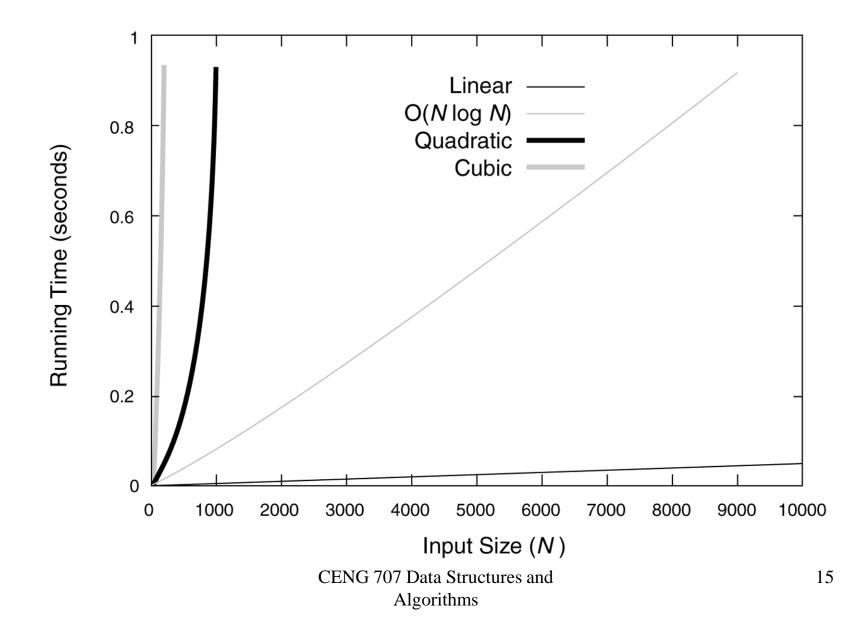


Figure 6.2 Running times for moderate inputs



Order-of-Magnitude Analysis and Big O Notation

- If *Algorithm A requires time proportional to f(n)*, Algorithm A is said to be **order f(n)**, and it is denoted as **O(f(n))**.
- The function f(n) is called the algorithm's growth-rate function.
- Since the capital O is used in the notation, this notation is called the **Big O notation**.
- If Algorithm A requires time proportional to n^2 , it is $O(n^2)$.
- If Algorithm A requires time proportional to **n**, it is **O**(**n**).

Definition of the Order of an Algorithm

Definition:

Algorithm A is order f(n) – denoted as O(f(n)) – if constants k and n_0 exist such that A requires no more than k*f(n) time units to solve a problem of size $n \ge n_0$.

- The requirement of $n \ge n_0$ in the definition of O(f(n)) formalizes the notion of sufficiently large problems.
 - In general, many values of k and n can satisfy this definition.

Order of an Algorithm

• If an algorithm requires $n^2 - 3*n + 10$ seconds to solve a problem size n. If constants k and n_0 exist such that

 $k n^2 > n^2 - 3 n + 10$ for all $n \ge n_0$.

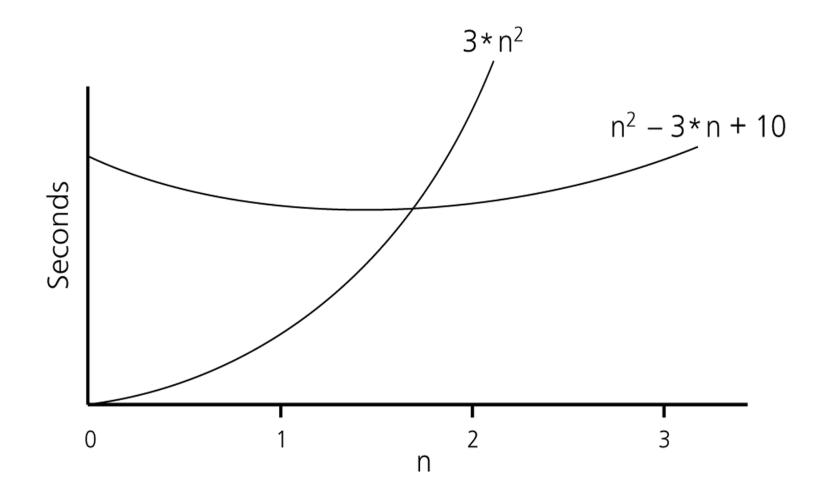
the algorithm is order n^2 (In fact, k is 3 and n_0 is 2)

 $3*n^2 > n^2 - 3*n + 10$ for all $n \ge 2$.

