
CENG 707 Data Structures and

Algorithms

Sorting Algorithms

CENG 707 Data Structures and Algorithms

Sorting

• Sorting is a process that organizes a collection of data into either ascending or

descending order.

• An internal sort requires that the collection of data fit entirely in the

computer’s main memory.

• We can use an external sort when the collection of data cannot fit in the

computer’s main memory all at once but must reside in secondary storage such

as on a disk.

• We will analyze only internal sorting algorithms.

• Any significant amount of computer output is generally arranged in some

sorted order so that it can be interpreted.

• Sorting also has indirect uses. An initial sort of the data can significantly

enhance the performance of an algorithm.

• Majority of programming projects use a sort somewhere, and in many cases,

the sorting cost determines the running time.

• A comparison-based sorting algorithm makes ordering decisions only on the

basis of comparisons.

CENG 707 Data Structures and

Algorithms

Sorting Algorithms

• There are many sorting algorithms, such as:

– Selection Sort

– Insertion Sort

– Bubble Sort

– Merge Sort

– Quick Sort

• The first three are the foundations for faster
and more efficient algorithms.

CENG 707 Data Structures and

Algorithms

Selection Sort
• The list is divided into two sublists, sorted and unsorted,

which are divided by an imaginary wall.

• We find the smallest element from the unsorted sublist and
swap it with the element at the beginning of the unsorted
data.

• After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

• Each time we move one element from the unsorted sublist
to the sorted sublist, we say that we have completed a sort
pass.

• A list of n elements requires n-1 passes to completely
rearrange the data.

CENG 707 Data Structures and

Algorithms

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Sorted Unsorted

CENG 707 Data Structures and Algorithms

Selection Sort (cont.)

template <class Item>

void selectionSort(Item a[], int n) {

 for (int i = 0; i < n-1; i++) {

 int min = i;

 for (int j = i+1; j < n; j++)

 if (a[j] < a[min]) min = j;

 swap(a[i], a[min]);

 }

}

template < class Object>
void swap(Object &lhs, Object &rhs)
{
 Object tmp = lhs;
 lhs = rhs;
 rhs = tmp;
}

CENG 707 Data Structures and Algorithms

Selection Sort -- Analysis

• In general, we compare keys and move items (or exchange items)

in a sorting algorithm (which uses key comparisons).

 So, to analyze a sorting algorithm we should count the

number of key comparisons and the number of moves.

• Ignoring other operations does not affect our final result.

• In selectionSort function, the outer for loop executes n-1 times.

• We invoke swap function once at each iteration.

 Total Swaps: n-1

 Total Moves: 3*(n-1) (Each swap has three moves)

CENG 707 Data Structures and Algorithms

Selection Sort – Analysis (cont.)

• The inner for loop executes the size of the unsorted part minus 1

(from 1 to n-1), and in each iteration we make one key

comparison.

 # of key comparisons = 1+2+...+n-1 = n*(n-1)/2

 So, Selection sort is O(n2)

• The best case, the worst case, and the average case of the

selection sort algorithm are same. all of them are O(n2)

– This means that the behavior of the selection sort algorithm does not depend on the

initial organization of data.

– Since O(n2) grows so rapidly, the selection sort algorithm is appropriate only for

small n.

– Although the selection sort algorithm requires O(n2) key comparisons, it only

requires O(n) moves.

– A selection sort could be a good choice if data moves are costly but key

comparisons are not costly (short keys, long records).

CENG 707 Data Structures and

Algorithms

Comparison of N, logN and N2
N O(LogN) O(N2)

16 4 256

64 6 4K

256 8 64K

1,024 10 1M

16,384 14 256M

131,072 17 16G

262,144 18 6.87E+10

524,288 19 2.74E+11

1,048,576 20 1.09E+12

1,073,741,824 30 1.15E+18

CENG 707 Data Structures and

Algorithms

Insertion Sort

• Insertion sort is a simple sorting algorithm that is
appropriate for small inputs.

– Most common sorting technique used by card players.

