Analysis of Biological
Networks

1. Clustering
2. Random Walks
3. Finding paths



Problem 1: Graph Clustering

* Finding dense subgraphs

* Applications

— ldentification of novel pathways, complexes,
other modules?

« Example algorithm: MCODE



The Problem

« Gliven a protein interaction network find
strongly connected components (clusters)
with the network that may correspond to
biological functional modules (complexes
or pathways)




Some Algorithms

MCL
— Markov CLustering

RNSC
— Restricted Neighborhood Search Clustering

SPC
— Super Paramagnetic Clustering

MCODE
— Molecular COmplex DEtection



Markov Cluster Algorithm

Simulates a flow on the graph.

Calculates successive powers of the
adjacency matrix

Parameters
— One parameter: inflation parameter

The process partitions the graph (i.e., no
overlapping clusters)

The inflation parameter influence the
number of clusters generated



Restricted Neighborhood Search Clustering

« Starts with an initial random clustering

* Tries to minimize a cost function by
iteratively moving vertices between
neighboring clusters.

 Parameters:

— Number of iterations
— Diversification frequency
— .... and 5 other parameters



Super Paramagnetic Clustering

* Hierarchical algorithm inspired from an
analogy with the physical properties of a
ferromagnetic model subject to fluctuation

at nonzero temperature.

 Parameters:
— Number of nearest neighbors
— Temperature



MCODE

Weight each vertex by its local
neighborhood density (using a modified
version of clustering coefficient)

Starting from the top weighted vertex,
iInclude neighborhood vertices with similar
weights to the cluster

Remove the vertices from the clusters

Continue with the next highest weight
vertex in the network

May provide overlapping clusters



Vertex weighting

» Clustering coefficient
L 2e.
CC = f
d.(d. —1)

where e, Is the number of edges between the
neighbors of node i and d. Is the number of
neighbors of node i.



k-core

* A part of a graph where every node Is
connected to other nodes with at least k
edges (k=0,1,2,3...)

« Finding a k-core Iin a graph proceeds by progressively
removing vertices of degree < k until all remaining
vertices are connected to each other by degree k or
more. Complexity: O(n?). The highest k-core is found by
trying to find k-cores from one up until the highest
degree in the neighborhood graph. Overall complexity:
O(n3)



K-core example




Core-clustering Coefficient

* Product of the clustering coefficient of the
highest k-core In the neighborhood of a
vertex and k.



Problem 2: Finding relationships

Random Walks on Graphs

— Finding important nodes (Google’s
PageRank)

— Function prediction

— Adding new members to known pathways,
complexes

— Finding relationships of genes/diseases in
gene-disease networks



Google’s PageRank

« Assumption: A link from page Ato page B is a
recommendation of page B by the author of A
(we say B Is successor of A)

=> Quality of a page Is related to its in-degree

« Recursion: Quality of a page is related to
— Its in-degree, and to
— the quality of pages linking to it

= PageRank [BP ‘98]



Definition of PageRank

* Consider the following infinite random walk
(surf):
— Initially the surfer is at a random page

— At each step, the surfer proceeds
» to a randomly chosen web page with probability d

« to a randomly chosen successor of the current page with
probability 1-d

 The PageRank of a page p is the fraction of
steps the surfer spends at p in the limit.



Random walks with restarts on
Interaction networks

« Consider a random walker that starts on a
source node, s. At every time tick, the
walker chooses randomly among the
avallable edges (based on edge weights),
or goes back to node s with probability c.
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Random walks on graphs

. The probability P.()" is defined as the
probability of finding the random walker at
node v at time t.

» The steady state probability p,(v) gives
a measure of affinity to node s, and can be
computed efficiently using iterative matrix
operations.



Computing the steady
state p vector

* Let s be the vector that represents the
source nodes (I.e., s;=1/n if node I Is one
the n source nodes, and 0 otherwise).

« Compute the following until p converges:
p = (1-c)ATp + cs
where A Is the row normalized

adjacency matrix and c is the restart
probabllity.



Same example

 Start nodes: p, and p,



Random walk results

* Restart probability, c = 0.3
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Problem 3: Finding paths

* Find the best simple path of length k
starting from a given node in the graph

* Applications

— The biological network is probabillistic (e.qg.
predicted network)

— Signaling pathways of known size



Problem definition

* Glven a set | of start vertices, what is the
best simple path of length k?

« Simple path:
— each vertex Is visited once, no cycles

* Best simple path

— That is the most probable path

* l.e., If edge weights show probabilities, the
probability of a path can be computed by:

[ [wee)

for every edgeec path



Additive edge weights

* For an easier formulation of the problem
(similar to shortest paths) it is better to
work with additive edge weights rather
than multiplicative ones. So convert each
edge probabillity to:

— new_weight (e) = -log weight(e)

— probabilities between 0 and 1 — new weights positive
values between 0 and Infinity

— smaller probabilities will have larger weights and
higher probabilities will have smaller weights — best
path is the shortest path



Formal definition

« Weight of a path is the sum of the weights of its edges,

and the length of a path is the number of vertices it
contains.

« Given an undirected weighted graph G=(V,E,w) with
IV|=n, |E|]=m and a set | of start vertices, we wish to find,
for each vertex v, a minimum-weight simple path of
length k that starts with | and ends at v. If no such simple
path exists, the algorithm should report this fact.

« Simple-path restriction makes the problem a difficult one.

— without simple path restriction we can get the a shortest path of
desired length by looping at smallest edges back and forth.



Dynamic programming

* The best simple-path of length k problem can be
solved by dynamic programming.

« Define W(v, S) as the minimum welight of a
simple path of length |S| which starts at some
vertex in |, visits each vertex in S, and ends at v.
Starting at smaller sets we can use the following
recurrence function to fill in a table of W(v, S) for
all vand S.

Wi(v,5)= min W(u,S—{v})+w(u,v),|S|>1

ueS—{v}
Wi(v,{v})=0if v € I and oo otherwise

« Complexity: O(knk)



Color coding

 |dea: Instead of using vertex ids (resulting
in nk possible subsets of length k), let’s
assign random colors (out of k possible
colors) to the vertices.

* Instead of searching for paths with distinct
vertices, search for paths with distinct
colors (colorful paths)

* This reduces the possible sets to look for
to (2%



Color-Coding

Colorful paths can be found with dynamic
programming

Key point: a colorful path of length k contains a
colorful path of length k-1.

Store path information at each node for each
subset of k colors

— Only 2k color subsets, rather than O(nX) node subsets

Wi(v,S) = min Wi(u, S —{c(v)}) +w(u,v), |5 > 1
( . ) E:!.:(."(EJ!-\,'IEI{:'."‘—{f_"l_i-!."\;l]r\jl ( ' { ( )}:I ‘ ‘

Wi(v,{c(v)}) =0if v € I and oo otherwise
Runtime is O(2kkm) << O(kn¥) brute force
Space is O(2kn) << O(knk) brute force



Coloring Example

1 11

« Two different colorings on toy graph, k=3

 In coloring I, W(A,RGB) is built C->BC->ABC
* In coloring Il, W(A,RGB) is built G->BG->ABG
« ABC is not colorful in coloring Il