Thus, the algorithm requires no more than k^*n^2 time units for $n \ge n_0$,

So it is $O(n^2)$

Order of an Algorithm (cont.)

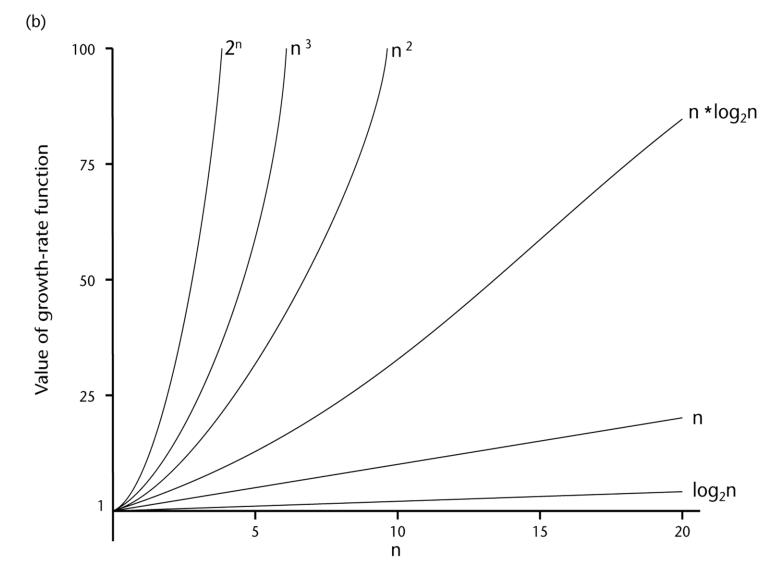


A Comparison of Growth-Rate Functions

(a)

				n		
				人		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	10 ⁵	10 ⁶
n * log ₂ n	30	664	9,965	10 ⁵	10 ⁶	10 ⁷
n ²	10 ²	104	10 ⁶	10 ⁸	10 ¹⁰	1012
n ³	10 ³	106	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
2 ⁿ	10 ³	10 ³⁰	10 ³⁰	¹ 10 ^{3,0}	¹⁰ 10 ^{30,}	¹⁰³ 10 ^{301,030}

A Comparison of Growth-Rate Functions (cont.)



Growth-Rate Functions

- **O(1)** Time requirement is **constant**, and it is independent of the problem's size.
- $O(\log_2 n)$ Time requirement for a logarithmic algorithm increases increases slowly as the problem size increases.
- **O**(**n**) Time requirement for a **linear** algorithm increases directly with the size of the problem.
- **O**(**n*****log**₂**n**) Time requirement for a **n*****log**₂**n** algorithm increases more rapidly than a linear algorithm.
- **O**(**n**²) Time requirement for a **quadratic** algorithm increases rapidly with the size of the problem.
- **O**(**n**³) Time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- O(2ⁿ) As the size of the problem increases, the time requirement for an **exponential** algorithm increases too rapidly to be practical.

Growth-Rate Functions

- If an algorithm takes 1 second to run with the problem size 8, what is the time requirement (approximately) for that algorithm with the problem size 16?
- If its order is:

O(1) \rightarrow T(n) = 1 second

- **O**($\log_2 n$) \rightarrow T(n) = (1* $\log_2 16$) / $\log_2 8 = 4/3$ seconds
- **O(n)** \rightarrow T(n) = (1*16) / 8 = 2 seconds
- $O(n*log_2n) \rightarrow T(n) = (1*16*log_216) / 8*log_28 = 8/3$ seconds
- **O**(**n**²) \rightarrow T(n) = (1*16²) / 8² = 4 seconds
- **O(n³)** \rightarrow T(n) = (1*16³) / 8³ = 8 seconds
- **O(2ⁿ)** \rightarrow T(n) = (1*2¹⁶) / 2⁸ = 2⁸ seconds = 256 seconds

Properties of Growth-Rate Functions

- *1.* We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
 - We only use the higher-order term as algorithm's growth-rate function.
- 2. We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is $O(5n^3)$, it is also $O(n^3)$.
- 3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - We can combine growth-rate functions.
 - − If an algorithm is $O(n^3) + O(4n)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$.
 - Similar rules hold for multiplication.

