
CENG 707 1

Recursion

CENG 707 2

Recursion

• Recursion is a technique that solves a problem by solving

a smaller problem of the same type.

• A recursive function is a function invoking itself, either

directly or indirectly.

• Recursion can be used as an alternative to iteration.

• Recursion is an important and powerful tool in problem

solving And programming.

• Recursion is a programming technique that naturally

implements the divide-and-conquer problem

solving methodology.

CENG 707 3

The Nature of Recursion

1. One or more simple cases of the problem (called the
stopping cases or base case) have a simple non-recursive
solution.

2. The other cases of the problem can be reduced (using
recursion) to problems that are closer to stopping cases.

3. Eventually the problem can be reduced to stopping cases
only, which are relatively easy to solve.

In general:

 if (stopping case)

 solve it

 else

 reduce the problem using recursion

CENG 707 4

Four Criteria of A Recursive Solution

1. A recursive function calls itself.

– This action is what makes the solution recursive.

2. Each recursive call solves an identical, but smaller, problem.

– A recursive function solves a problem by solving another problem that is identical
in nature but smaller in size.

3. A test for the base case enables the recursive calls to stop.

– There must be a case of the problem (known as base case or stopping case) that is
handled differently from the other cases (without recursively calling itself.)

– In the base case, the recursive calls stop and the problem is solved directly.

4. Eventually, one of the smaller problems must be the base case.

– The manner in which the size of the problem diminishes ensures that the base case
is eventually is reached.

CENG 707 5

Four Questions for

Constructing Recursive Solutions

1. How can you define the problem in terms of a smaller problem

of the same type?

2. How does each recursive call diminish the size of the problem?

3. What instance of the problem can serve as the base case?

4. As the problem size diminishes, will you reach this base case?

CENG 707 6

Factorial Function – Iterative Definition

n! = n * (n-1) * (n-2) * … * 2 * 1 for any integer n>0

0! = 1

Iterative Definition in C:

 fval = 1;

 for (i = n; i >= 1; i--)

 fval = fval * i;

CENG 707 7

Factorial Function - Recursive Definition

• To define n! recursively, n! must be defined in terms of the

factorial of a smaller number.

• Observation (problem size is reduced):

 n! = n * (n-1)!

• Base case: 0! = 1

• We can reach the base case, by subtracting 1 from n if n is a

positive integer.

Recursive Definition:

 n! = 1 if n = 0

 n! = n*(n-1)! if n > 0

CENG 707 8

Factorial Function - Recursive Definition in C

// Computes the factorial of a nonnegative integer.

// Precondition: n must be greater than or equal to 0.

// Postcondition: Returns the factorial of n; n is unchanged.

int fact(int n)

{

 if (n ==0)

 return (1);

 else

 return (n * fact(n-1));

}

• This fact function satisfies the four criteria of a recursive solution.

CENG 707 9

Tracing a Recursive Function

• A stack is used to keep track of function calls.

• Whenever a new function is called, all its parameters and local variables are

pushed onto the stack along with the memory address of the calling

statement (this gives the computer the return point after execution of the

function)

– For each function call, an activation record is created on the

stack.

• To trace a recursive function, the box method can be used.

– The box method is a systematic way to trace the actions of a recursive

function.

– The box method illustrates how compilers implement recursion.

– Each box in the box method roughly corresponds to an activation

record.

CENG 707 10

The Box Method (for a valued function)

1. Label each recursive call in the body of the recursive function.

• For each recursive call, we use a different label to distinguish different

recursive calls in the body.

• These labels help us to keep track of the correct place to which we must

return after a function call completes.

• After each recursive call, we return to the labeled location, and substitute that

recursive call with returned valued.

 if (n ==0)

 return (1);

 else

 return (n * fact(n-1))

 A

CENG 707 11

The Box Method (continued)

2. Each time a function is called, a new box represents its local

environment. Each box contains:

– the values of the arguments,

– the function local variables

– A placeholder for the value returned from each recursive call from the

current box. (label in step 1)

– The value of the function itself.

CENG 707 12

The Box Method (continued)

3. Draw an arrow from the statement that initiates the recursive process

to the first box.