• The list is divided into two parts: sorted and
unsorted.

• In each pass, the first element of the unsorted part
is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

• A list of n elements will take at most n-1 passes to
sort the data.

CENG 707 Data Structures and

Algorithms

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Sorted Unsorted

CENG 707 Data Structures and

Algorithms

Insertion Sort Algorithm

template <class Item>

void insertionSort(Item a[], int n)

{

 for (int i = 1; i < n; i++)

 {

 Item tmp = a[i];

 for (int j=i; j>0 && tmp < a[j-1]; j--)

 a[j] = a[j-1];

 a[j] = tmp;

 }

}

CENG 707 Data Structures and Algorithms

Insertion Sort – Analysis

• Running time depends on not only the size of the array but also
the contents of the array.

• Best-case: O(n)
– Array is already sorted in ascending order.

– Inner loop will not be executed.

– The number of moves: 2*(n-1) O(n)

– The number of key comparisons: (n-1) O(n)

• Worst-case: O(n2)
– Array is in reverse order:

– Inner loop is executed i-1 times, for i = 2,3, …, n

– The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2 O(n2)

– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2 O(n2)

• Average-case: O(n2)
– We have to look at all possible initial data organizations.

• So, Insertion Sort is O(n2)

CENG 707 Data Structures and

Algorithms

Analysis of insertion sort

• Which running time will be used to characterize this

algorithm?

– Best, worst or average?

• Worst:

– Longest running time (this is the upper limit for the algorithm)

– It is guaranteed that the algorithm will not be worse than this.

• Sometimes we are interested in average case. But there are

some problems with the average case.

– It is difficult to figure out the average case. i.e. what is average

input?

– Are we going to assume all possible inputs are equally likely?

– In fact for most algorithms average case is same as the worst case.

CENG 707 Data Structures and

Algorithms

Bubble Sort
• The list is divided into two sublists: sorted and

unsorted.

• The smallest element is bubbled from the unsorted
list and moved to the sorted sublist.

• After that, the wall moves one element ahead,
increasing the number of sorted elements and
decreasing the number of unsorted ones.

• Each time an element moves from the unsorted
part to the sorted part one sort pass is completed.

• Given a list of n elements, bubble sort requires up
to n-1 passes to sort the data.

CENG 707 Data Structures and

Algorithms

Bubble Sort

23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

CENG 707 Data Structures and

Algorithms

Bubble Sort Algorithm
template <class Item>

void bubleSort(Item a[], int n)

{

 bool sorted = false;

 int last = n-1;

 for (int i = 0; (i < last) && !sorted; i++){

 sorted = true;

 for (int j=last; j > i; j--)

 if (a[j-1] > a[j]{

 swap(a[j],a[j-1]);

 sorted = false; // signal exchange

 }

 }

}

CENG 707 Data Structures and Algorithms

Bubble Sort – Analysis

• Best-case: O(n)

– Array is already sorted in ascending order.

– The number of moves: 0 O(1)

– The number of key comparisons: (n-1) O(n)

• Worst-case: O(n2)

– Array is in reverse order:

– Outer loop is executed n-1 times,

– The number of moves: 3*(1+2+...+n-1) = 3 * n*(n-1)/2 O(n2)

– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2 O(n2)

• Average-case: O(n2)

– We have to look at all possible initial data organizations.

• So, Bubble Sort is O(n2)

CENG 707 Data Structures and

Algorithms

Mergesort
• Mergesort algorithm is one of two important divide-and-conquer

sorting algorithms (the other one is quicksort).

• It is a recursive algorithm.

– Divides the list into halves,

– Sort each halve separately, and

– Then merge the sorted halves into one sorted array.

