
1

Stacks and Queues

2

Abstract Data Types (ADTs)

• An abstract data type (ADT) is an

abstraction of a data structure

• An ADT specifies:

– Data stored

– Operations on the data

– Error conditions associated with operations

3

The Stack ADT

• The Stack ADT stores arbitrary objects.

• Insertions and deletions follow the last-in first-out

(LIFO) scheme.

• It is like a stack of trays:

– Trays can be added to the top of the stack.

– Trays can be removed from the top of the stack.

• Main stack operations:

– push(object o): inserts element o

– pop(): removes and returns the last inserted element

4

top

push pop

Stack

5

The Stack ADT

• Auxiliary stack operations:

– top(): returns a reference to the last inserted

element without removing it

– size(): returns the number of elements stored

– isEmpty(): returns a Boolean value indicating

whether no elements are stored

6

Exceptions

• Attempting the execution of an operation of
ADT may sometimes cause an error
condition, called an exception

• Exceptions are said to be “thrown” by an
operation that cannot be executed

• In the Stack ADT, operations pop and top
cannot be performed if the stack is empty

• Attempting the execution of pop or top on
an empty stack throws an
EmptyStackException.

7

Applications of Stacks

• Direct applications

– Page-visited history in a Web browser

– Undo sequence in a text editor

– Saving local variables when one function calls

another, and this one calls another, and so on.

• Indirect applications

– Auxiliary data structure for algorithms

– Component of other data structures

8

Stacks and Computer Languages

• A stack can be used to check for unbalanced symbols
(e.g. matching parentheses)

• Algorithm
1. Make an empty stack.

2. Read symbols until the end of file.

a. If the token is an opening symbol, push

it onto the stack.

b. If it is a closing symbol and the stack

is empty, report an error.

c. Otherwise, pop the stack. If the symbol

popped is not the corresponding opening

symbol, report an error.

3. At the end of the file, if the stack is not

empty, report an error.

9

C++ Run-time Stack

• The C++ run-time system keeps
track of the chain of active
functions with a stack

• When a function is called, the run-
time system pushes on the stack a
frame containing

– Local variables and return
value

– Program counter, keeping track
of the statement being executed

• When a function returns, its frame
is popped from the stack and
control is passed to the method on
top of the stack

main() {

 int i = 5;

 foo(i);

 }

foo(int j) {

 int k;

 k = j+1;

 bar(k);

 }

bar(int m) {

 …

 }

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

10

Array-based Stack

• A simple way of
implementing the
Stack ADT uses an
array.

• We add elements from
left to right.

• A variable keeps track
of the index of the top
element

S
0 1 2 t

…

Algorithm size()

 return t + 1

Algorithm pop()

 if isEmpty() then

 throw EmptyStackException

 else

 t t 1

 return S[t + 1]

11

Array-based Stack (cont.)

• The array storing the
stack elements may
become full

• A push operation will
then throw a
FullStackException
– Limitation of the array-

based implementation

– Not intrinsic to the
Stack ADT

S
0 1 2 t

…

Algorithm push(o)

 if t = S.length 1 then

 throw FullStackException

 else

 t t + 1

 S[t] o

12

Performance and Limitations

• Performance

– Let n be the number of elements in the stack

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– The maximum size of the stack must be defined a

priori , and cannot be changed

– Trying to push a new element into a full stack causes an

implementation-specific exception

13

Stack Interface in C++
template <class Object>

class Stack

{

 public:

 Stack(int c = 1000);

 int size() const;

 bool isEmpty() const;

 const Object & top()const throw(StackEmptyException);

 void push(const Object & x) throw(StackFullException);

 Object pop() throw(StackEmptyException);

 private:

 int capacity; // stack capacity

 Object *S; // stack array

 int top; // top of stack

};

14

Array-based Stack in C++

// Stack class implementation

Stack(int c) {

 capacity = c;

 S = new Object[capacity];

 top = –1;

}

int size() const {

 return (top + 1);

}

bool isEmpty() const {

 return (top < 0);

}

15

Stack Implementation (cont.)

Object& top() throw(StackEmptyException) {

 if (isEmpty())

 throw StackEmptyException("Access to empty stack");

 return S[top]; }

void push(const Object& elem) throw(StackFullException) {

 if (size() == capacity)

 throw StackFullException("Stack overflow");

 S[++top] = elem;

}

Object pop() throw(StackEmptyException) {

 if (isEmpty())

 throw StackEmptyException("Access to empty stack");

 return S[top--];

}

16

Example

• Reading a line of text and writing it out backwards.
int main()

{

 Stack<char> s;

 char c;

 while ((c=getchar())!=’\n’)

 s.push(c);

 while(!s.isEmpty())

 cout << s.pop() << endl;

 return 0;

}

17

A Simple Calculator

• Calculators can evaluate infix expressions, such as
5 + 2.