– Then draw an arrow to a new box created after a recursive call, put a label

on that arrow.

printf(“%d”, fact (3));

CENG 707 13

The Box Method (continued)

4. After a new box is created, we start to execute the body of

the function.

5. On exiting a function, cross off the current box and follow

its arrow back to the box that called the function.

– This box becomes the current box.

– Substitute the value returned by the just-terminated function call

into the appropriate item in the current box.

– Continue the execution from the returned point.

CENG 707 14

Box Trace of fact(3)

CENG 707 15

Box Trace of fact(3) (continued)

CENG 707 16

Box Trace of fact(3) (continued)

CENG 707 17

A Recursive void Function –
Writing a String Backward

Problem: Write the given string of characters in reverse order.

Recursive Solution:

 Base Case: Write the empty string backward.

 Recursive Case: How can we write an n-character string backward, if we can write an

(n-1)-character string backward?

• Strip away the last character, or strip away the first character

 writeBackward(in s:string)

 if (the string is empty)

 Do nothing // base case

 else {

 Write the last character of s

 writeBackward(s minus its last character)

 }

CENG 707 18

Writing a String Backward in C

// Writes a character string backward.

// Precondition: The string s contains size characters, where size >= 0.

// Postcondition: s is written backward, but remains unchanged.

void writeBackward(char s[], int size)

{

 if (size > 0)

 { // write the last character

 printf(“%c”, s[size-1]);

 // write the rest of the string backward

 writeBackward(s, size-1); // Point A

 } // end if

 // size == 0 is the base case - do nothing

} // end writeBackward

CENG 707 19

Box trace of writeBackward(“cat”,3)

CENG 707 20

Box trace of writeBackward(“cat”,3) (continued)

CENG 707 21

Box trace of writeBackward(“cat”,3) (continued)

CENG 707 22

writeBackward2 in pseudocode

writeBackward2 (in s:string)

 if (the string is empty)

 Do nothing // base case

 else {

 writeBackward2(s minus its first character)

 Write the first character of s

 }

CENG 707 23

Multiplying Rabbits – The Fibonacci Sequence

• Rabbits give birth so often. If rabbits did not die, their population
would be quickly get out of hand.

• Let us assume that:

– Rabbits never die.

– A rabbit reaches sexual maturity exactly two months after birth (at the
beginning of its third month of life).

– Rabbits are always born male-female pairs.

– At the beginning of every month, each sexually mature male-female pair
gives birth to exactly one male-female pair.

• Question:

– Suppose we start with a single newborn male-female pair in
the first month.

– What will be the number rabbit pairs in month n?

CENG 707 24

Multiplying Rabbits – First Seven Months

Month 1: 1 pair

Month 2: 1 pair

– since it is not yet sexually mature

Month 3: 2 pairs

– 1 original pair + a newborn pair from the original pair because it is now sexually
mature.

Month 4: 3 pairs

– 2 pairs alive in month 3 + a newborn pair from original pair.

Month 5: 5 pairs

– 3 pairs alive in month 4 + 2 new newborn pairs from 2 pairs alive in month 3.

Month 6: 8 pairs

– 5 pairs alive in month 5 + 3 new newborn pairs from 3 pairs alive in month 4.

Month 7: 13 pairs

– 8 pairs alive in month 6 + 5 new newborn pairs from 5 pairs alive in month 5.

CENG 707 25

Recursive Solution to Rabbit Problem

Observation:

– All of the pairs alive in month n-1 cannot give
birth at the beginning of month n.

– Only, all of the pairs alive in month n-2 can
give birth.

– The number pairs in month n is the sum of the
number of pairs alive in month n-1 plus the
number rabbits alive in month n-2.

Recurrence relation for the number of pairs in month n:

 rabbit(n) = rabbit(n-1) + rabbit(n-2)

CENG 707 26

Recursive Solution to Rabbit Problem

• Two base cases are necessary because there are two smaller

problems.

– rabbit(1) = 1 rabbit(2) = 1

Recursive Solution:

 rabbit(n) = 1 if n is 1 or 2

 rabbit(n) = rabbit(n-1) + rabbit(n-2) if n > 2

• The series of numbers rabbit(1), rabbit(2), rabbit(3), … is known

as Fibonacci Sequence.

