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Lecture outline

• Database searches
– BLAST
– FASTA

• Statistical Significance of Sequence 
Comparison Results
– Probability of matching runs
– Karin-Altschul statistics
– Extreme value distribution
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DP Alignment Complexity

• O(mn ) time 
• O(mn ) space 

– O(max(m,n)) if only similarity score is needed

• More complicated “divide-and-conquer” 
algorithm that doubles time complexity and 
uses O(min(m,n)) space [Hirschberg, JACM 
1977] 
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Time and space bottlenecks

• Comparing two one-megabase genomes.
• Space:

An entry: 4 bytes;
Table: 4 * 106 * 106= 4 T bytes memory.

• Time:
1000 MHz CPU: 1M entries/second;
1012 entries: 1M seconds = 10 days.
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BLAST

• Basic Local Alignment Search Tool
– Altschul et al. 1990,1994,1997

• Heuristic method for local alignment
• Designed specifically for database searches
• Idea: good alignments contain short lengths 

of exact matches
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Steps of BLAST

1. Query words of length 4 (for proteins) or 11 (for DNA) 
are created from query sequence using a sliding window

• Scan each database sequence for an exact match to query 
words. Each match is a seed for an ungapped alignment.

MEFPGLGSLGTSEPLPQFVDPALVSS
MEFP
EFPG
FPGL
PGLG
GLGS
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Steps of BLAST

3. (Original BLAST) extend matching words to the left 
and right using ungapped alignments. Extension 
continues as long as score does not fall below a 
given threshold. This is an HSP (high scoring pair).

(BLAST2) Extend the HSPs using gapped alignment.
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Steps of BLAST

4.   Using a cutoff score S, keep only the 
extended matches that have a score           
at least S.

5.   Determine statistical significance of each 
remaining match. 
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Example BLAST run

• BLAST website:
– http://www.ncbi.nlm.nih.gov/BLAST/
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FASTA

• Derived from logic of the dot plot 
– compute best diagonals from all frames of 

alignment

• Word method looks for exact matches 
between words in query and test sequence
– construct word position tables
– DNA words are usually 6 bases
– protein words are 1 or 2 amino acids
– only searches for diagonals in region of word 

matches = faster searching
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Steps of FASTA

1. Find k-tups in the two sequences (k=1-2 
for proteins, 4-6 for DNA sequences)

2. Create a table of positions for those k-tups
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The offset table

position 1 2 3 4 5 6 7 8 9 10 11
proteinA n c s p t a . . . . . 
proteinB . . . . . a c s p r k

position in          offset
amino acid       protein A protein B   pos A - posB
-----------------------------------------------------
a                   6         6              0
c                   2         7             -5
k                   - 11
n                   1         -
p                   4         9             -5
r                   - 10
s                   3         8             -5
t                   5         -
-----------------------------------------------------
Note the common offset for the 3 amino acids c,s and p
A possible alignment is thus quickly found -
protein 1 n c s p t a

| | | 
protein 2 a c s p r k
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FASTA

3.    Select top 10 scoring “local diagonals” 
with matches and mismatches but no gaps.

4.    Rescan top 10 diagonals (representing 
alignments), score with PAM250 (proteins) 
or DNA scoring matrix. Trim off the ends 
of the regions to achieve highest scores.  
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FASTA Algorithm
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FASTA

5.   After finding the best initial region, 
FASTA performs a DP global alignment 
centered on the best initial region.
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FASTA Alignments
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History of sequence searching

• 1970: NW
• 1981: SW
• 1985: FASTA
• 1990: BLAST
• 1997: BLAST2 
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The purpose of sequence alignment

• Homology
• Function identification

– about 70% of the genes of M. jannaschii were 
assigned a function using sequence similarity 
(1997)
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Similarity

• How much similar do the sequences have to be 
to infer homology?

• Two possibilities when similarity is detected:
– The similarity is by chance
– They evolved from a common ancestor – hence, 

have similar functions
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Measures of similarity

• Percent identity:
– 40% similar, 70% similar
– problems with percent identity?