• In an infix expression a binary operator has
arguments to its left and right.

– e.g. 1 + 2 * 3

 9 – 5 –3

 2 ^ 3 ^ 2

• When there are several operators, precedence and
associativity determine how the operators are
processed.

 10 – 3 – 2 ^ 3 * 4 / 5 / 10 ^ 2

18

Postfix Machines

• In a postfix expression a binary operator follows
its operands.

– e.g. 5 2 +

 1 2 3 * +

 10 3 – 2 3 ^ 4 * 5 / 10 2 ^ / -

• A postfix expression can be evaluated as follows:

– Operands are pushed into a single stack.

– An operator pops its operands and then pushes the
result.

– At the end of the evaluation, the stack should contain
only one element, which represents the result.

19

Example

• Evaluate the following postfix expression.

8 5 4 * 5 6 2 / + – 2 / +

20

Linked list implementation of Stacks

• In implementing Stack as a linked list the top of

the stack is represented by the first item in the

linked list.

• To implement push: create a new node and attach

it as the new first node.

• To implement pop: advance the top of stack to the

second item in the list (if there is one).

• Each operation is performed in constant time.

• See chapter 16 for details.

21

The Abstract Data Type Queue

• A queue is a list from which items are deleted from one

end (front) and into which items are inserted at the other

end (rear, or back)

– It is like line of people waiting to purchase tickets:

• Queue is referred to as a first-in-first-out (FIFO) data

structure.

– The first item inserted into a queue is the first item to leave

• Queues have many applications in computer systems:

– Any application where a group of items is waiting to use a shared

resource will use a queue. e.g.

• jobs in a single processor computer

• print spooling

• information packets in computer networks.

22

A Queue

front rear

dequeue enqueue

23

ADT Queue Operations

• createQueue()
– Create an empty queue

• destroyQueue()
– Destroy a queue

• isEmpty():boolean
– Determine whether a queue is empty

• enqueue(in newItem:QueueItemType)
– Inserts a new item at the end of the queue (at the rear of the queue)

• dequeue() throw QueueException

 dequeue(out queueFront:QueueItemType)
– Removes (and returns) the element at the front of the queue

• getFront(out queueFront:QueueItemType)
– Retrieve the item that was added earliest (without removing)

24

Some Queue Operations

Operation Queue after

operation

x.createQueue() an empty queue

 front

x.enqueue(5) 5

x.enqueue(3) 5 3

x.enqueue(2) 5 3 2

x.dequeue() 3 2

x.enqueue(7) 3 2 7

x.dequeue(a) 2 7 (a is 3)

x.getFront(b) 2 7 (b is 2)

25

An Application -- Reading a String

of Characters
• A queue can retain characters in the order in

which they are typed

aQueue.createQueue()

while (not end of line) {

 Read a new character ch

 aQueue.enqueue(ch)

}

• Once the characters are in a queue, the system can

process them as necessary

26

Recognizing Palindromes

• A palindrome
– A string of characters that reads the same from left to right as its

does from right to left

• To recognize a palindrome, a queue can be used in

conjunction with a stack
– A stack reverses the order of occurrences

– A queue preserves the order of occurrences

• A nonrecursive recognition algorithm for

palindromes
– As you traverse the character string from left to right, insert each

character into both a queue and a stack

– Compare the characters at the front of the queue and the top of the

stack

27

Recognizing Palindromes (cont.)

The results of inserting a

string into both a queue and a

stack

28

Recognizing Palindromes

isPal(in str:string) : boolean // Determines whether str is a palindrome or
not

 aQueue.createQueue(); aStack.createStack();

 len = length of str;

 for (i=1 through len) {

 nextChar = ith character of str;

 aQueue.enqueue(nextChar);

 aStack.push(nextChar);

 }

 charactersAreEqual = true;

 while (aQueue is not empty and charactersAreEqual) {

 aQueue.getFront(queueFront);

 aStack.getTop(stackTop);

 if (queueFront equals to stackTop) { aQueue.dequeue(); aStack.pop()};

 }

 else chractersAreEqual = false; }

 return charactersAreEqual;

29

Implementations of the ADT

Queue
• Pointer-based implementations of queue

– A linear linked list with two external references

• A reference to the front

• A reference to the back

– A circular linked list with one external reference

• A reference to the back

• Array-based implementations of queue
– A naive array-based implementation of queue