CENG 707 27

Recursive Solution to Rabbit Problem in C

// Computes a term in the Fibonacci sequence.

// Precondition: n is a positive integer.

// Postcondition: Returns the nth Fibonacci

number.

int rabbit(int n)

{

 if (n <= 2)

 return 1;

 else // n > 2, so n-1 > 0 and n-2 > 0

 return (rabbit(n-1) + rabbit(n-2));

} // end rabbit

• This rabbit function computes Fibonacci sequence (but
inefficiently).

CENG 707 28

Recursive Calls for rabbit(7)

CENG 707 29

Binary Search

Problem: Search a sorted array of integers for a given value.

Recursive Binary Search Algorithm:

 binarySearch(in anArray:ArrayType, in value:ItemType)

 if (anArray is of size 1)

 Determine if anArray’s item is equal to value

 else {

 Find the midpoint of anArray

 Determine which half of anArray contains value

 if (value is in the first half of anArray)

 binarySearch(first half of anArray, value)

 else

 binarySearch(second half of anArray, value)

 }

CENG 707 30

Binary Search in C

int binarySearch(int anArray[], int first, int last, int value)

// Searches the array items anArray[first] through anArray[last] for value by using a binary search.

// Precondition: 0 <= first, last <= SIZE-1, where SIZE is the maximum size of the array, and

// anArray[first] <= anArray[first+1] <= ... <= anArray[last].

// Postcondition: If value is in the array, the function returns the index of the array item that equals value;

// otherwise the function returns -1.

{ int index;

 if (first > last) index = -1; // value not in original array

 else { // Invariant: If value is in anArray, anArray[first] <= value <= anArray[last]

 int mid = (first + last)/2;

 if (value == anArray[mid])

 index = mid; // value found at anArray[mid]

 else if (value < anArray[mid])

 index = binarySearch(anArray, first, mid-1, value); // point X

 else

 index = binarySearch(anArray, mid+1, last, value); // point Y

 } // end else

 return index;

} // end binarySearch

CENG 707 31

Box Trace of binarySearch (successful)

Box traces of binarySearch with anArray = <1, 5, 9, 12, 15, 21, 29, 31>

 a successful search for 9

CENG 707 32

Box Trace of binarySearch (unsuccessful)

Box traces of binarySearch with anArray = <1, 5, 9, 12, 15, 21, 29, 31>

 an unsuccessful search for 6

CENG 707 33

Box Method with A Reference Argument

CENG 707 34

Growth-Rate Functions – Recursive Algorithms

void hanoi(int n, char source, char dest, char spare) { Cost

 if (n > 0) { c1

 hanoi(n-1, source, spare, dest); c2

 cout << "Move top disk from pole " << source c3

 << " to pole " << dest << endl;

 hanoi(n-1, spare, dest, source); c4

} }

• The time-complexity function T(n) of a recursive algorithm is

defined in terms of itself, and this is known as recurrence equation

for T(n).

• To find the growth-rate function for a recursive algorithm, we have

to solve its recurrence relation.

CENG 707 35

Growth-Rate Functions – Hanoi Towers

• What is the cost of hanoi(n,’A’,’B’,’C’)?

when n=0

 T(0) = c1

when n>0

 T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)

 = 2*T(n-1) + (c1+c2+c3+c4)

 = 2*T(n-1) + c recurrence equation for the growth-rate
 function of hanoi-towers algorithm

• Now, we have to solve this recurrence equation to find the growth-rate
function of hanoi-towers algorithm

CENG 707 36

Growth-Rate Functions – Hanoi Towers (cont.)

• We will use a simple method known as repeated substitutions to solve recurrence

equations.

T(n) = 2*T(n-1) + c

 = 2 * (2*T(n-2)+c) + c

 = 2 * (2* (2*T(n-3)+c) + c) + c

 = 23 * T(n-3) + (22+21+20)*c (assuming n>2)

when substitution repeated i-1th times

 = 2i * T(n-i) + (2i-1+ ... +21+20)*c

when i=n

 = 2n * T(0) + (2n-1+ ... +21+20)*c

 = 2n * c1 + ()*c

 = 2n * c1 + (2n-1)*c = 2n*(c1+c) – c So, the growth rate function is O(2n)

1

0

2
n

i

i

