DALI Method

- Distance mAtrix aLlgnment
- Liisa Holm and Chris Sander, "Protein structure comparison by alignment of distance matrices", *Journal of Molecular Biology Vol. 233*, 1993.
- Liisa Holm and Chris Sander, "Mapping the protein universe", Science Vol. 273, 1996.
- Liisa Holm and Chris Sander, "Alignment of three-dimensional protein structures: network server for database searching", *Methods in Enzymology Vol. 266*, 1996.

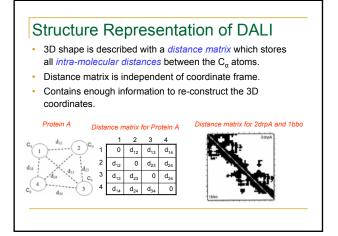
How DALI Works?

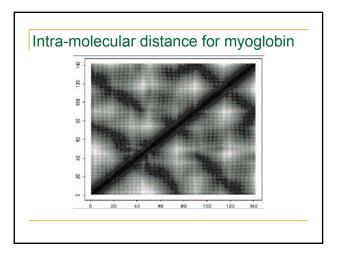
 Based on fact: similar 3D structures have similar intra-molecular distances.

Background idea

- Represent each protein as a 2D matrix storing intramolecular distance.
- Place one matrix on top of another and slide vertically and horizontally – until a common the sub-matrix with the best match is found.

- · Actual implementation
 - Break each matrix into small sub-matrices of fixed size.
 - · Pair-up similar sub-matrices (one from each protein).
 - · Assemble the sub-matrix pairs to get the overall alignment.



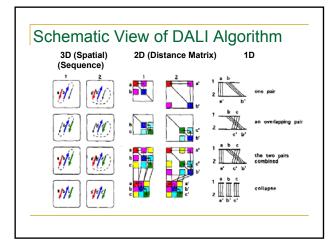


DALI Algorithm

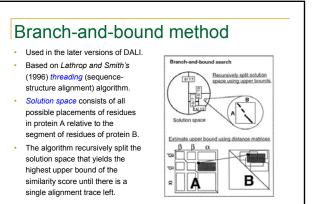
- Decompose distance matrix into elementary contact patterns (sub-matrices of fixed size)
 Use hexapeptide-hexapeptide contact patterns.
- 2. Compare contact patterns (pair-wise), and store the matching pairs in *pair list.*
- 3. Assemble pairs in the correct order to yield the overall alignment.

Assembly of Alignments

- Non-trivial combinatory problem.
- Assembled in the manner (AB) (A'B'), (BC) (B'C'),
 ... (i.e., having one overlapping segment with the previous alignment)
- Available Alignment Methods:
 - Monte Carlo optimization
 - Brach-and-bound
 - · Neighbor walk



Monte Carlo Optimization Used in the earlier versions of DALI. Algorithm Compute a similarity score for the current alignment. Make a random trial change to the current alignment (adding a new pair or deleting an existing pair). Compute the change in the score (ΔS). If ΔS > 0, the move is always accepted. If ΔS = 0, the move may be accepted by the probability exp(β * ΔS), where β is a parameter. Once a move is accepted, the change in the alignment becomes permanent. This procedure is iterated until there is no further change in the score, i.e., the system is converged.



LOCK

- Uses a hierarchical approach
- Larger secondary structures such as helixes and strands are represented using vectors and dealt with first
- · Atoms are dealt with afterwards
- Assumes large secondary structures provide most stability and function to a protein, and are most likely to be preserved during evolution

LOCK (Contd.)

- Key algorithm steps:
 - 1. Represent secondary structures as vectors
 - Obtain initial superposition by computing local alignment of the secondary structure vectors (using dynamic programming)
 - Compute atomic superposition by performing a greedy search to try to minimize *root mean square deviation* (a RMS distance measure) between pairs of nearest atoms from the two proteins
 - Identify "core" (well aligned) atoms and try to improve their superposition (possibly at the cost of degrading superposition of non-core atoms)
- Steps 2, 3, and 4 require iteration at each step

Alignment of SSEs

- Define an orientation-dependent score and an orientationindependent score between SSE vectors.
- For every pair of query vectors, find all pairs of vectors in database protein that align with a score above a threshold. Two of these vectors must be adjacent. Use orientation independent scores.
- For each set of four vectors from previous step, find the transformation minimizing rmsd. Apply this transformation to the query.
- Run dynamic programming using both orientation-dependent and orientation-independent scores to find the best local alignment.
- Compute and apply the transformation from the best local alignment.
- Superpose in order to minimize rmsd.

