Lecture outline

- Sequence alignment
 - Why do we need to align sequences?
 - Evolutionary relationships
- Gaps and scoring matrices
- Dynamic programming
 - Global alignment (Needleman & Wunsch)
 - Local alignment (Smith & Waterman)
- Database searches
 - BLAST
 - FASTA

Sequence alignment Comparing DNA/protein sequences for Similarity Homology Prediction of function

- Construction of phylogeny
- Shotgun assembly
- End-space-free alignment / overlap alignment
- Finding motifs

Sequence Alignment Procedure of comparing two (pairwise) or more (multiple) sequences by searching for a series of individual characters that are in the same order in the sequences GCTAGTCAGATCTGACGCTA | |||| |||||||||| TGGTCACATCTGCCGC

1

Sequence Alignment

Procedure of comparing two (pairwise) or more (multiple) sequences by searching for a series of individual characters that are in the same order in the sequences

VLSPADKTNVKAAWGKVGAHAGYEG

VLSEGDWQLVLHVWAKVEADVAGEG

Homology

- Orthologs
 - Divergence follows speciation
 - Similarity can be used to construct phylogeny between species
- Paralogs
 - Divergence follows duplication
- Xenologs
- Article on terminology
- ISMB tutorial on protein sequence comparison

Differing rates of DNA evolution

- Functional/selective constraints (particular features of coding regions, particular features in 5' untranslated regions)
- Variation among different gene regions with different functions (different parts of a protein may evolve at different rates).
- Within proteins, variations are observed between surface and interior amino acids in proteins (order of magnitude
 - difference in rates in haemoglobins)charged and non-charged amino acids
- enarged and non-enarged annua actus
 protein domains with different functions
- regions which are strongly constrained to preserve particular functions and regions which are not
- different types of proteins -- those with constrained interaction surfaces and those without

Common assumptions

- All nucleotide sites change independently
- The substitution rate is constant over time and in different lineages
- The base composition is at equilibrium
- The conditional probabilities of nucleotide substitutions are the same for all sites, and do not change over time
- Most of these are not true in many cases...

A simple alignment Let us try to align two short nucleotide sequences: AATCTATA and AAGATA Without considering any gaps (insertions/deletions) there are 3 possible ways to align these sequences AATCTATA AATCTATA AATCTATA AAGATA

• Which one is better?

Scori	ng the align	ments	
• We need to ha evaluate alignment	ve a scoring me nents	echanism to	
 match score 			
- mismatch sco	re		
• We can have t	he total score a	s:	
$\sum_{n=1}^{n}$ match of	or mismatch score at j	position i	
• For the simple	example, assur	me a match score	
of 1 and a mist	match score of	0:	
AATCTATA	AATCTATA	AATCTATA	
AAGATA	AAGATA	AAGATA	
4	1	3	
			18

What is a good alignment?

6 matches, 3 mismatches, 1 gap

7 matches, 1 mismatch, 3 gaps

7 matches, 0 mismatches, 5 gaps

AGGCTAGTT, AGCGAAGTTT

AGGCTAGTT-

AGCGAAGTTT AGGCTA-GTT-

AG-CGAAGTTT

AGGC-TA-GTT-

AG-CG-AAGTTT

Good alignments require gaps

Maximal consecutive run of spaces in alignment

- Matching mRNA (cDNA) to DNA
- Shortening of DNA/protein sequences
- Slippage during replication
- Unequal crossing-over during meiosis $% \left({{{\left({{{{{{{\rm{c}}}}}} \right)}}}} \right)$
- ...
- We need to have a scoring function that considers gaps also

Simple alignment with gaps

• Considering gapped alignments vastly increases the number of possible alignments:

AATCTATA AATCTATA AATCTATA more? AAG-AT-A AA-G-ATA AA--GATA 1 3 3

• If gap penalty is -1 what will be the new scores?

4

PAM	BLOSUM
Built from global alignments	Built from local alignments
Built from small amout of Data	Built from vast amout of Data
Counting is based on minimum replacement or maximum parsimony	Counting based on groups of related sequences counted as one
Perform better for finding global alignments and remote homologs	Better for finding local alignments
Higher PAM series means more divergence	Lower BLOSUM series means more divergence
vergence	more divergence

Errata for the textbook

- Dynamic Programming section in the textbook (pages 41-45) contains some errors:
- 1. Figure 2.5: caption should be "CACGA and CGA" instead of "CACGA and CCGA" and at row 1, column 3 "CGA" should be "GA".
- 2. page 44. line 13: "optimal alignment will be 1" should be "optimal alignment will be 2".

Types of alignment

- Global (Needleman & Wunsch)
 - Strings of similar size
 - Genes with a similar structure
 - Larger regions with a preserved order (syntenic regions)
- Local (Smith & Waterman)
 - Finding similar regions among
 - Dissimilar regions
 - Sequences of different lengths

Dynamic programming Instead of evaluating every possible alignment, we can create a table of partial scores by breaking the alignment problem into subproblems. Consider two sequences CACGA and CGA

we have three possibilities for the first position of the alignment

First position	Score	Remaining seqs.
С	+1	ACGA
С		GA
-	-1	CACGA
С		GA
С	-1	ACGA
-		CGA

Semi-global alignment In Needleman&Wunsch DP algorithm the gap penalty is assessed regardless of whether gaps are located internally or at the terminal ends. Terminal gaps may not be biologically significant AATCTATA --TCT-- Treat terminal gaps differently than internal gaps → semi-global alignment

• What modifications should be made to the original DP?