CENG 707 Data Structures and

Algorithms

Mergesort - Example

CENG 707 Data Structures and Algorithms

Merge
const int MAX_SIZE = maximum-number-of-items-in-array;

void merge(DataType theArray[], int first, int mid, int last)

{

 DataType tempArray[MAX_SIZE]; // temporary array

 int first1 = first; // beginning of first subarray

 int last1 = mid; // end of first subarray

 int first2 = mid + 1; // beginning of second subarray

 int last2 = last; // end of second subarray

 int index = first1; // next available location in tempArray

 for (; (first1 <= last1) && (first2 <= last2); ++index) {

 if (theArray[first1] < theArray[first2]) {

 tempArray[index] = theArray[first1];

 ++first1;

 }

 else {

 tempArray[index] = theArray[first2];

 ++first2;

 } }

CENG 707 Data Structures and Algorithms

Merge (cont.)

 // finish off the first subarray, if necessary

 for (; first1 <= last1; ++first1, ++index)

 tempArray[index] = theArray[first1];

 // finish off the second subarray, if necessary

 for (; first2 <= last2; ++first2, ++index)

 tempArray[index] = theArray[first2];

 // copy the result back into the original array

 for (index = first; index <= last; ++index)

 theArray[index] = tempArray[index];

} // end merge

CENG 707 Data Structures and Algorithms

Mergesort

void mergesort(DataType theArray[], int first, int last) {

 if (first < last) {

 int mid = (first + last)/2; // index of midpoint

 mergesort(theArray, first, mid);

 mergesort(theArray, mid+1, last);

 // merge the two halves

 merge(theArray, first, mid, last);

 }

} // end mergesort

CENG 707 Data Structures and Algorithms

Mergesort - Example

6 3 9 1 5

4 7 2

5

4 7 2 6 3 9 1

6 3 9 1 7 2 5

4

6 3 1 9 5 4 2 7

3 6 1 9 2 7 4

5

2

4 5 7 1 3 6 9

1 2 3 4 5

7 8 9

divide

divide divide divide

divide divide

divide

merge merge

merge

merge

merge merge

merge

CENG 707 Data Structures and

Algorithms

Mergesort – Example2

CENG 707 Data Structures and

Algorithms

Mergesort – Analysis of Merge

A worst-case instance of the merge step in mergesort

CENG 707 Data Structures and

Algorithms

Mergesort – Analysis of Merge (cont.)

Merging two sorted arrays of size k

• Best-case:

– All the elements in the first array are smaller (or larger) than all the

elements in the second array.

– The number of moves: 2k + 2k

– The number of key comparisons: k

• Worst-case:

– The number of moves: 2k + 2k

– The number of key comparisons: 2k-1

......

......

0 k-1 0 k-1

0 2k-1

CENG 707 Data Structures and

Algorithms

Mergesort - Analysis

Levels of recursive calls to mergesort, given an array of eight items

CENG 707 Data Structures and

Algorithms

Mergesort - Analysis

.

.

.

.

.

.

.

2m

2m-1 2m-1

2m-2 2m-2 2m-2 2m-2

20 20

level 0 : 1 merge (size 2m-1)

level 1 : 2 merges (size 2m-2)

level 2 : 4 merges (size 2m-3)

level m

level m-1 : 2m-1 merges (size 20)

CENG 707 Data Structures and

Algorithms

Mergesort - Analysis
• Worst-case –

The number of key comparisons:

 = 20*(2*2m-1-1) + 21*(2*2m-2-1) + ... + 2m-1*(2*20-1)

 = (2m - 1) + (2m - 2) + ... + (2m – 2m-1) (m terms)

 = m*2m –

 = m*2m – 2m – 1

Using m = log n

 = n * log2n – n – 1

 O (n * log2n)

1

0

2
m

i

i

CENG 707 Data Structures and

Algorithms

Mergesort – Analysis
• Mergesort is extremely efficient algorithm with respect

to time.
– Both worst case and average cases are O (n * log2n)

• But, mergesort requires an extra array whose size

equals to the size of the original array.

• If we use a linked list, we do not need an extra array
– But, we need space for the links

– And, it will be difficult to divide the list into half (O(n))

CENG 707 Data Structures and

Algorithms

Quicksort

• Like mergesort, Quicksort is also based on

 the divide-and-conquer paradigm.