Atomic superposition

- Loop
 - find matching pairs of C_α atoms
 - use only those within 3 A
 - find best alignment
- until rmsd does not change

Core identification

- Loop
 - find the best core (symmetric nns) and align; remove the rest
- until rmsd does not change

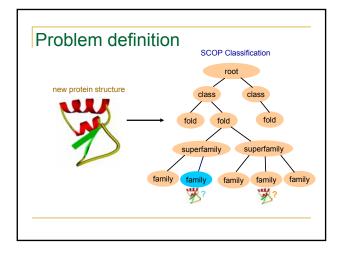
VAST

- Begin with a set of nodes (a,x) where SSEs a and x are of the same type
- Add an edge between (a,x) and (b,y) if angle and distance between (a,b) is same as between (x,y)
- Find the maximal clique in this graph; this forms the initial SSE alignment
- Extend the initial alignment to C_{α} atoms using Gibbs sampling
- Report statistics on this match

Quality of a structure match

- Statistical theory similar to BLAST
- Compare the likelihood of a match as compared to a random match
- Less agreement regarding score matrix
 z-scores of CE, DALI, and VAST may not be compatible

Protein Structure Classification Protein structure classification CATH SCOP FSSP Up-to-date view of the protein structure universe SCOP is updated every six months. Determining SCOP classifications of protein structures automatically as they are published in Protein Data Bank (PDB).

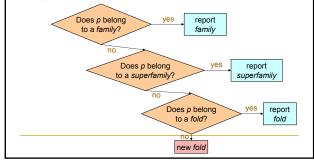


Two problems

- Class membership?
 - Does the query protein belong to a SCOP category? Or does it need a new category to be defined?
 - · Binary classification problem:
 - member, non-member
- Class label assignment?
 - What SCOP category is the query protein assigned to?
 - Multi-class classification problem

Hierarchical classification

• Let *p* be a protein structure, proceed bottomup from *family* level to *fold* level:



Component classifiers

- Using a sequence/structure comparison tool as a classifier
 - Perform a nearest neighbor query: if similarityScore(query, NN) < trained cutoff then not a member of any category else member of class(NN)
- Comparison tools we have used: Sequence: PSI-Blast, HMMER+SUPERFAMILY database
 - Structure: CE, Dali, Vast

Performance of component classifiers

- Database: SCOP 1.59
- Query: SCOP 1.61 SCOP 1.59

Class membership

	НММ	BLAST	CE	Dali	Vast	At least one
family	<u>94.5%</u>	92.6%	89%	89%	89%	98.2%
superfamily	<u>78.6%</u>	66.1%	72.2%	77.6%	78.4%	96%
fold	73%	60.7%	78.5%	82%	<u>85%</u>	100%

Performance of component classifiers

- Database: SCOP 1.59
- Query: SCOP 1.61 SCOP 1.59

Class label assignment

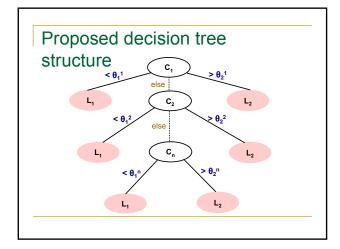
	HMM	BLAST	CE	Dali	Vast	At least one
family	<u>94.8%</u>	92.3%	91%	88%	92%	97.9%
superfamily	69%	12%	81%	80.4%	<u>81.7%</u>	93.9%
fold	40.5%	0%	40.5%	46%	<u>54%</u>	64.9%

Normalization of similarity scores

- Universal confidence levels instead of toolspecific scores
- · Perform nearest neighbor queries
 - Database: SCOP 1.59
 - Query: SCOP 1.61 SCOP 1.59
- Partition score space of tools into confidence levels
 - e.g. CE z-score of 5.4 → we are 80% confident that the query protein is a member of an existing fold.

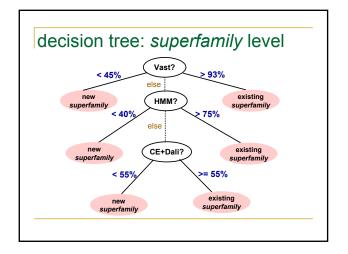
Consensus Decision

- Each component classifier reports a confidence level for the query protein:
 - $c = [C_1, C_2, C_3, C_4, C_5]$
- What is the best way to combine these probabilistic decisions?
 - A solution: decision trees.
 - Decision trees:
 - Attribute order?
 - Branching factor?



Determination of $C_i s$ and $\theta_i^{i} s$

- Automated
 - Generate all possible trees of height 3 and C_is as *sum* rules of up to 3 components.
 - Determine θ^{is} using a greedy optimization that minimizes impurities of nodes level by level.
 - · Disadvantage: overfits the data
- Manual
 - Determine C_is by examining individual component's performances
 - Determine θ_i's considering two levels of the tree simultaneously and considering only the values between score clusters to avoid overfitting.



The	dataset:	Training	Evaluation	
	Database	v1.59 (20449)	v1.61 (22724)	
	Query	v1.61 – v1.59 (2241)	v1.63 – v1.59 (2825)	
	new family	248	618	
	new superfamily	84	424	
	new fold	47	339	