– A circular array-based implementation of queue

30

Pointer-based implementations of

queue
a linear linked list with

two external pointers

a circular linear linked

list with one external

pointer

31

Pointer-Based Implementation -enqueue

Inserting an item into a nonempty queue

Inserting an item into an empty queue

a) before insertion b) after insertion

32

Pointer-Based Implementation -- dequeue

Deleting an item from a queue of more than one

item

Deleting an item from a queue with one item

after deletion

tempPtr = frontPtr;

frontPtr = NULL;

backPtr = NULL;

delete tempPtr;

before deletion

tempPtr

33

Header File
#include "QueueException.h"

typedef desired-type-of-queue-item QueueItemType;

class Queue {

public:

 Queue(); // default constructor

 Queue(const Queue& Q); // copy constructor

 ~Queue(); // destructor

 bool isEmpty() const; // Determines whether the queue is empty.

 void enqueue(QueueItemType newItem); // Inserts an item at the back
of a queue.

 void dequeue() throw(QueueException); // Dequeues the front of a
queue.

 // Retrieves and deletes the front of a queue.

 void dequeue(QueueItemType& queueFront) throw(QueueException);

 // Retrieves the item at the front of a queue.

 void getFront(QueueItemType& queueFront) const
throw(QueueException);

34

Header File

private:

 // The queue is implemented as a linked list with one external pointer

 // to the front of the queue and a second external pointer to the back

 // of the queue.

 struct QueueNode

 { QueueItemType item;

 QueueNode *next;

 }; // end struct

 QueueNode *backPtr;

 QueueNode *frontPtr;

}

35

constructor, deconstructor,

isEmpty
#include "QueueP.h" // header file

Queue::Queue() : backPtr(NULL), frontPtr(NULL){} // default

constructor

Queue::~Queue() { // destructor

 while (!isEmpty())

 dequeue(); // backPtr and frontPtr are NULL at this point

}

bool Queue::isEmpty() const{ // isEmpty

 return backPtr == NULL;

}

36

enqueue

void Queue::enqueue(QueueItemType newItem) { // enqueue

 // create a new node

 QueueNode *newPtr = new QueueNode;

 // set data portion of new node

 newPtr->item = newItem;

 newPtr->next = NULL;

 // insert the new node

 if (isEmpty()) // insertion into empty queue

 frontPtr = newPtr;

 else // insertion into nonempty queue

 backPtr->next = newPtr;

 backPtr = newPtr; // new node is at back

}

37

dequeue

void Queue::dequeue() throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot
dequeue");

 else { // queue is not empty; remove front

 QueueNode *tempPtr = frontPtr;

 if (frontPtr == backPtr) { // one node in queue

 frontPtr = NULL;

 backPtr = NULL;

 }

 else

 frontPtr = frontPtr->next;

 tempPtr->next = NULL; // defensive strategy

 delete tempPtr;

 }}

38

dequeue, getFront
void Queue::dequeue(QueueItemType& queueFront)

throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot
dequeue");

 else { // queue is not empty; retrieve front

 queueFront = frontPtr->item;

 dequeue(); // delete front

 }}

void Queue::getFront(QueueItemType& queueFront) const
throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot
getFront");

 else // queue is not empty; retrieve front

 queueFront = frontPtr->item;

}

39

A circular linked list with one

external pointer

 Queue Operations

 constructor ?

 isEmpty ?

 enqueue ?

 dequeue ?

 getFront ?

40

A Naive Array-Based

Implementation of Queue

• Rightward drift can cause the queue to appear full even

 though the queue contains few entries.

• We may shift the elements to left in order to

compensate

 for rightward drift, but shifting is expensive

• Solution: A circular array eliminates rightward drift.

41

Circular Array Implementation

• The front and rear are the same as the basic model,

except: The queue wraps around when the end of

the array is reached.

0 1 2 3 4 5 6 7 8 9

3 7 1

front rear

8

42

A Circular Array-Based

Implementation

When either front or back

advances past MAX_QUEUE-1

it wraps around to 0.

43

The effect of some operations of the queue

Initialize: front=0; back=MAX_QUEUE-1;

Insertion : back = (back+1) % MAX_QUEUE;

 items[back] = newItem;

Deletion : front = (front+1) % MAX_QUEUE;

NOT ENOUGH

44

PROBLEM – Queue is Empty or Full

front and back cannot be used

to distinguish between queue-full

and queue-empty conditions.

? Empty
(back+1)%MAX_QUEUE == front

? Full
(back+1)%MAX_QUEUE == front

So, we need extra mechanism to

distinguish between queue-full

and queue-empty conditions.