• Scoring matrices
– matching of some amino acids may be more 

significant than matching of other amino acids
– PAM matrix in 1970, BLOSUM in 1992
– problems?
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Statistical Significance

• Goal: to provide a universal measure for inferring 
homology
– How different is the result from a random match, or a 

match between unrelated requences?
– Given a set of sequences not related to the query (or a set 

of random sequences), what is the probability of finding a 
match with the same alignment score by chance?

• Different statistical measures
– p-value
– E-value
– z-score
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Statistical significance measures

• p-value: the probability that at least one sequence will 
produce the same score by chance

• E-value: expected number of sequences that will 
produce same or better score by chance

• z-score: measures how much standard deviations 
above the mean of the score distribution
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How to compute statistical significance?

• Significance of a match-run
– Erdös-Reny í

• Significance of local alignments without gaps
– Karlin-Altschul statistics
– Scoring matrices revisited

• Significance of local alignments with gaps
• Significance of global alignments
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Analysis of coin tosses

• Let black circles indicate heads
• Let p be the probability of a “head”

– For a “fair” coin, p = 0.5
• Probability of 5 heads in a row is (1/2)^5=0.031
• The expected number of times that 5H occurs in 

above 14 coin tosses is 10*0.031 = 0.31
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Analysis of coin tosses

• The expected number of a length l run of heads in n
tosses.

• What is the expected length R of the longest match 
in n tosses?

lnplE ≅)(

Rnp=1 )(log /1 nR p=
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Analysis of coin tosses

• (Erdös-Rényi) If there are n throws, then the 
expected length R of the longest run of 
heads is

R = log1/p (n)
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Example 

• Example: Suppose n = 20 for a “fair” coin
R=log2(20)=4.32

– In other words: in 20 coin tosses we expect a run of heads of 
length 4.32, once.

• Trick is how to model DNA (or amino acid) 
sequence alignments as coin tosses.
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Analysis of an alignment

• Probability of an individual match p = 0.05
• Expected number of matches: 10x8x0.05 = 4
• Expected number of two successive matches

10x8x0.05x0.05 = 0.2≅
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Matching runs
in sequence alignments

• Consider two sequences a1..m and b1..n

• If the probability of occurrence for every 
symbol is p, then a match of a residue ai
with bj is p, and a match of length l from 
ai,bj to ai+l-1,bj+l-1 is pl.

• The head-run problem of coin tosses  
corresponds to the longest run of matches 
along the diagonals
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• There are m-l+1 x n-l+1 places where the match 
could start

• The expected length of the longest match can be 
approximated as

R=log1/p(mn)

where m and n are the lengths of the two sequences.

lmnplE ≅)(

Matching runs
in sequence alignments
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• So suppose m = n = 10 and we’re looking at 
DNA sequences

R=log4(100)=3.32
• This analysis makes assumptions about the 

base composition (uniform) and no gaps, 
but it’s a good estimate.

Matching runs
in sequence alignments
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Statistics for matching runs

• Statistics of matching runs:

• Length versus score?
– Consider all mismatches receive a negative score of -8 and 

aibj match receives a positive score of si,j.
• What is the expected number of matching runs with a 

score x or higher?

– Using this theory of matching runs, Karlin and Altschul
developed a theory for statistics of local alignments without 
gaps (extended this theory to allow for mismatches).

lmnplE ≅)(

xmnpxSE ∝>= )(
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Statistics of local alignments 
without gaps

• A scoring matrix which satisfy the following 
constraint:
– The expected score of a single match obtained by a scoring 

matrix should be negative. 

– Otherwise?
• Arbitrarily long random sequences will get higher scores just because 

they are long, not because there’s a significant match.

• If this requirement is met then the expected number of 
alignments with score x or higher is given by:

0)(
, ,, <= ∑ ji jijiji sppsE

xKmnexSE λ−=≥ )(
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– K < 1 is a proportionality constant that corrects the mn “space 
factor” for the fact that there are not really mn independent 
places that could have produced score S = x.

– K has little effect on the statistical significance of a similarity 
score

– ? is closely related to the scoring matrix used and it takes into
account that the scoring matrices do not contain actual 
probabilities of co-occurence, but instead a scaled version of 
those values. To understand how ? is computed, we have to 
look at the construction of scoring matrices.

xKmnexSE λ−=≥ )(

Statistics of local alignments 
without gaps
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Scoring Matrices

• In 1970s there were few protein sequences available. 
Dayhoff used a limited set of families of protein 
sequences multiply aligned to infer mutation 
likelihoods.
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Scoring Matrices

• Dayhoff represented the similarity of amino acids as a 
log odds ratio:

where qij is the observed frequency of co-occurrence, and pi, pj

are the individual frequencies.

