Lecture outline

e Database searches
—BLAST
—FASTA
« Statistical Significance of Sequence
Comparison Results
— Probability of matching runs
— Karin-Altschul statistics
— Extreme value distribution

DP Alignment Complexity

° O(mn) time

e O(mn) space

—O(max(m,n)) if only similarity score is needed
e More complicated “ divide-and-conquer”
algorithm that doubles time complexity and
uses O(min(m,n)) space [Hirschberg, JACM
1977]

Time and space bottlenecks

e Comparing two one-megabase genomes.
* Space:

An entry: 4 bytes,

Table: 4* 106 * 106=4 T bytes memory.
e Time:

1000 MHz CPU: 1M entries/second,;

102 entries: 1M seconds = 10 days.

BLAST

Basic Local Alignment Search Tool

— Altschul et al. 1990,1994,1997

 Heuristic method for local alignment

» Designed specifically for database searches
Idea: good alignments contain short lengths
of exact matches

Steps of BLAST

1. Query words of length 4 (for proteins) or 11 (for DNA)
are created from query sequence using a sliding window
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*  Scan each database sequence for an exact match to query|
words. Each match is a seed for an ungapped alignment.

Steps of BLAST

3. (Original BLAST) extend matching words to the | ef
and right using ungapped alignments. Extension
continues as long as score does not fall below a
given threshold. Thisisan HSP (high scoring pair).

(BLAST?2) Extend the HSPs using gapped alignment)




Steps of BLAST

4. Using a cutoff score S, keep only the
extended matches that have a score
atleast S.

5. Determine statistical significance of each
remaining match.

Example BLAST run

e BLAST website
— http://www.nchi.nlm.nih.gov/BLAST/

FASTA

« Derived from logic of the dot plot

— compute best diagonals from all frames of
alignment

* Word method looks for exact matches
between words in query and test sequence
— construct word position tables
— DNA words are usually 6 bases
— protein words are 1 or 2 amino acids

—only searchesfor diagonalsin region of word
matches = faster searching

Steps of FASTA

1. Find k-tupsin the two sequences (k=1-2
for proteins, 4-6 for DNA sequences)
2. Create atable of positionsfor those k-tups
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The offset table

position 12345678910 11
proteinAncspta. . . ..
proteinB . . . . . acspr k

position in of f set
anino acid protein A protein B pos A - posB

a 6 6 0
c 2 7 -5
k 11

n 1 -

p 4 9 5
v - 10

s 3 8 5
t 5

Note the common offset for the 3 anino acids c,s and p
A possible alignnent is thus quickly found -
protein1ncspt a

protein 2 acs pr k
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FASTA

3. Select top 10 scoring “local diagonals’
with matches and mismatches but no gaps.

4. Rescan top 10 diagonals (representing
alignments), score with PAM 250 (proteins)
or DNA scoring matrix. Trim off the ends
of the regions to achieve highest scores.
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FASTA Algorithm
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Re-300rs Using PAM matrix
Keap top scoring segments
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FASTA

5. After finding the best initial region,
FASTA performs a DP global alignment
centered on the best initial region.

14

FASTA Alignments

(e) (d)

—— BSaguents B —

Sequance B —=

-#— Baquence A
~4— Eeguence A

Use dynaric programming to
create an optimal alignment

Join segments using gaps,
eliminate other segments

15

History of sequence searching

o 1970: NW

o 1981 SW

e 1985 FASTA

e 1990: BLAST

» 1997: BLAST2
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The purpose of sequence alignment

* Homology

 Function identification
— about 70% of the genes of M. jannaschii were
assigned a function using sequence similarity
(1997)
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Similarity

* How much similar do the sequences have to be
to infer homology?

» Two possihilities when similarity is detected:
— The similarity is by chance
— They evolved from a common ancestor —hence,
have similar functions

18




Measures of similarity

 Percent identity:

—40% similar, 70% similar

— problems with percent identity?
* Scoring matrices

— matching of some amino acids may be more
significant than matching of other amino acids

—PAM matrix in 1970, BLOSUM in 1992
— problems?
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Statistical Significance

e Goal: to provide auniversal measure for inferring
homology

— How different is the result from a random match, or a
match between unrelated requences?

— Given a set of sequences not related to the query (or a set
of random sequences), what is the probability of finding a
match with the same alignment score by chance?
* Different statistical measures
— p-value
— E-value
— z-score

20

Statistical significance measures

e p-value: the probability that at least one sequence will
produce the same score by chance

» E-value: expected number of sequences that will
produce same or better score by chance

¢ z-score measures how much standard deviations
above the mean of the score distribution
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How to compute statistical significance?