• But it uses this technique in a somewhat opposite manner,

 as all the hard work is done before the recursive calls.

• It works as follows:

1. First, it partitions an array into two parts,

2. Then, it sorts the parts independently,

3. Finally, it combines the sorted subsequences by

 a simple concatenation.

CENG 707 Data Structures and

Algorithms

Quicksort (cont.)

The quick-sort algorithm consists of the following three steps:

1. Divide: Partition the list.

– To partition the list, we first choose some element from the list

for which we hope about half the elements will come before

and half after. Call this element the pivot.

– Then we partition the elements so that all those with values

less than the pivot come in one sublist and all those with

greater values come in another.

 2. Recursion: Recursively sort the sublists separately.

 3. Conquer: Put the sorted sublists together.

CENG 707 Data Structures and

Algorithms

Partition

• Partitioning places the pivot in its correct place position within the array.

• Arranging the array elements around the pivot p generates two smaller sorting

problems.

– sort the left section of the array, and sort the right section of the array.

– when these two smaller sorting problems are solved recursively, our bigger

sorting problem is solved.

CENG 707 Data Structures and

Algorithms

Partition – Choosing the pivot

• First, we have to select a pivot element among the elements of the

given array, and we put this pivot into the first location of the

array before partitioning.

• Which array item should be selected as pivot?

– Somehow we have to select a pivot, and we hope that we will

get a good partitioning.

– If the items in the array arranged randomly, we choose a pivot

randomly.

– We can choose the first or last element as a pivot (it may not

give a good partitioning).

– We can use different techniques to select the pivot.

CENG 707 Data Structures and Algorithms

Partition Function

template <class DataType>

void partition(DataType theArray[], int first, int last,

 int &pivotIndex) {

// Partitions an array for quicksort.

// Precondition: first <= last.

// Postcondition: Partitions theArray[first..last] such that:

// S1 = theArray[first..pivotIndex-1] < pivot

// theArray[pivotIndex] == pivot

// S2 = theArray[pivotIndex+1..last] >= pivot

// Calls: choosePivot and swap.

// place pivot in theArray[first]

 choosePivot(theArray, first, last);

 DataType pivot = theArray[first]; // copy pivot

CENG 707 Data Structures and Algorithms

Partition Function (cont.)
 // initially, everything but pivot is in unknown

 int lastS1 = first; // index of last item in S1

 int firstUnknown = first + 1; //index of 1st item in unknown

 // move one item at a time until unknown region is empty

 for (; firstUnknown <= last; ++firstUnknown) {

 // Invariant: theArray[first+1..lastS1] < pivot

 // theArray[lastS1+1..firstUnknown-1] >= pivot

 // move item from unknown to proper region

 if (theArray[firstUnknown] < pivot) { // belongs to S1

 ++lastS1;

 swap(theArray[firstUnknown], theArray[lastS1]);

 } // else belongs to S2

 }

 // place pivot in proper position and mark its location

 swap(theArray[first], theArray[lastS1]);

 pivotIndex = lastS1;

} // end partition

CENG 707 Data Structures and

Algorithms

Partition Function (cont.)

Invariant for the partition algorithm

CENG 707 Data Structures and

Algorithms

Partition Function (cont.)

Initial state of the array

CENG 707 Data Structures and

Algorithms

Partition Function (cont.)

Moving theArray[firstUnknown] into S1 by swapping it with

 theArray[lastS1+1] and by incrementing both lastS1 and firstUnknown.

CENG 707 Data Structures and

Algorithms

Partition Function (cont.)

Moving theArray[firstUnknown] into S2 by incrementing firstUnknown.

CENG 707 Data Structures and

Algorithms

Partition Function (cont.)

Developing the first

 partition of an array

when the pivot is the

 first item

CENG 707 Data Structures and Algorithms

Quicksort Function

void quicksort(DataType theArray[], int first, int last) {

// Sorts the items in an array into ascending order.

// Precondition: theArray[first..last] is an array.

