Biological networks

Construction and Analysis

Other networks?

- Apart from regulation there are other events in a cell that require interaction of biological molecules
- Other types of molecular interactions that can be observed in a cell
- enzyme - ligand
- enzyme: a protein that catalyzes, or speeds up, a chemical reaction
- ligand: extracellular substance that binds to receptors
- metabolic pathways
- protein - protein
- cell signaling pathways
- proteins interact physically and form large complexes for cell processes

Recap

- Gene regulatory networks
- Transcription Factors: special proteins that function as "keys" to the "switches" that determine whether a protein is to be produced
- Gene regulatory networks try to show this "keyproduct" relationship and understand the regulatory mechanisms that govern the cell.

- We went over a simple algorithm for detecting significant patterns in these networks

Pathways are inter-linked

Interactions \rightarrow Pathways \rightarrow Network

- A collection of interactions defines a network
- Pathways are subsets of networks
- All pathways are networks of interactions, however not all networks are pathways!
- Difference in the level of annotation or understanding
- We can define a pathway as a biological network that relates to a known physiological process or complete function

The "interactome"

- The complete wiring of a proteome.
- Each vertex represents a protein.
- Each edge represents an "interaction" between two proteins.

An edge between two proteins if...

- The proteins interact physically and form large complexes
- The proteins are enzymes that catalyze two successive chemical reactions in a pathway
- One of the proteins regulates the expression of the other

Sources for interaction data

- Literature: research labs have been conducting small-scale experiments for many years!
- Interaction dabases:
- MIPS (Munich Information center for Protein Sequences)
- BIND (Biomolecular Network Interaction Database)
- GRID (General Repository for Interaction Datasets)
- DIP (Database of Interacting Proteins)
- Experiments:
- Y2H (yeast two-hybrid method)
- APMS (affinity purification coupled with mass spectrometry)
- These methods provide the ability to perform genome/proteome-scale experiments.
- For yeast: 50,000 unique interactions involving 75\% of known open reading frames (ORFs) of yeast genome
- However, for C. elegans they provide relatively small coverage of the genome with ~ 5600 interactions.
- Problems with high-throughput experiments:
- Low quality, false positives, false negatives
- Fraction of biologically relevant interactions: 30\%50\% (Deane et al. 2002)

Solution:

- User other indirect data sources to create a probabilistic protein network.
- Other sources include:
- Genome data:
- Existence of genes in multiple organisms
- Locations of the genes
- Bio-image data
- Gene Ontology annotations
- Microarray experiments
- Sub-cellular localization data

Probabilistic network approach

- Each "interaction" link between two proteins has a posterior probability of existence, based on the quality of supporting evidence.

Bayesian Network approach

- Jansen et al. (2003) Science. Lee et al. (2004) Science.
- Combine individual probabilities of likelihood computed for each data source into a single likelihood (or probability)
- Naive Bayes:
- Assume independence of data sources
- Combine likelihoods using simple multiplication

Bayesian Approach

- A scalar score for a pair of genes is computed separately for each information source.
- Using gold positives (known interacting pairs) and gold negatives (known non-interacting pairs) interaction likelihoods for each information source is computed.
- The product of likelihoods can be used to combine multiple information sources
- Assumption: A score from a source is independent from a score from another source.

Computing the likelihoods

- Partition the pair scores of an information source into bins and provide likelihoods for score-ranges
- E.g. Using the microarray information source and using Pearson correlation for scoring protein pairs you may get scores between -1 and 1. You want to know what is the likelihood of interaction for a protein pair that gets a Pearson correlation of 0.6.

Partitioning the scores

pearson corr.	likelihood
$(0.8,1.0]$	
$(0.6,0.8]$	
$(0.4,0.6]$	
$(0.2,0.4]$	
$(0.0,0.2]$	
$(-0.2,0.0]$	
$(-0.4,-0.2]$	
$(-0.6,-0.4]$	
$(-0.8,-0.6]$	
$[-1.0,-0.8]$	

Protein interaction networks

- Large scale (genome wide networks):

Computing the likelihood

- Example

Analyzing Protein Networks

- Predict members of a partially known protein complex/pathway.
- Infer individual genes' functions on the basis of linked neighbors.
- Find strongly connected components, clusters to reveal unknown complexes.
- Find the best interaction path between a source and a target gene.

Complex/pathway membership problem

- Given a a set of proteins identified as the core complex (query), rank the remaining proteins in the network according to the probability that they "connect" to the core complex.
- This problem is very similar to the "network reliability" problem in communication networks.