« Significance of amatch-run
— Erdés-Reny i

* Significance of local alignments without gaps
— Karlin-Altschul statistics
— Scoring matrices revisited

« Significance of local alignments with gaps

« Significance of global alignments
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Analysis of coin tosses

o] [o]o] | [o]o]e[e[e] [ | |

o Let black circlesindicate heads
e Letpbethe probability of a“head”
—For a“fair” coin, p=0.5
* Probability of 5 headsin arow is (1/2)"5=0.031

* The expected number of times that 5H occursin
above 14 coin tosses is 10*0.031 = 0.31
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Analysis of coin tosses

» The expected number of alength | run of headsinn
tosses.
E(l) @np

* What isthe expected length R of the longest match
in n tosses?

1= npR—> R=log,,(n)
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Analysis of coin tosses

o (Erdos-Rényi) If there are n throws, then the|
expected length R of the longest run of
headsis

R=10gy, ()
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Example

» Example: Suppose n = 20 for a“fair” coin
R=l0g,(20)=4.32

— In other words: in 20 coin tosses we expect a run of heads of
length 4.32, once.

 Trick is how to model DNA (or amino acid)
sequence alignments as coin tosses.
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Analysis of an alignment

H1 KTQSNATIL
[ ]

0O — > X0 O mMmI

\
» Probability of anindividual match p =0.05
* Expected number of matches: 10x8x0.05 = 4
e Expected number of two successive matches
(€10x8x0.05x0.05 = 0.2
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Matching runs
in sequence alignments

 Consider two sequencesa; ,and b, ,

* |f the probability of occurrence for every
symbol is p, then a match of aresidue g
with b; is p, and a match of length| from
a,b; 10841041 iSP.

* The head-run problem of coin tosses
corresponds to the longest run of matches
along the diagonals
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Matching runs
in sequence alignments

e There are m-+1 x n-1+1 places where the match
could start

E(I) @np

» The expected length of the longest match can be
approximated as

R=logy,(mn)

where mand n are the lengths of the two sequences.
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Matching runs
in sequence alignments

» So suppose m=n = 10 and we're looking at
DNA sequences
R=lo0g,(100)=3.32
» Thisanalysis makes assumptions about the
base composition (uniform) and no gaps,
but it’sagood estimate.
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Statistics for matching runs

o Statistics of matching runs:
E(l) @nnp

 Lengthversusscore?
— Consider all mismatches receive a negative score of -8 and
a;b; match receives a positive score of ;.
» What isthe expected number of matching runswith a
score x or higher?

E(S>=X) u mnp*

— Using this theory of matching runs, Karlin and Altschul
developed a theory for statistics of local aignments without
gaps (extended this theory to allow for mismatches).
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Statistics of local alignments
without gaps

* A scoring matrix which satisfy the following
constraint:

— The expected score of a single match obtained by a scoring
matrix should be negative.

o]
E(SI,]) _a i pi pjs,] <0
— Otherwise?
< Arbitrarily long random sequences will get higher scores just because
they are long, not because there's a significant match.

« |f thisrequirement is met then the expected number of
alignmentswith scorex or higher is given by:

E(S 3 x) =Kmne
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Statistics of local alignments
without gaps

E(S 3 x) =Kmne

— K < 1isaproportionaity constant that corrects the mn*“ space]
factor” for the fact that there are not really mn independent
places that could have produced score S = X.

— K hasllittle effect on the statistical significance of a similarity
score

— ?isclosely related to the scoring matrix used and it takes intd
account that the scoring matrices do not contain actual
probabilities of co-occurence, but instead a scaled version of
those values. To understand how ?is computed, we have to
look at the construction of scoring matrices.
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Scoring Matrices

* In 1970sthere were few protein sequences available.
Dayhoff used alimited set of families of protein
sequences multiply aigned to infer mutation
likelihoods.

PGNPFATPLEILPEWYLYPVFQILRVLPNKLLGIACQGAIPLGLMMVPFIE
PANPFATPLEILPEWYFYPVFQILRTVPNKLLGVLAMAAVPVGLLTVPFIE
PANPMSTPAHIVPEWYFLPVYAILRSIPNKLGGVAAIGLVFVSLLALPFIN
PANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLFSILMLLLVPFLH
PANPLSTPAHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILVLIFIPMLQ
PANPLSTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILILIFIPMLQ
TANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL. .YIMIF
ESDPMMSPVHIVPEWYFLFAYAILRAIPNKVLGVVSLFASILVL. . VVFVL
IVDTLKTSDKILPEWFFLYLFGFLKATPDKFMGLFLMVILLFSL. .FLFIL