// Postcondition: theArray[first..last] is sorted.

// Calls: partition.

 int pivotIndex;

 if (first < last) {

 // create the partition: S1, pivot, S2

 partition(theArray, first, last, pivotIndex);

 // sort regions S1 and S2

 quicksort(theArray, first, pivotIndex-1);

 quicksort(theArray, pivotIndex+1, last);

 }

}

CENG 707 Data Structures and

Algorithms

Quicksort – Analysis

Worst Case: (assume that we are selecting the first element as pivot)

– The pivot divides the list of size n into two sublists of sizes 0 and n-1.

– The number of key comparisons

 = n-1 + n-2 + ... + 1

 = n2/2 – n/2 O(n2)

– The number of swaps =

 = n-1 + n-1 + n-2 + ... + 1

 swaps outside of the for loop swaps inside of the for loop

 = n2/2 + n/2 - 1 O(n2)

• So, Quicksort is O(n2) in worst case

CENG 707 Data Structures and

Algorithms

Quicksort – Analysis

• Quicksort is O(n*log2n) in the best case and average case.

• Quicksort is slow when the array is sorted and we choose the first

element as the pivot.

• Although the worst case behavior is not so good, its average case

behavior is much better than its worst case.

– So, Quicksort is one of best sorting algorithms using key comparisons.

CENG 707 Data Structures and

Algorithms

Quicksort – Analysis
A worst-case partitioning with quicksort

CENG 707 Data Structures and

Algorithms

Quicksort – Analysis
An average-case partitioning with quicksort

CENG 707 Data Structures and Algorithms

Radix Sort

• Radix sort algorithm different than other sorting algorithms that
we talked.

– It does not use key comparisons to sort an array.

• The radix sort :

– Treats each data item as a character string.

– First it groups data items according to their rightmost
character, and put these groups into order w.r.t. this rightmost
character.

– Then, combine these groups.

– We, repeat these grouping and combining operations for all
other character positions in the data items from the rightmost
to the leftmost character position.

– At the end, the sort operation will be completed.

CENG 707 Data Structures and Algorithms

Radix Sort – Example

mom, dad, god, fat, bad, cat, mad, pat, bar, him original list

(dad,god,bad,mad) (mom,him) (bar) (fat,cat,pat) group strings by rightmost letter

dad,god,bad,mad,mom,him,bar,fat,cat,pat combine groups

(dad,bad,mad,bar,fat,cat,pat) (him) (god,mom) group strings by middle letter

dad,bad,mad,bar,fat,cat,pat,him,god,mom combine groups

(bad,bar) (cat) (dad) (fat) (god) (him) (mad,mom) (pat) group strings by first letter

bad,bar,cat,dad,fat,god,him,mad,mom,par combine groups (SORTED)

CENG 707 Data Structures and Algorithms

Radix Sort – Example

CENG 707 Data Structures and Algorithms

Radix Sort - Algorithm

radixSort(inout theArray:ItemArray, in n:integer, in d:integer)

// sort n d-digit integers in the array theArray

 for (j=d down to 1) {

 Initialize 10 groups to empty

 Initialize a counter for each group to 0

 for (i=0 through n-1) {

 k = jth digit of theArray[i]

 Place theArrar[i] at the end of group k

 Increase kth counter by 1

 }

 Replace the items in theArray with all the items in group 0,

 followed by all the items in group 1, and so on.

 }

CENG 707 Data Structures and Algorithms

Radix Sort -- Analysis

• The radix sort algorithm requires 2*n*d moves to sort n strings

of d characters each.

 So, Radix Sort is O(n)

• Although the radix sort is O(n), it is not appropriate as a general-

purpose sorting algorithm.

– Its memory requirement is d * original size of data (because each group

should be big enough to hold the original data collection.)

– For example, we need 27 groups to sort string of uppercase letters.

– The radix sort is more appropriate for a linked list than an array. (we will not need

the huge memory in this case)

CENG 707 Data Structures and Algorithms

Comparison of Sorting Algorithms

