
1

DALI Method
• Distance mAtrix aLIgnment
• Liisa Holm and Chris Sander, “Protein structure 

comparison by alignment of distance matrices”, 
Journal of Molecular Biology Vol. 233, 1993.

• Liisa Holm and Chris Sander, “Mapping the 
protein universe”, Science Vol. 273, 1996.

• Liisa Holm and Chris Sander, “Alignment of 
three-dimensional protein structures: network 
server for database searching”, Methods in 
Enzymology Vol. 266, 1996.

How DALI Works?
• Based on fact: similar 3D structures have similar 

intra-molecular distances.
• Background idea

• Represent each protein as a 2D matrix storing intra-
molecular distance.

• Place one matrix on top of another and slide vertically and 
horizontally – until a common the sub-matrix with the best 
match is found.

• Actual implementation
• Break each matrix into small sub-matrices of fixed size.
• Pair-up similar sub-matrices (one from each protein).
• Assemble the sub-matrix pairs to get the overall alignment.

Protein A
Protein B

Structure Representation of DALI
• 3D shape is described with a distance matrix which stores 

all intra-molecular distances between the Cα atoms.
• Distance matrix is independent of coordinate frame.
• Contains enough information to re-construct the 3D 

coordinates.

0d34d24d14

d340d23d13

d24d230d12

d14d13d120
4321

4

3

2

1

Protein A Distance matrix for Protein A Distance matrix for 2drpA and 1bbo

Intra-molecular distance for myoglobin

DALI Algorithm
1. Decompose distance matrix into elementary 

contact patterns (sub-matrices of fixed size)
• Use hexapeptide-hexapeptide contact patterns.

2. Compare contact patterns (pair-wise), and store 
the matching pairs in pair list.

3. Assemble pairs in the correct order to yield the 
overall alignment.

Assembly of Alignments
• Non-trivial combinatory problem.

• Assembled in the manner (AB) – (A’B’), (BC) – (B’C’), 
. . . (i.e., having one overlapping segment with the 
previous alignment)

• Available Alignment Methods:
• Monte Carlo optimization

• Brach-and-bound

• Neighbor walk



2

Schematic View of DALI Algorithm
3D (Spatial) 2D (Distance Matrix) 1D 

(Sequence)

Monte Carlo Optimization
• Used in the earlier versions of DALI.
• Algorithm

• Compute a similarity score for the current alignment.
• Make a random trial change to the current alignment (adding a 

new pair or deleting an existing pair).
• Compute the change in the score (∆S).
• If ∆S > 0, the move is always accepted.
• If ∆S <= 0, the move may be accepted by the probability

exp(β * ∆S), where β is a parameter.
• Once a move is accepted, the change in the alignment becomes 

permanent.
• This procedure is iterated until there is no further change in the 

score, i.e., the system is converged.

Branch-and-bound method
• Used in the later versions of DALI.

• Based on Lathrop and Smith’s
(1996) threading (sequence-
structure alignment) algorithm.

• Solution space consists of all 
possible placements of residues  
in protein A relative to the 
segment of residues of protein B.

• The algorithm recursively split the 
solution space that yields the 
highest upper bound of the 
similarity score until there is a 
single alignment trace left.

LOCK
• Uses a hierarchical approach
• Larger secondary structures such as helixes and 

strands are represented using vectors and dealt 
with first

• Atoms are dealt with afterwards
• Assumes large secondary structures provide most 

stability and function to a protein, and are most 
likely to be preserved during evolution

LOCK (Contd.)
• Key algorithm steps:

1. Represent secondary structures as vectors
2. Obtain initial superposition by computing local 

alignment of the secondary structure vectors (using 
dynamic programming)

3. Compute atomic superposition by performing a greedy 
search to try to minimize root mean square deviation
(a RMS distance measure) between pairs of nearest 
atoms from the two proteins

4. Identify “core” (well aligned) atoms and try to improve 
their superposition (possibly at the cost of degrading 
superposition of non-core atoms)

• Steps 2, 3, and 4 require iteration at each step

Alignment of SSEs
• Define an orientation-dependent score and an orientation-

independent score between SSE vectors.
• For every pair of query vectors, find all pairs of vectors in 

database protein that align with a score above a threshold. Two 
of these vectors must be adjacent. Use orientation independent 
scores. 

• For each set of four vectors from previous step, find the 
transformation minimizing rmsd. Apply this transformation to the 
query.

• Run dynamic programming using both orientation-dependent 
and orientation-independent scores to find the best local 
alignment. 

• Compute and apply the transformation from the best local 
alignment.

• Superpose in order to minimize rmsd.



3

Atomic superposition

• Loop
• find matching pairs of Cα atoms 
• use only those within 3 A
• find best alignment

• until rmsd does not change

Core identification

• Loop
• find the best core (symmetric nns) and align; 

remove the rest
• until rmsd does not change

VAST
• Begin with a set of nodes (a,x) where SSEs a and x 

are of the same type
• Add an edge between (a,x) and (b,y) if angle and 

distance between (a,b) is same as between (x,y)
• Find the maximal clique in this graph; this forms the 

initial SSE alignment
• Extend the initial alignment to Cα atoms using 

Gibbs sampling
• Report statistics on this match

Quality of a structure match

• Statistical theory similar to BLAST
• Compare the likelihood of a match as 

compared to a random match
• Less agreement regarding score matrix

• z-scores of CE, DALI, and VAST may not be 
compatible

Protein Structure Classification
• Protein structure classification

• CATH
• SCOP
• FSSP

• Up-to-date view of the protein structure 
universe
• SCOP is updated every six months.
• Determining SCOP classifications of protein 

structures automatically as they are published in 
Protein Data Bank (PDB).

