
Analysis of Biological 

Networks

1. Clustering

2. Random Walks

3. Finding paths



Problem 1: Graph Clustering

• Finding dense subgraphs

• Applications

– Identification of novel pathways, complexes, 

other modules?

• Example algorithm: MCODE



The Problem

• Given a protein interaction network find 

strongly connected components (clusters) 

with the network that may correspond to 

biological functional modules (complexes 

or pathways)



Some Algorithms

• MCL

– Markov CLustering 

• RNSC

– Restricted Neighborhood Search Clustering

• SPC

– Super Paramagnetic Clustering

• MCODE

– Molecular COmplex DEtection 



Markov Cluster Algorithm

• Simulates a flow on the graph.

• Calculates successive powers of the 

adjacency matrix

• Parameters

– One parameter: inflation parameter

• The process partitions the graph (i.e., no 

overlapping clusters)

• The inflation parameter influence the 

number of clusters generated



Restricted Neighborhood Search Clustering

• Starts with an initial random clustering

• Tries to minimize a cost function by 

iteratively moving vertices between 

neighboring clusters.

• Parameters:

– Number of iterations

– Diversification frequency

– …. and 5 other parameters



Super Paramagnetic Clustering

• Hierarchical algorithm inspired from an 

analogy with the physical properties of a 

ferromagnetic model subject to fluctuation 

at nonzero temperature.

• Parameters:

– Number of nearest neighbors

– Temperature



MCODE

• Weight each vertex by its local 

neighborhood density (using a modified 

version of clustering coefficient)

• Starting from the top weighted vertex, 

include neighborhood vertices with similar 

weights to the cluster

• Remove the vertices from the clusters

• Continue with the next highest weight 

vertex in the network

• May provide overlapping clusters









Core-clustering Coefficient

• Product of the clustering coefficient of the 

highest k-core in the neighborhood of a 

vertex and k.



Problem 2: Finding relationships

• Random Walks on Graphs

– Finding important nodes (Google’s 

PageRank)

– Function prediction

– Adding new members to known pathways, 

complexes

– Finding relationships of genes/diseases in 

gene-disease networks



Google’s PageRank

• Assumption: A link from page A to page B is a 

recommendation of page B by the author of A

(we say B is successor of A)

Quality of a page is related to its in-degree

• Recursion: Quality of a page is related to

– its in-degree, and to 

– the quality of pages linking to it

PageRank [BP ‘98]



Definition of PageRank

• Consider the following infinite random walk

(surf):

– Initially the surfer is at a random page

– At each step, the surfer proceeds 

• to a randomly chosen web page with probability d

• to a randomly chosen successor of the current page with 

probability 1-d

• The PageRank of a page p is the fraction of 

steps the surfer spends at p in the limit.



Random walks with restarts on 

interaction networks

• Consider a random walker that starts on a 

source node, s. At every time tick, the 

walker chooses randomly among the 

available edges (based on edge weights), 

or goes back to node s with probability c. 
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Random walks on graphs

• The probability             ,  is defined as the 

probability of finding the random walker at 

node v at time t. 

• The steady state probability             gives 

a measure of affinity to node s, and can be 

computed efficiently using iterative matrix 

operations. 
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Computing the steady 

state p vector

• Let s be the vector that represents the 
source nodes (i.e., si=1/n if node i is one 
the n source nodes, and 0 otherwise).

• Compute the following until p converges:

p = (1-c)ATp + cs

where A is the row normalized 
adjacency matrix and c is the restart 
probability.



Same example

• Start nodes: p1 and p2



Random walk results

• Restart probability, c = 0.3



Problem 3: Finding paths

• Find the best simple path of length k

starting from a given node in the graph

• Applications

– The biological network is probabilistic (e.g. 

predicted network)

– Signaling pathways of known size



Problem definition

• Given a set I of start vertices, what is the 

best simple path of length k?

• Simple path:

– each vertex is visited once, no cycles

• Best simple path

– That is the most probable path

• i.e., if edge weights show probabilities, the 

probability of a path can be computed by:
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Additive edge weights

• For an easier formulation of the problem 

(similar to shortest paths) it is better to 

work with additive edge weights rather 

than multiplicative ones. So convert each 

edge probability to:
– new_weight (e) = -log weight(e)

– probabilities between 0 and 1 → new weights positive 

values between 0 and Infinity

– smaller probabilities will have larger weights and 

higher probabilities will have smaller weights → best 

path is the shortest path



Formal definition

• Weight of a path is the sum of the weights of its edges, 

and the length of a path is the  number of vertices it 

contains.

• Given an undirected weighted graph G=(V,E,w) with 

|V|=n, |E|=m and a set I of start vertices, we wish to find, 

for each vertex v, a minimum-weight simple path of 

length k that starts with I and ends at v. If no such simple 

path exists, the algorithm should report this fact.

• Simple-path restriction makes the problem a difficult one.

– without simple path restriction we can get the a shortest path of 

desired length by looping at smallest edges back and forth.



Dynamic programming

• The best simple-path of length k problem can be 

solved by dynamic programming.

• Define W(v , S) as the minimum weight of a 

simple path of length |S| which starts at some 

vertex in I, visits each vertex in S, and ends at v. 

Starting at smaller sets we can use the following 

recurrence function to fill in a table of W(v , S) for 

all v and S.

• Complexity: O(knk)



Color coding

• Idea: Instead of using vertex ids (resulting 

in nk possible subsets of length k), let’s 

assign random colors (out of k possible 

colors) to the vertices.

• Instead of searching for paths with distinct 

vertices, search for paths with distinct 

colors (colorful paths)

• This reduces the possible sets to look for 

to (2k)



Color-Coding

• Colorful paths can be found with dynamic 
programming

• Key point: a colorful path of length k contains a 
colorful path of length k-1.

• Store path information at each node for each 
subset of k colors
– Only 2k color subsets, rather than O(nk) node subsets

• Runtime is O(2kkm) << O(knk)   brute force

• Space is O(2kn) << O(knk)   brute force



Coloring Example

• Two different colorings on toy graph, k=3

• In coloring I, W(A,RGB) is built C->BC->ABC

• In coloring II, W(A,RGB) is built G->BG->ABG

• ABC is not colorful in coloring II
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