Q: E P: F	Q V	L L L E	K A F G	LE Y	E:	xai	mp	le		L G M M	inea iap ≠ fatch fism	r gap = -1 n = 4 atch	model
	-	Е	Q	L	L	к	A	L	Е	F	к	L	
- [0	0	0	0	0	0	0	0	0	0	0	0	
к	0	0	0	0	0	4	3	2	1	0	4	3	
v	0	0	0	0	0	3	2	1	0	0	3	2	
L	0	0	0	4	4	3	2	6	5	4	3	7	
Е	0	4	3	3	3	2	1	5	10	9	8	7	
F	0	3	2	2	2	1	0	4	9	14	13	12	
G	0	2	1	1	1	0	0	3	8	13	12	11	
	0	1	0	0	0	0	0	2	7	12	11	10	

					E	xa	mp	le					
2: E ?: F	Q K V	L L L E	K A F G	L E Y	EFI	KL			Q: P:	A K K	lignr - A V -	nent LE LE	F F
	-	Е	Q	L	L	к	A	L	Е	F	к	L	
- [0	0	0	0	0	0	0	0	0	0	0	0	
к	0	0	0	0	0	4	3	2	1	0	4	3	
v	0	0	0	0	0	3	2	1	0	0	3	2	
L	0	0	0	4	4	3	2	6	5	4	3	7	
Е	0	4	3	3	3	2	1	5	10	9	8	7	
F	0	3	2	2	2	1	0	4	9	14	13	12	
G	0	2	1	1	1	0	0	3	8	13	12	11	
Y	0	1	0	0	0	0	0	2	7	12	11	10	

): H): H	E Q K V	L L L E	K A F G	L E Y	IF I	КL			Q: P:	A K K	lignr AL VL	nent EF EF
	-	Е	Q	L	L	к	A	L	Е	F	к	L
-	0	0	0	0	0	0	0	0	0	0	0	0
ĸ	0	0	0	0	0	4	3	2	1	0	4	3
v	0	0	0	0	0	3	2	1	0	0	3	2
L	0	0	0	4	4	3	2	6	5	4	3	7
Е	0	4	3	3	3	2	1	5	10	9	8	7
F	0	3	2	2	2	1	0	4	9	14	13	12
G	0	2	1	1	1	0	0	3	8	13	12	11
	0	1	0	0	0	0	0	2	7	12	11	10

			Sin	ilarity Sco	rc	
4R Entry				Gl	obal	Local
				End	No End	
INTER		LINE I	Hannah Kalendari kata dari s	reliaity	renalty	706
IBHU	1.2	HBHU	Hemoglobin beta-chain-human	725	725	/25
		MARU	Hemoglobin alpha-chain—numan	124	5.20	322
		CDVI	Styoglobin-Human	121	104	100
		LZCH	Legnemogrobin terrow tupin	107	28 16	45
		VBBO	Decementia siberuralence Decine	-107	10	32
		CCHU	Cytochrome e—Human	-160	10	26
					1.01	
MCHU	13	MCHU	Calmodulin—Human	071	071	071
		DUDES	Proponin C, skeletal musele	393	4.50	438
		CHILD	Calasia haara ahain. Usanan	2088	10.5	112
		CHURN	Calpain neavy chain—Human	-2085	89	26
		KLSWM	Calcium binding protein—Seallop	-89	45	52
ORHULD	1.5	EGMSMG	Epidermal growth factor precursor	- 591	475	655

- Comparing two one-megabase genomes.
- Space: An entry: 4 bytes; Table: 4 * 10⁶ * 10⁶= 4 T bytes memory.
- Time: 1000 MHz CPU: 1M entries/second; 10¹² entries: 1M seconds = 10 days.

BLAST

- Basic Local Alignment Search Tool
 Altschul *et al.* 1990,1994,1997
- Heuristic method for local alignment
- Designed specifically for database searches
- Idea: good alignments contain short lengths of exact matches

Steps of BLAST 3. Scan each database sequence for an exact match to query words*. Each match is a seed for an ungapped alignment. *Blast actually uses a list of high scoring words created from words similar to query words.

Summarizing BLAST

- One of the few algorithms to make it as a verb
 - Blast(v): to run a BLAST search against a sequence database
- Extension is the most time-consuming step
- BLAST2 reported to be 3 times faster than the original version at same quality

FASTA

- 3. Rescan top 10 diagonals (representing alignments), score with PAM250 (proteins) or DNA scoring matrix. Trim off the ends of the regions to achieve highest scores.
- 4. Join regions that are consistent with gapped alignments. (maximal weighted paths in a graph).

FASTA

5. After finding the best initial region (step 3), FASTA performs a DP global alignment in a gap centered on the best initial region.

Summarizing FASTA

- Statistics based on histograms on values of intermediate and final scores.
- Begins with exact matches unlike BLAST
- Less of a statistical basis for comparison
- Quality and complexity similar to BLAST

History of sequence searching

- 1970: NW
- 1980: SW
- 1985: FASTA
- 1989: BLAST
- 1997: BLAST2