

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant
 if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Outline

- Problem definition
- Can we use Dynamic Programming to solve MSA?
- Progressive Alignment
- ClustalW
- Scoring Multiple Alignments
- Entropy
- Sum of Pairs (SP) Score

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?

Multiple alignment

- One of the most essential tools in molecular biology
- Finding highly conserved subregions or embedded patterns of a set of biological sequences
- Conserved regions usually are key functional regions, prime targets for drug developments
- Estimation of evolutionary distance between sequences
- Prediction of protein secondary/tertiary structure
- Practically useful methods only since 1987 (D. Sankoff)
- Before 1987 they were constructed by hand
- Dynamic programming is expensive

Multiple Sequence Alignment (MSA)

- What is multiple sequence alignment?
- Given k sequences:

VTISCTGSSSNIGAGNHVKWYQQLPG VTISCTGTSSNIGSITVNWYQQLPG LRLSCSSSGFIFSSYAMYWVRQAPG LSLTCTVSGTSFDDYYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG ATLVCLISDFYPGAVTVAWKADS AALGCLVKDYFPEPVTVSWNSG vSLTCLVkGFYPSDIAVEWESNG

Multiple Sequence Alignment (MSA)

- An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFSS--YAMYWVRQAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--AALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG--

Multiple Sequence Alignment (MSA)

- An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQIPG LRLSCSSSGFIFSS--YAMYWVROAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--AALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG--

Conserved regions
\qquad

Multiple Sequence Alignment (MSA)

- An MSA of these sequences:

```
VTISSTGSSSNIGAG-NHVKMYQQIPG
VTHSOTGTSSNIGS--ITVNNYQQIPG
TRHSOSSSGFIFSS--YAMYMVRQAPG
HSTTCTVSGTSFDD--YYSTMVROPPG
PEVTOVVVDVSHEDPQVKFNMYVDG--
ATMV LISDFYPGA--VTVA*KADS--
AATGGLVKDYFPEP--VTVSNNSG---
VSTT:LVKGFYPSD--IAVENESNG--
```

Conserved residues, regions, patterns

MSA Warnings

- MSA algorithms work under the assumption that they are aligning related sequences
- They will align ANYTHING they are given, even if unrelated
- If it just "looks wrong" it probably is

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

AT _ G C G _
$A C_{-} \mathrm{T}_{-} A$
ATCAC_A

- Score: more conserved columns, better alignment

Alignments $=$ Paths in k dimensional grids

- Align 3 sequences: ATGC, AATC,ATGC

Alignment Paths

- Resulting path in (x, y, z) space:
$(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)$

Multiple Alignment: Running Time

- For 3 sequences of length \boldsymbol{n}, the run time is $7 n^{3}$; $\mathrm{O}\left(n^{3}\right)$
- For \boldsymbol{k} sequences, build a \boldsymbol{k}-dimensional matrix, with run time $\left(2^{k}-1\right)\left(n^{k}\right) ; \mathrm{O}\left(2^{k} n^{k}\right)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to \boldsymbol{k} sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

$$
\begin{aligned}
& \mathbf{x}: \text { ACGCTGG-C; } \mathbf{x}: \text { AC-GCTGG-C; } \mathbf{y}: \text { AC-GC-GAG } \\
& \mathbf{y}: \text { ACGC--GAC; } \mathbf{z}: \text { GCCGCA-GAG; } \mathbf{z}: \text { GCCGCAGAG }
\end{aligned}
$$

can we construct a multiple alignment that induces them?

NOT ALWAYS
Pairwise alignments may be inconsistent

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

$$
\begin{array}{lll}
\mathbf{x}: \text { ACGCTGG-C; } & \mathbf{x}: \text { AC-GCTGG-C; } & \mathrm{y}: \text { AC-GC-GAG } \\
\mathrm{y}: \text { ACGC--GAC; } & \mathrm{z}: \text { GCCGCA-GAG; } & \mathrm{z}: \text { GCCGCAGAG }
\end{array}
$$

can we construct a multiple alignment that induces them?