45

Solutions for Queue-Empty/Queue-Full Problem

1. Using a counter to keep the number items in the queue.

• Initialize count to 0 during creation; Increment count by 1 during

insertion; Decrement count by 1 during deletion.

• count=0  empty; count=MAX_QUEUE  full

2. Using isFull flag to distinguish between the full and

empty conditions.

• When the queue becomes full, set isFullFlag to true; When the

queue is not full set isFull flag to false;

3. Using an extra array location (and leaving at least one

empty location in the queue). (MORE EFFICIENT)

• Declare MAX_QUEUE+1 locations for the array items, but only

use MAX_QUEUE of them. We do not use one of the array

locations.

• Full: front equals to (back+1)%(MAX_QUEUE+1)

• Empty: front equals to back

46

Using a counter

• To initialize the queue, set
– front to 0

– back to MAX_QUEUE–1

– count to 0

• Inserting into a queue
back = (back+1) % MAX_QUEUE;

items[back] = newItem;

++count;

• Deleting from a queue
front = (front+1) % MAX_QUEUE;

--count;

• Full: count == MAX_QUEUE

• Empty: count == 0

47

Array-Based Implementation

Using a counter – Header File
#include "QueueException.h"

const int MAX_QUEUE = maximum-size-of-queue;

typedef desired-type-of-queue-item QueueItemType;

class Queue {

public:

 Queue(); // default constructor

 bool isEmpty() const;

 void enqueue(QueueItemType newItem) throw(QueueException);

 void dequeue() throw(QueueException);

 void dequeue(QueueItemType& queueFront) throw(QueueException);

 void getFront(QueueItemType& queueFront) const throw(QueueException);

private:

 QueueItemType items[MAX_QUEUE];

 int front;

 int back;

 int count;

};

48

constructor, isEmpty, enqueue

Queue::Queue():front(0), back(MAX_QUEUE-1), count(0) {}

bool Queue::isEmpty() const {

 return count == 0);

}

void Queue::enqueue(QueueItemType newItem) throw(QueueException)
{

 if (count == MAX_QUEUE)

 throw QueueException("QueueException: queue full on enqueue");

 else { // queue is not full; insert item

 back = (back+1) % MAX_QUEUE;

 items[back] = newItem;

 ++count;

 }

}

49

dequeue

void Queue::dequeue() throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot
dequeue");

 else { // queue is not empty; remove front

 front = (front+1) % MAX_QUEUE;

 --count;

 }}

void Queue::dequeue(QueueItemType& queueFront)
throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot
dequeue");

 else { // queue is not empty; retrieve and remove front

 queueFront = items[front];

 front = (front+1) % MAX_QUEUE;

 --count;

 }}

50

dequeue

void Queue::getFront(QueueItemType& queueFront) const

throw(QueueException) {

 if (isEmpty())

 throw QueueException("QueueException: empty queue, cannot

getFront");

 else

 // queue is not empty; retrieve front

 queueFront = items[front];

}

51

Using isFull flag

• To initialize the queue, set
front = 0; back = MAX_QUEUE–1; isFull =

false;

• Inserting into a queue
back = (back+1) % MAX_QUEUE; items[back] =

newItem;

if ((back+1)%MAX_QUEUE == front)) isFull = true;

• Deleting from a queue
front = (front+1) % MAX_QUEUE;

isFull = false;

• Full: isFull == true

• Empty: isFull==false && ((back+1)%MAX_QUEUE ==

front))

52

Using an extra array location

• To initialize the queue, allocate (MAX_QUEUE+1)

locations

front=0; back=0;

• front holds the index of the location before the front

of the queue.

• Inserting into a queue (if queue is not full)

back = (back+1) % (MAX_QUEUE+1);

items[back] = newItem;

• Deleting from a queue (if queue is not empty)

front = (front+1) % (MAX_QUEUE+1);

• Full:

 (back+1)%(MAX_QUEUE+1) == front

• Empty:

 front == back

full queue

empty queue

53

Comparing Implementations

• Fixed size versus dynamic size
– A statically allocated array

• Prevents the enqueue operation from adding an item to the queue if

the array is full

– A resizable array or a reference-based implementation

• Does not impose this restriction on the enqueue operation

• Pointer-based implementations
– A linked list implementation

• More efficient; no size limit

54

A Summary of Position-Oriented

ADTs
• Position-oriented ADTs: List, Stack, Queue

• Stacks and Queues
– Only the end positions can be accessed

• Lists
– All positions can be accessed

• Stacks and queues are very similar
– Operations of stacks and queues can be paired off as

• createStack and createQueue

• Stack isEmpty and queue isEmpty

• push and enqueue

• pop and dequeue

• Stack getTop and queue getFront