Problem definition

new protein structure

root

classclass

fold fold fold

superfamily superfamily

family family family family

?

SCOP Classification

family

?



4

Two problems
• Class membership?

• Does the query protein belong to a SCOP 
category? Or does it need a new category to be 
defined? 

• Binary classification problem: 
• member, non-member

• Class label assignment?
• What SCOP category is the query protein 

assigned to?
• Multi-class classification problem

Hierarchical classification
• Let p be a protein structure, proceed bottom-

up from family level to fold level:

Does p belong
to a family?

report 
family

yes

report 
superfamily

yes

report 
fold

yes

Does p belong
to a superfamily?

no

Does p belong
to a fold?

no

new fold
no

Component classifiers
• Using a sequence/structure comparison tool 

as a classifier
• Perform a nearest neighbor query:

if similarityScore(query, NN) < trained cutoff
then not a member of any category 
else member of class(NN)

• Comparison tools we have used:
Sequence: PSI-Blast, HMMER+SUPERFAMILY 

database
Structure: CE, Dali, Vast

• Database: SCOP 1.59
• Query: SCOP 1.61 – SCOP 1.59

Performance of component 
classifiers

100%85%82%78.5%60.7%73%fold

96%78.4%77.6%72.2%66.1%78.6%superfamily

98.2%89%89%89%92.6%94.5%family

At least oneVastDaliCEBLASTHMM

Class membership

• Database: SCOP 1.59
• Query: SCOP 1.61 – SCOP 1.59

Performance of component 
classifiers

64.9%54%46%40.5%0%40.5%fold

93.9%81.7%80.4%81%12%69%superfamily

97.9%92%88%91%92.3%94.8%family

At least oneVastDaliCEBLASTHMM

Class label assignment

Normalization of similarity scores
• Universal confidence levels instead of tool-

specific scores
• Perform nearest neighbor queries

• Database: SCOP 1.59
• Query: SCOP 1.61 – SCOP 1.59

• Partition score space of tools into 
confidence levels
• e.g. CE z-score of 5.4 we are 80% confident 

that the query protein is a member of an 
existing fold.



5

Consensus Decision
• Each component classifier reports a 

confidence level for the query protein:
• c = [C1, C2, C3, C4, C5]

• What is the best way to combine these 
probabilistic decisions?
• A solution: decision trees.
• Decision trees:

• Attribute order?
• Branching factor?

Proposed decision tree 
structure

L2

L2

L2

L1

L1

L1

C1

Cn

C2

else

else

< θ1
1

< θ1
n

> θ2
2< θ1

2

> θ2
1

> θ2
n

Determination of Cis and θj
is

• Automated 
• Generate all possible trees of height 3 and Cis

as sum rules of up to 3 components.
• Determine θj

is using a greedy optimization that 
minimizes impurities of nodes level by level.

• Disadvantage: overfits the data
• Manual

• Determine Cis by examining individual 
component’s performances

• Determine θj
is considering two levels of the tree 

simultaneously and considering only the values 
between score clusters to avoid overfitting.

decision tree: superfamily level

new 
superfamily

Vast?

CE+Dali?

HMM?

else

else

< 45%

< 40%

< 55%

> 93%

> 75%

>= 55%

new 
superfamily

new 
superfamily

existing 
superfamily

existing 
superfamily

existing 
superfamily

Experimental evaluation

• The dataset:

33947new fold

42484new 
superfamily

618248new family

v1.63 – v1.59 
(2825)

v1.61 – v1.59 
(2241)Query

v1.61 (22724)v1.59 (20449)Database

Training Evaluation 

Training: class membership

0

10

20

30

40

50

60

70

Family Superfamily Fold

Classification level

Er
ro

r p
er

ce
nt

ag
es

HMM
PSI-Blast
CE
Dali
Vast
Ensemble
None



6

Testing: class membership

0

10

20

30

40

50

60

70

Family Superfamily Fold

Classification level

Er
ro

r p
er

ce
nt

ag
es

HMM
PSI-Blast
CE
Dali
Vast
Ensemble
None

Training: class label assignment

0

10

20

30

40

50

60

70

80

90

100

Family Superfamily Fold

Classification level

Pe
rc

en
ta

ge
 o

f m
is

cl
as

si
fie

d 
pr

ot
ei

ns

HMM
PSI-Blast
CE
Dali
Vast
Ensemble
None

Testing: class label assignment

0

10

20

30

40

50

60

70

80

90

100

Family Superfamily Fold

Classification level

Pe
rc

en
ta

ge
 o

f m
is

cl
as

si
fie

d 
pr

ot
ei

ns

HMM
PSI-Blast
CE
Dali
Vast
Ensemble
None