Some Mathematical Facts

• Some mathematical equalities are:

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n^*(n+1)}{2} \approx \frac{n^2}{2}$$

$$\sum_{i=1}^{n} i^2 = 1 + 4 + \dots + n^2 = \frac{n^*(n+1)^*(2n+1)}{6} \approx \frac{n^3}{3}$$

$$\sum_{i=0}^{n-1} 2^{i} = 0 + 1 + 2 + \dots + 2^{n-1} = 2^{n} - 1$$

Growth-Rate Functions – Example1

	Cost	<u>Times</u>
i = 1;	c1	1
sum = 0;	c2	1
while (i <= n) {	c3	n+1
i = i + 1;	c4	n
sum = sum + i;	c5	n
}		

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$

= (c3+c4+c5)*n + (c1+c2+c3)
= a*n + b

 \rightarrow So, the growth-rate function for this algorithm is O(n)

Growth-Rate Functions – Example2

	Cost	<u>Times</u>	
i=1;	c1	1	
sum = 0;	c2	1	
while (i <= n) {	c3	n+1	
j=1;	с4	n	
while (j <= n) {	c5	n*(n+1)	
sum = sum + i;	сб	n*n	
j = j + 1;	с7	n*n	
}			
i = i +1;	с8	n	
}			
T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 + n*n*c6 + n*n*c7 + n*c8			
$= (c5+c6+c7)*n^2 + (c3+c4+c5+c8)*n + (c1+c2+c3)$			
$=a^*n^2+b^*n+c$			
\rightarrow So, the growth-rate function for this algorithm is $O(n^2)$			

CENG 707 Data Structures and Algorithms

Growth-Rate Functions – Example3

	<u>Cost</u>	Times
for (i=1; i<=n; i++)	c1	n+1
for (j=1; j<=i; j++)	c2	$\sum_{j=1}^{n} (j+1)$
for (k=1; k<=j; k++)	с3	$\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)$
x=x+1;	с4	$\sum_{j=1}^n \sum_{k=1}^j k$

T(n) =
$$c1*(n+1) + c2*(\sum_{j=1}^{n} (j+1)) + c3*(\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)) + c4*(\sum_{j=1}^{n} \sum_{k=1}^{j} k)$$

= $a*n^3 + b*n^2 + c*n + d$

 \rightarrow So, the growth-rate function for this algorithm is $O(n^3)$

Growth-Rate Functions – Recursive Algorithms

```
void hanoi(int n, char source, char dest, char spare) {
    if (n > 0) {
        hanoi(n-1, source, spare, dest);
        cout << "Move top disk from pole " << source
        c3
            << " to pole " << dest << endl;
        hanoi(n-1, spare, dest, source);
        c4
}</pre>
```

- The time-complexity function T(n) of a recursive algorithm is defined in terms of itself, and this is known as **recurrence equation** for T(n).
- To find the growth-rate function for a recursive algorithm, we have to solve its recurrence relation.

Growth-Rate Functions – Hanoi Towers

• What is the cost of hanoi (n, 'A', 'B', 'C')?

when n=0

T(0) = c1

when n>0

$$T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)$$

$$= 2*T(n-1) + (c1+c2+c3+c4)$$

$$= 2*T(n-1) + c \quad \leftarrow \text{ recurrence equation for the growth-rate function of hanoi-towers algorithm}$$

• Now, we have to solve this recurrence equation to find the growth-rate function of hanoi-towers algorithm

Growth-Rate Functions – Hanoi Towers (cont.)

