Analysis of Biological Networks

- 1. Clustering
- 2. Random Walks
 - 3. Finding paths

Problem 1: Graph Clustering

- Finding dense subgraphs
- Applications
 - Identification of novel pathways, complexes, other modules?
- Example algorithm: MCODE

The Problem

 Given a protein interaction network find strongly connected components (clusters) with the network that may correspond to biological functional modules (complexes or pathways)

Some Algorithms

- MCL
 - Markov CLustering
- RNSC
 - Restricted Neighborhood Search Clustering
- SPC
 - Super Paramagnetic Clustering
- MCODE
 - Molecular COmplex DEtection

Markov Cluster Algorithm

- Simulates a flow on the graph.
- Calculates successive powers of the adjacency matrix
- Parameters
 - One parameter: *inflation parameter*
- The process partitions the graph (i.e., no overlapping clusters)
- The inflation parameter influence the number of clusters generated

Restricted Neighborhood Search Clustering

- Starts with an initial random clustering
- Tries to minimize a cost function by iteratively moving vertices between neighboring clusters.
- Parameters:
 - Number of iterations
 - Diversification frequency
 - and 5 other parameters

Super Paramagnetic Clustering

- Hierarchical algorithm inspired from an analogy with the physical properties of a ferromagnetic model subject to fluctuation at nonzero temperature.
- Parameters:
 - Number of nearest neighbors
 - Temperature

MCODE

- Weight each vertex by its local neighborhood density (using a modified version of clustering coefficient)
- Starting from the top weighted vertex, include neighborhood vertices with similar weights to the cluster
- Remove the vertices from the clusters
- Continue with the next highest weight vertex in the network
- May provide overlapping clusters

Vertex weighting

Clustering coefficient

$$CC_i = \frac{2e_i}{d_i(d_i - 1)}$$

where e_i is the number of edges between the neighbors of node *i* and d_i is the number of neighbors of node *i*.

k-core

- A part of a graph where every node is connected to other nodes with at least k edges (k=0,1,2,3...)
- Finding a k-core in a graph proceeds by progressively removing vertices of degree < k until all remaining vertices are connected to each other by degree k or more. Complexity: O(n²). The highest k-core is found by trying to find k-cores from one up until the highest degree in the neighborhood graph. Overall complexity: O(n³)

k-core example

Core-clustering Coefficient

 Product of the clustering coefficient of the highest k-core in the neighborhood of a vertex and k.

Problem 2: Finding relationships

- Random Walks on Graphs
 - Finding important nodes (Google's PageRank)
 - Function prediction
 - Adding new members to known pathways, complexes
 - Finding relationships of genes/diseases in gene-disease networks

Google's PageRank

- Assumption: A link from page A to page B is a recommendation of page B by the author of A (we say B is *successor* of A)
- →Quality of a page is related to its in-degree
- Recursion: Quality of a page is related to
 - its in-degree, and to
 - the quality of pages linking to it
- →PageRank [BP '98]

Definition of PageRank

- Consider the following infinite random walk (surf):
 - Initially the surfer is at a random page
 - At each step, the surfer proceeds
 - to a randomly chosen web page with probability d
 - to a randomly chosen successor of the current page with probability 1-d
- The PageRank of a page p is the fraction of steps the surfer spends at p in the limit.

Random walks with restarts on interaction networks

Consider a random walker that starts on a source node, s. At every time tick, the walker chooses randomly among the available edges (based on edge weights), or goes back to node s with probability c.

Random walks on graphs

• The probability $P_s(v)^{(t)}$, is defined as the probability of finding the random walker at node v at time t.

• The steady state probability $p_s(v)$ gives a measure of affinity to node *s*, and can be computed efficiently using iterative matrix operations.

Computing the steady state **p** vector

- Let s be the vector that represents the source nodes (i.e., s_i=1/n if node *i* is one the n source nodes, and 0 otherwise).
- Compute the following until p converges: p = (1-c)A^Tp + cs
 where A is the row normalized
 adjacency matrix and c is the restart
 probability.

Same example

Start nodes: p₁ and p₂

Random walk results

• Restart probability, c = 0.3

Problem 3: Finding paths

- Find the best simple path of length k starting from a given node in the graph
- Applications
 - The biological network is probabilistic (e.g. predicted network)
 - Signaling pathways of known size

Problem definition

- Given a set *I* of start vertices, what is the best simple path of length *k*?
- Simple path:
 - each vertex is visited once, no cycles
- Best simple path
 - That is the most probable path
 - i.e., if edge weights show probabilities, the probability of a path can be computed by:

$$\prod W(e_i)$$

for every edge $e \in path$

Additive edge weights

- For an easier formulation of the problem (similar to shortest paths) it is better to work with additive edge weights rather than multiplicative ones. So convert each edge probability to:
 - new_weight (e) = -log weight(e)
 - probabilities between 0 and 1 \rightarrow new weights positive values between 0 and Infinity
 - smaller probabilities will have larger weights and higher probabilities will have smaller weights → best path is the *shortest* path

Formal definition

- Weight of a path is the sum of the weights of its edges, and the *length* of a path is the number of vertices it contains.
- Given an undirected weighted graph G=(V,E,w) with |V|=n, |E|=m and a set I of start vertices, we wish to find, for each vertex v, a minimum-weight simple path of length k that starts with I and ends at v. If no such simple path exists, the algorithm should report this fact.
- Simple-path restriction makes the problem a difficult one.
 - without simple path restriction we can get the a shortest path of desired length by looping at smallest edges back and forth.

Dynamic programming

- The best simple-path of length k problem can be solved by dynamic programming.
- Define W(v, S) as the minimum weight of a simple path of length |S| which starts at some vertex in *I*, visits each vertex in *S*, and ends at *v*. Starting at smaller sets we can use the following recurrence function to fill in a table of W(v, S) for all v and S.

$$W(v,S) = \min_{u \in S - \{v\}} W(u, S - \{v\}) + w(u,v), |S| > 1$$

 $W(v, \{v\}) = 0$ if $v \in I$ and ∞ otherwise

• Complexity: O(*kn^k*)

Color coding

- Idea: Instead of using vertex ids (resulting in n^k possible subsets of length k), let's assign random colors (out of k possible colors) to the vertices.
- Instead of searching for paths with distinct vertices, search for paths with distinct colors (*colorful* paths)
- This reduces the possible sets to look for to (2^k)

Color-Coding

- Colorful paths can be found with dynamic programming
- Key point: a colorful path of length k contains a colorful path of length k-1.
- Store path information at each node for each subset of k colors
 - Only 2^k color subsets, rather than $O(n^k)$ node subsets

 $W(v,S) = \min_{u:c(u)\in (S-\{c(v)\})} W(u,S-\{c(v)\}) + w(u,v), |S| > 1$

 $W(v, \{c(v)\}) = 0$ if $v \in I$ and ∞ otherwise

- Runtime is $O(2^k km) \ll O(kn^k)$ brute force
- Space is $O(2^k n) << O(kn^k)$ brute force

Coloring Example

- Two different colorings on toy graph, *k*=3
- In coloring I, W(A, RGB) is built C->BC->ABC
- In coloring II, W(A,RGB) is built G->BG->ABG
- ABC is not colorful in coloring II