)/log( jiijij ppqs =
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Example

• If M occurs in the sequences with 0.01 
frequency and L occurs with 0.1 frequency. By 
random pairing, you expect 0.001 amino acid 
pairs to be M-L. If the observed frequency of 
M-L is actually 0.003, score of matching M-L 
will be
– log2(3)=1.585 bits or loge(3) = ln(3) = 1.1 nats

• Since, scoring matrices are usually provided as 
integer matrices, these values are scaled by a constant 
factor. ? is approximately the inverse of the original 
scaling factor.
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How to compute ?

• Recall that:

and:

)/log( jiijij ppqs =λ

1
1 1

=∑∑
= =

n

i

i

j
ijq Sum of observed frequencies is 1.

ijs
jiij eppq λ=⇒

1
1 1

=⇒ ∑∑
= =

n

i

i

j

s
ji

ijepp λ
Given the frequencies of 
individual amino acids and 
the scores in the matrix, ?
can be estimated.
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Extreme value distribution

• Consider an experiment that obtains the 
maximum value of locally aligning a random 
string with query string (without gaps).  Repeat 
with another random string and so on.  Plot the 
distribution of these maximum values.  

• The resulting distribution is an extreme value 
distribution, called a Gumbel distribution . 
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Normal vs. Extreme Value Distribution
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0.4
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Value

Extreme value distribution:

y = e-x – e-x

Normal distribution: 

y = (1/v2p )e-x2/2
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Local alignments with gaps

• The EVD distribution 
is not always observed.
Theory of local alignments
with gaps is not well studied
as in without gaps.
Mostly empirical results.
For example, BLAST allows
only a certain range of
gap penalties.
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BLAST statistics

• Pre-computed ? and K values for different 
scoring matrices and gap penalties are used for 
faster computation.

• Raw score is converted to bit score:

• E-value is computed using

• m is query size, n is database size and L is the 
typical length of maximal scoring alignment.

2ln
lnKS

Sbit

−
=

λ

bitSsssE −⋅= 2
))(( LNnLmsss ⋅−−=
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FASTA Statistics
• FASTA tries to estimate the probability 

distribution of alignments for every query.
• For any query sequence, a large collection of 

scores is gathered during the search of the 
database. 

• They estimate the parameters of the EVD 
distribution based on the histogram of scores.

• Advantages:
– reliable statistics for different parameters

• different databases, different gap penalties, different 
scoring matrices, queries with different amino acid 
compositions.
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Statistical significance
another example

• Suppose, we have a huge graph with weighted 
edges and we want to find strongly connected 
clusters of nodes.

• Suppose, an algorithm for this task is given.
• The algorithms gives you the best hundred 

clusters in this graph.
• How do you define best?
• Cluster size?
• Total weight of edges?
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Statistical significance

• How different is a found cluster of size N from 
a random cluster of the same size?

• This measure will enable comparison of 
clusters of different sizes.
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Statistical significance of a cluster

• Use maximum spanning tree weight of a 
cluster as a quantitative representation of that 
cluster.

• And see what 
values random 
clusters get.
(sample many

random
clusters)
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Statistical significance of a cluster

Looks like an exponential 
decay. We may fit an 
exponential distribution on this 
histogram.

xey λλ −=
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Fitting an exponential

xey λλ −=
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Statistical significance of a cluster

After we fit an exponential distribution, we compute the probability that 
another random cluster gets a higher score than the score of fou nd cluster.

wkewxP λ−=≥ )(
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Examples

• ?5 = 1.7 for clusters of size 5 and ?20 = 0.36 for 
clusters of size 20.

• Suppose you have found a cluster of size 5 
with weights of its edges sum up to 15 and you 
have found a cluster of size 20 with weight 45 
which one would you prefer?

1215 1042.8)15( 5 −− ×==≥ λexP

845 1021.9)45( 20 −− ×==≥ λexP