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

Can not combine pairwise alignments into multiple alignment

Consensus String of a Multiple Alignment

Aligning alignments

- Given two alignments, can we align them?
x GGGCACTGCAT
y GGTtACGTC--
z GGGAACTGCAG
w GGACGTACC--
Alignment 1
Alignment 2
w GGACGTACC--
-

Aligning alignments

- Given two alignments, can we align them?
- Hint: use alignment of corresponding profiles

```
x GGGCACTGCAT
    y GGTTACGTC--
    z GGGAACTGCAG
    w GGACGTACC--
    v GGACCT-----
x GGGCACMCA
```

 Combined Alignment
 Earlier, we were aligning a sequence against a sequence
Can we align a sequence against a profile?
Can we align a profile against a profile?

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile , thereby reducing alignment of k sequences to an alignment of of $k-1$ sequences/profiles. Repeat
- This is a heuristic greedy method

$$
\left.k\left\{\begin{array}{ll}
\mathrm{u}_{1}=\text { ACGTACGTACGT } \ldots \\
\mathrm{u}_{2}=\text { TTAATTAATTAA } \ldots
\end{array} \quad \begin{array}{l}
\mathrm{u}_{1}=\operatorname{ACg} / \text { tTACg/TACg/cT.. } \\
\mathrm{u}_{2}=\text { TTAATTAATTAA } \ldots \\
\mathrm{u}_{3}=\text { ACTACTACTACT } \ldots . \\
\ldots \\
\mathrm{u}_{\mathrm{k}}=\text { CCGGCCGGCCGG }
\end{array}\right\} \begin{array}{l}
\ldots \\
\mathrm{u}_{\mathrm{k}}=\text { CCGGCCGGCCGG } . .
\end{array}\right\} k-l
$$

Greedy Approach: Example

- Consider these 4 sequences

$$
\begin{array}{ll}
s 1 & \text { GATTCA } \\
\text { s2 } & \text { GTCTGA } \\
\text { s3 } & \text { GATATT } \\
\text { s4 } & \text { GTCAGC }
\end{array}
$$

Greedy Approach: Example (contd)

- There are $\binom{4}{2}=6$ possible alignments

```
s2 GTCTGA s1 GATTCA--
s4 GTCAGC (score = 2) s4 G-T-CAGC(score = 0)
s1 GAT-TCA s2 G-TCTGA
s2 G-TCTGA (score = 1) s3 GATAT-T (score = -1)
s1 GAT-TCA s3 GAT-ATT
s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)
```


Greedy Approach: Example (contd)

s_{2} and s_{4} are closest; combine:
$\begin{array}{ll}s 2 & \text { GTCTGA } \\ \text { s4 } & \text { GTCAGC }\end{array} \underset{\substack{(\text { profilie) }}}{s_{2,4} G T C t / a G a / c A}$
new set of 3 sequences:
$s_{1} \quad$ GATTCA
s_{3} GATATT
$s_{2,4} \quad \mathrm{GTC}+/ \mathrm{aGa} / \mathrm{c}$

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
- Gaps in consensus string are permanent
- Use profiles to compare sequences

Star alignment

- Heuristic method for multiple sequence alignments
- Select a sequence c as the center of the star
- For each sequence x_{1}, \ldots, x_{k} such that index $i \neq$ c, perform a Needleman-Wunsch global alignment
- Aggregate alignments with the principle "once a gap, always a gap."

Choosing a center

- Try them all and pick the one which is most similar to all of the sequences
- Let $S\left(x_{i}, x_{j}\right)$ be the optimal score between sequences x_{i} and x_{j}.
- Calculate all $\mathrm{O}\left(k^{2}\right)$ alignments, and choose as x_{c} the sequence x_{i} that maximizes the following

$$
\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{~S}\left(x_{\mathrm{i}}, x_{\mathrm{j}}\right)
$$

Star alignment example

Analysis

- Assuming all sequences have length n
- $\mathrm{O}\left(k^{2} n^{2}\right)$ to calculate center
- Step i of iterative pairwise alignment takes O((i-n)•n) time
- two strings of length n and $i \cdot n$
- $\mathrm{O}\left(k^{2} n^{2}\right)$ overall cost