Monte Carlo simulation

- Monte Carlo simulation (ProNet: Asthana et al. 2004)
- Create a sample of \mathbf{N} binary networks from the probabilistic network (according to a Bernoulli trial on each edge based on its probability).
- Use breadth-first search to determine the existence of a path between the nodes (i.e., the two terminals).
- The fraction of sampled networks in which there exists a path between the two nodes is an approximation to the exact network reliability.

Network reliability

- Two terminal network reliability problem:
- Given a graph of connections between terminals:
- Each connection weighted by the probability that the corresponding wire is functioning at a given time
- What is the probability that some path of functioning wires connects two terminals at a given time?
Exact solution: NP-hard
Several approximation methods exist

Complex/Pathway membership

 problem- E.g.,
- C. elegans cell death (apoptosis) pathway
- Identified ~ 50 genes involved in the pathway.
- Are there other genes involved in the pathway? Biologists would like to know:
- Which genes (out of $\sim 15 \mathrm{~K}$ genes) should be tested in the RNAi screens next?

Several approximation methods exist

ProNet

- Generate 10,000 binary networks from a probabilistic network (according to a Bernoulli trial on each edge based on its probability)
- Use breadth-first search to determine the existence of a path between two nodes
- Limit the maximum depth to 4 to reduce computation
- For each protein i in the network, count the fraction C_{i} of sampled networks in which there exists a path between i and the core complex.
- Report proteins ranked by C_{i}

Example

- Sample size: 4 , maximum search depth: 3

Example

- Sample size: 4, maximum search depth: 3

Results

Running time vs. sample size

What about accuracy of the technique? Is it able to give a good ranking for the nodes of the network, based on their closeness to the core?

Leave-one-out benchmark

- Use known complexes to evaluate the accuracy of the method
- Leave one member (in turn) from each complex/pathway.
- Use the rest of the complex/pathway as the starting, i.e., query, set.
- Examine the rank of the left-out protein. - What do we expect from a good technique?

Accuracy vs. sample size

- How does the sample size effect returned results?

Monte Carlo simulation

- Disadvantages:
- What is the best choice for the number of samples?
- What should be the maximum depth for breadth-first search? (Need a cutoff to decrease running time)
- Scalability issues: May need a lot of computation time for large networks

Random Walks

- Random Walks on graphs
- Google's page rank

Google's PageRank

- Assumption: A link from page A to page B is a recommendation of page B by the author of A (we say B is successor of A)
\rightarrow Quality of a page is related to its in-degree
- Recursion: Quality of a page is related to
- its in-degree, and to
- the quality of pages linking to it
\rightarrow PageRank [BP '98]

Definition of PageRank

- Consider the following infinite random walk (surf):
- Initially the surfer is at a random page
- At each step, the surfer proceeds
- to a randomly chosen web page with probability d
- to a randomly chosen successor of the current page with probability 1-d
- The PageRank of a page p is the fraction of steps the surfer spends at p in the limit.

Random walks with restarts on interaction networks

- Consider a random walker that starts on a source node, s. At every time tick, the walker chooses randomly among the available edges (based on edge weights), or goes back to node s with probability \boldsymbol{c}.

Random walks on graphs

- The probability $p_{s}(v)^{(t)}$, is defined as the probability of finding the random walker at node v at time t.
- The steady state probability $p_{s}(v)$ gives a measure of affinity to node s, and can be computed efficiently using iterative matrix operations.

Computing the steady state \mathbf{p} vector

- Let \mathbf{s} be the vector that represents the source nodes (i.e., $\mathbf{s}_{i}=1 / n$ if node i is one the n source nodes, and 0 otherwise).
- Compute the following until \mathbf{p} converges:

$$
\mathbf{p}=(1-c) \mathbf{A} \mathbf{p}+c \mathbf{s}
$$

where A is the column normalized adjacency matrix and c is the restart probability.

Random walk results

- Restart probability, $c=0.3$

Experiments

- Conducted complex/pathway membership queries on a probabilistic Yeast network:
- ConfidentNet (Lee et al., 4,681 nodes, 34,000 edges)
- Assembled a test set of 27 MIPS complexes and 10 KEGG pathways.

Leave-one-out benchmark

- Leave one member (in turn) from each complex/pathway.
- Use the rest of the complex/pathway as the starting, i.e., query, set.
- Examine the rank of the left-out protein.

Leave-one-out on ConfidentNet

- MIPS complex queries

Leave-one-out on ConfidentNet

- KEGG pathway queries

Running time

- Total time to complete 121 MIPS complex queries