• There are many methods to solve recurrence equations, but we will use a simple method known as *repeated substitutions*.

$$T(n) = 2*T(n-1) + c$$

= 2 * (2*T(n-2)+c) + c
= 2 * (2* (2*T(n-3)+c) + c) + c
= 2³ * T(n-3) + (2²+2¹+2⁰)*c (4)

when substitution repeated i-1th times

$$= 2^{i} * T(n-i) + (2^{i-1}+...+2^{1}+2^{0})*c$$

when i=n

$$= 2^{n} * T(0) + (2^{n-1} + \dots + 2^{1} + 2^{0}) * c$$

= 2ⁿ * c1 + ($\sum_{i=0}^{n-1} 2^{i}$)*c

(assuming n>2)

 $= 2^n * c1 + (2^n-1)*c = 2^n*(c1+c) - c \Rightarrow$ So, the growth rate function is O(2ⁿ)

What to Analyze

- An algorithm can require different times to solve different problems of the same size.
 - Eg. Searching an item in a list of n elements using sequential search. → Cost: 1,2,...,n
- *Worst-Case Analysis* The maximum amount of time that an algorithm require to solve a problem of size n.
 - This gives an upper bound for the time complexity of an algorithm.
 - Normally, we try to find worst-case behavior of an algorithm.
- *Best-Case Analysis* The minimum amount of time that an algorithm require to solve a problem of size n.

- The best case behavior of an algorithm is NOT so useful.

- Average-Case Analysis The average amount of time that an algorithm require to solve a problem of size n.
 - Sometimes, it is difficult to find the average-case behavior of an algorithm.
 - We have to look at all possible data organizations of a given size n, and their distribution probabilities of these organizations.
 - Worst-case analysis is more common than average-case analysis.

What is Important?

- An array-based list retrieve operation is O(1), a linked-listbased list retrieve operation is O(n).
- But insert and delete operations are much easier on a linked-listbased list implementation.

→ When selecting the implementation of an Abstract Data Type (ADT), we have to consider how frequently particular ADT operations occur in a given application.

- If the problem size is always small, we can probably ignore the algorithm's efficiency.
 - In this case, we should choose the simplest algorithm.

What is Important? (cont.)

- We have to weigh the trade-offs between an algorithm's time requirement and its memory requirements.
- We have to compare algorithms for both style and efficiency.
 - The analysis should focus on gross differences in efficiency and not reward coding tricks that save small amount of time.
 - That is, there is no need for coding tricks if the gain is not too much.
 - Easily understandable program is also important.
- Order-of-magnitude analysis focuses on large problems.

Sequential Search

```
int sequentialSearch(const int a[], int item, int n){
  for (int i = 0; i < n && a[i]!= item; i++);
  if (i == n)
     return -1;
  return i;
}
Unsuccessful Search: → O(n)</pre>
```

Successful Search:

Best-Case: *item* is in the first location of the array $\rightarrow O(1)$ **Worst-Case:** *item* is in the last location of the array $\rightarrow O(n)$ **Average-Case:** The number of key comparisons 1, 2, ..., n

$$\frac{\sum_{i=1}^{n}i}{n} = \frac{(n^2 + n)/2}{n} \longrightarrow O(n)$$

Binary Search

```
int binarySearch(int a[], int size, int x) {
   int low =0;
   int high = size -1;
   int mid;
                  // mid will be the index of
                    // target when it's found.
  while (low <= high) {</pre>
     mid = (low + high)/2;
     if (a[mid] < x)
        low = mid + 1;
     else if (a[mid] > x)
        high = mid -1;
     else
         return mid;
   return -1;
```

Binary Search – Analysis

- For an unsuccessful search:
 - The number of iterations in the loop is $\lfloor \log_2 n \rfloor + 1$

 \rightarrow O(log₂n)

- For a successful search:
 - *Best-Case:* The number of iterations is 1.
 - *Worst-Case:* The number of iterations is $\lfloor \log_2 n \rfloor + 1$ \rightarrow O(log₂n)
 - *Average-Case:* The avg. # of iterations $< \log_2 n$

→ O(1)→ $O(\log_2 n)$ → $O(\log_2 n)$

- 0 1 2 3 4 5 6 7 \leftarrow an array with size 8
- 3 2 3 1 3 2 3 4 \leftarrow # of iterations

The average # of iterations = $21/8 < \log_2 8$

How much better is $O(log_2n)$?

<u>n</u>	$\underline{O(log_2n)}$
16	4
64	6
256	8
1024 (1KB)	10
16,384	14
131,072	17
262,144	18
524,288	19
1,048,576 (1MB)	20
1,073,741,824 (1GB)	30