34

Scoring Matrices

PGNPFATPLEILPEWYLYPVFQILRVLPNKLLGIACQGAIPLGLMMVPFIE
PANPFATPLEILPEWYFYPVFQILRTVPNKLLGVLAMAAVPVGLLTVPFIE
PANPMSTPAHIVPEWYFLPVYAILRSIPNKLGGVAAIGLVFVSLLALPFIN
PANPLVTPPHIKPEWYFLFAYATLRSIPNKLGGVLALLFSILMLLLVPFLH
PANPLSTPAHIKPEWYFLFAYATLRSIPNKLGGVLALLLSILVLIFIPMLQ
PANPLSTPPHIKPEWYFLFAYATLRSIPNKLGGVLALLLSILILIFIPMLQ
TANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL. .YIMIF
ESDPMMSPVHIVPEWYFLFAYATLRAIPNKVLGVVSLFASILVL. .VVFVL
IVDTLKTSDKILPEWFFLYLFGFLKAIPDKFMGLFLMVILLFSL. .FLFIL

» Dayhoff represented the similarity of amino acidsasa
log odds ratio:
s; =log(q; / p, p;)
where gj; is the observed frequency of co-occurrence, and p;, p;

are the individua frequencies.
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Example

 |If M occursin the sequences with 0.01
frequency and L occurs with 0.1 frequency. By
random pairing, you expect 0.001 amino acid
pairsto be M-L. If the observed frequency of
M-L isactually 0.003, score of matching M -L
will be
—10g,(3)=1.585 hits or 0og,(3) = In(3) = 1.1nats

* Since, scoring matrices are usually provided as
integer matrices, these values are scaled by a constant
factor. ? is approximately the inverse of the original
scaling factor.
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How to compute ?

 Recall that:
I's; =log(q; / p.p;)

P q;= pipjeISJ

. Py i
and: a é. 0; =1 Sum of observed frequencies is 1.

=1 j=1

g d e in_ej thefrequencigs of
Paanppe”-=1 individual amino acids and
= j=1 the scores in the matrix, ?
can be estimated.
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Extreme value distribution

 Consider an experiment that obtains the
maximum value of locally aligning arandom
string with query string (without gaps). Repeat
with another random string and so on. Plot the
distribution of these maximum values.

* Theresulting distribution is an extreme value
distribution, called aGumbel distribution.
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Normal vs. Extreme Value Distribution

04

Normal distribution:
y = (1/v2p)e*2

Extreme value distribution:

y= ex-eX

o PRI T T e T
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Local alignments with gaps

gap opening penalty = 12

e The EVD distribution 100 |
is not always observed. (
Theory of local alignments
with gapsis not well studied 0. tL ARBRARERAIA
asin without gaps. ¥ GZ: ::n:s ;5“:;3 6i o
Mostly empirical results. PR
For example, BLAST dlows
only acertain range of
gap penalties.

frequency

frequency
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BLAST statistics

» Pre-computed ? and K values for different
scoring matrices and gap penalties are used for
faster computation.

» Raw scoreisconverted to bit score:

_IS-1nK
T In2
» E-valueiscomputed using
E=sssx ¥
sss=(m- L)(n- N:L)

* misquery size, n isdatabase sizeandL isthe

typical length of maximal scoring alignment.

FASTA Statistics

FASTA triesto estimate the probability
distribution of alignments for every query.

 For any query sequence, alarge collection of
scoresis gathered during the search of the
database.

» They estimate the parameters of the EVD
distribution based on the histogram of scores.

» Advantages:
—reliable statistics for different parameters

« different databases, different gap pendlties, different
scoring matrices, queries with different amino acid
compositions. 12




Statistical significance
another example

* Suppose, we have a huge graph with weighted
edges and we want to find strongly connected
clusters of nodes.

 Suppose, an algorithm for thistask is given.

e The algorithms gives you the best hundred
clustersin this graph.

» How do you define best?
o Cluster size?
» Total weight of edges?
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Statistical significance

» How different isafound cluster of size N from
arandom cluster of the same size?

e Thismeasure will enable comparison of
clusters of different sizes.
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Statistical significance of a cluster

» Use maximum spanning tree weight of a
cluster as a quantitative representation of that
cluser.

And seewhat |==
valuesrandom .
clusters get.
(sample many
random
clusters) !

Chysior Sl = 20
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Statistical significance of a cluster

Cluslir Siga = hi
Looks like an exponential

! decay. We may fit an
exponential distribution on this
histogram.

y=le"
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Fitting an exponential

P
GoE
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Statistical significance of a cluster

™) Cluster Size = 5 ] Gluster size = 10

After we fit an exponential distribution, we compute the probability that
another random cluster gets a higher score than the score of found cluster.

P(x3 w)=g '«
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Examples

» 75 =1.7for clusters of size 5 and 75, = 0.36 for
clusters of size 20.

 Suppose you have found a cluster of size 5
with weights of its edges sum up to 15 and you
have found a cluster of size 20 with weight 45
which onewould you prefer?

P(x3 15)=¢e s =8.42" 102
P(x3 45)=¢'#*=921"10"®
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