ClustalW

- Most popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
1.) Construct pairwise alignments
2.) Build Guide Tree (by Neighbor Joining method)
3.) Progressive Alignment guided by the tree
- The sequences are aligned progressively according to the branching order in the guide tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	
	-				
$\mathbf{v}_{\mathbf{1}}$.17	-			
$\mathbf{v}_{\mathbf{2}}$.17				
$\mathbf{v}_{\mathbf{3}}$.87	.28	-		(.17 means 17% identical)
$\mathbf{v}_{\mathbf{4}}$.59	.33	.62	-	

Step 2: Guide Tree (cont'd)

Calculate:

$$
\begin{array}{ll}
v_{1,3} & =\text { alignment }\left(v_{1}, v_{3}\right) \\
v_{1,3,4} & =\text { alignment }\left(\left(v_{1,3}\right), v_{4}\right) \\
v_{1,2,3,4} & =\operatorname{alignment}\left(\left(v_{1,3,4}\right), v_{2}\right)
\end{array}
$$

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

FOS_RAT
FOS ${ }^{-}$MOUSE FOSB ${ }^{-}$MOUS FOSB_HUMAN

PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD EEMSVIS-LDLGEASEEAFTLPLLLNDPEEK-PSLEPVKNISNMELKAEPFD SEELAAAATALDLGG----APSPAAAEEAFALPLMTEAPPAVPRKEPSG--SGLELKAEPFD GGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP---------------------LPFD gGPGPLAEVRDLPG-----SAPAKEDGESWLLPPPPPPP

Dots and stars show how well-conserved a column is.

ClustalW: another example

S_{1} ALSK
\mathbf{S}_{2} TNSD
S_{3} NASK
$\mathbf{S}_{4} \quad$ NTSD

Other progressive approaches

- PILEUP
- Similar to CLUSTALW
- Uses UPGMA to produce tree

Problems with progressive alignments

- Depend on pairwise alignments
- If sequences are very distantly related, much higher likelihood of errors
- Care must be made in choosing scoring matrices and penalties

Iterative refinement in progressive alignment

Another problem of progressive alignment:

- Initial alignments are "frozen" even when new evidence comes

Example:

$\mathbf{x}:$	GAAGTT
$\mathbf{y}:$	GAC-TT
$\mathbf{z}:$	GAACTG Frozen!
$\mathbf{w}:$	$\mathbf{G T A C T G}>$

Scoring multiple alignments

- Ideally, a scoring scheme should
- Penalize variations in conserved positions higher
- Relate sequences by a phylogenetic tree
- Tree alignment
- Usually assume
- Independence of columns
- Quality computation
- Entropy-based scoring
- Compute the Shannon entropy of each column
- Sum-of-pairs (SP) score

Evaluating multiple alignments

- Balibase benchmark (Thompson, 1999)
- De-facto standard for assessing the quality of a multiple alignment tool
- Manually refined multiple sequence alignments
- Quality measured by how good it matches the core blocks
- Another benchmark: SABmark benchmark
- Based on protein structural families

Multiple Alignments: Scoring

- Number of matches (multiple longest common subsequence score)
- Entropy score
- Sum of pairs (SP-Score)

Multiple LCS Score

- A column is a "match" if all the letters in the column are the same

AAA
AAA
AAT
ATC

- Only good for very similar sequences

Entropy: Example

entropy $\left(\begin{array}{l}A \\ A \\ A \\ A\end{array}\right)=0 \quad$ Best case

Worst case entropy $\left(\begin{array}{l}A \\ T \\ G \\ C\end{array}\right)=-\sum \frac{1}{4} \log \frac{1}{4}=-4\left(\frac{1}{4} *-2\right)=2$

Entropy of an Alignment: Example

column entropy:

$-\left(p_{A} \log p_{A}+p_{C} \log p_{C}+p_{C} \log p_{C}+p_{T} \log p_{T}\right)$
-Column $\begin{aligned} 1 & =-[1 * \log (1)+0 * \log 0+0 * \log 0+0 * \log 0] \\ & =0\end{aligned}$
-Column $2=-[(1 / 4) * \log (1 / 4)+(3 / 4) * \log (3 / 4)+0 * \log 0+0 * \log 0]$ $=-[(1 / 4) *(-2)+(3 / 4) *(-.415)]=+0.811$
-Column $3=-[(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)]$ $=4^{*}-[(1 / 4) *(-2)]=+2.0$
-Alignment Entropy $=0+0.811+2.0=+2.811$

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
- $p_{A}=1, p_{T}=p_{G}=p_{C}=0\left(1^{\text {st }}\right.$ column)
- $p_{A}=0.75, p_{T}=0.25, p_{G}=p_{C}=0$ (2 $2^{\text {nd }}$ column)
- $p_{A}=0.50, p_{T}=0.25, p_{C}=0.25 p_{G}=0(3$ rd column $)$
- Compute entropy of each column

$$
-\sum_{X=A, T, G, C} p_{X} \log p_{X} \quad \begin{aligned}
& \text { AAA } \\
& \text { AAT } \\
& \text { ATC }
\end{aligned}
$$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:
$\Sigma_{\text {over all columns }}-\Sigma_{X=A, T, G, C} p_{X} \log p_{X}$

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
    y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```


Sum of Pairs (SP) Scoring

- SP scoring is the standard method for scoring multiple sequence alignments.
- Columns are scored by a 'sum of pairs' function using a substitution matrix (PAM or BLOSUM)
- Assumes statistical independence for the columns, does not use a phylogenetic tree.
\qquad
\qquad

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given $a_{1}, a_{2}, a_{3}, a_{4}$:
$s\left(a_{1} \ldots a_{4}\right)=\Sigma s^{*}\left(a_{\mathrm{i}}, a_{\mathrm{j}}\right)=s^{*}\left(a_{1}, a_{2}\right)+s^{*}\left(a_{1}, a_{3}\right)$

$$
+s^{*}\left(a_{1}, a_{4}\right)+s^{*}\left(a_{2}, a_{3}\right)
$$

$$
+s^{*}\left(a_{2}, a_{4}\right)+s^{*}\left(a_{3}, a_{4}\right)
$$

Example

- Compute Sum of Pairs Score of the following multiple alignment with match $=3$, mismatch $=-1, S(X,-)=-1, S(-,-)=0$

X : GTACG
Y: T G C C G
Z: C G G C C
W: C G GAC
-2 6-2 62
Sum of pairs $=-2+6-2+6+2=10$

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

$$
a_{i} \text { and } a_{j}
$$

imposed by a multiple alignment of k sequences

- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as $s^{*}\left(a_{i}, a_{j}\right)$
- Sum up the pairwise scores for a multiple alignment:

$$
s\left(a_{1}, \ldots, a_{k}\right)=\Sigma_{i, j} s^{*}\left(a_{i}, a_{j}\right)
$$

SP-Score: Example

a_{1} ATG-C-AAT
A-G-CATAT
a_{k} ATCCCATTT
$S\left(a_{1} \ldots a_{k}\right)=\sum_{i, j} S^{*}\left(a_{i}, a_{j}\right) \longleftarrow\binom{n}{2}$ Pairs of Sequences

May also calculate the scores column by column:

Multiple alignment tools

- Clustal W (Thompson, 1994)
- Most popular
- PRRP (Gotoh, 1993)
- HMMT (Eddy, 1995)
- DIALIGN (Morgenstern, 1998)
- T-Coffee (Notredame, 2000)
- MUSCLE (Edgar, 2004)
- Align-m (Walle, 2004)
- PROBCONS (Do, 2004)

Useful links

http://cnx.org/content/m11036/latest/
http://www.biokemi.uu.se/Utbildning/Exercises/ClustalX/index.shtm
http://bioinformatics.weizmann.ac.il/~pietro/Making_and_using_protein_MA/
http://homepage.usask.ca/~ctl271/857/paper1_overview.shtml
http://journal-ci.csse.monash.edu.au/ci/vol04/mulali/mulali.html
from: C. Notredame, "Recent progresses in multiple alignment: a survey", (2002) 3(1)

