
Analysis of Biological

Networks

1. Clustering

2. Random Walks

3. Finding paths

Problem 1: Graph Clustering

• Finding dense subgraphs

• Applications

– Identification of novel pathways, complexes,

other modules?

• Example algorithm: MCODE

The Problem

• Given a protein interaction network find

strongly connected components (clusters)

with the network that may correspond to

biological functional modules (complexes

or pathways)

Some Algorithms

• MCL

– Markov CLustering

• RNSC

– Restricted Neighborhood Search Clustering

• SPC

– Super Paramagnetic Clustering

• MCODE

– Molecular COmplex DEtection

Markov Cluster Algorithm

• Simulates a flow on the graph.

• Calculates successive powers of the

adjacency matrix

• Parameters

– One parameter: inflation parameter

• The process partitions the graph (i.e., no

overlapping clusters)

• The inflation parameter influence the

number of clusters generated

Restricted Neighborhood Search Clustering

• Starts with an initial random clustering

• Tries to minimize a cost function by

iteratively moving vertices between

neighboring clusters.

• Parameters:

– Number of iterations

– Diversification frequency

– …. and 5 other parameters

Super Paramagnetic Clustering

• Hierarchical algorithm inspired from an

analogy with the physical properties of a

ferromagnetic model subject to fluctuation

at nonzero temperature.

• Parameters:

– Number of nearest neighbors

– Temperature

MCODE

• Weight each vertex by its local

neighborhood density (using a modified

version of clustering coefficient)

• Starting from the top weighted vertex,

include neighborhood vertices with similar

weights to the cluster

• Remove the vertices from the clusters

• Continue with the next highest weight

vertex in the network

• May provide overlapping clusters

Core-clustering Coefficient

• Product of the clustering coefficient of the

highest k-core in the neighborhood of a

vertex and k.

Problem 2: Finding relationships

• Random Walks on Graphs

– Finding important nodes (Google’s

PageRank)

– Function prediction

– Adding new members to known pathways,

complexes

– Finding relationships of genes/diseases in

gene-disease networks

Google’s PageRank

• Assumption: A link from page A to page B is a

recommendation of page B by the author of A

(we say B is successor of A)

Quality of a page is related to its in-degree

• Recursion: Quality of a page is related to

– its in-degree, and to

– the quality of pages linking to it

PageRank [BP ‘98]

Definition of PageRank

• Consider the following infinite random walk

(surf):

– Initially the surfer is at a random page

– At each step, the surfer proceeds

• to a randomly chosen web page with probability d

• to a randomly chosen successor of the current page with

probability 1-d

• The PageRank of a page p is the fraction of

steps the surfer spends at p in the limit.

Random walks with restarts on

interaction networks

• Consider a random walker that starts on a

source node, s. At every time tick, the

walker chooses randomly among the

available edges (based on edge weights),

or goes back to node s with probability c.

s0.2 0.4

0.40.1

0.3

0.6
0.10.2

Random walks on graphs

• The probability , is defined as the

probability of finding the random walker at

node v at time t.

• The steady state probability gives

a measure of affinity to node s, and can be

computed efficiently using iterative matrix

operations.

)()(t

s vp

)(vps

Computing the steady

state p vector

• Let s be the vector that represents the
source nodes (i.e., si=1/n if node i is one
the n source nodes, and 0 otherwise).

• Compute the following until p converges:

p = (1-c)ATp + cs

where A is the row normalized
adjacency matrix and c is the restart
probability.

Same example

• Start nodes: p1 and p2

Random walk results

• Restart probability, c = 0.3

Problem 3: Finding paths

• Find the best simple path of length k

starting from a given node in the graph

• Applications

– The biological network is probabilistic (e.g.

predicted network)

– Signaling pathways of known size

Problem definition

• Given a set I of start vertices, what is the

best simple path of length k?

• Simple path:

– each vertex is visited once, no cycles

• Best simple path

– That is the most probable path

• i.e., if edge weights show probabilities, the

probability of a path can be computed by:

pathe

iew
 edgeevery for

)(

Additive edge weights

• For an easier formulation of the problem

(similar to shortest paths) it is better to

work with additive edge weights rather

than multiplicative ones. So convert each

edge probability to:
– new_weight (e) = -log weight(e)

– probabilities between 0 and 1 → new weights positive

values between 0 and Infinity

– smaller probabilities will have larger weights and

higher probabilities will have smaller weights → best

path is the shortest path

Formal definition

• Weight of a path is the sum of the weights of its edges,

and the length of a path is the number of vertices it

contains.

• Given an undirected weighted graph G=(V,E,w) with

|V|=n, |E|=m and a set I of start vertices, we wish to find,

for each vertex v, a minimum-weight simple path of

length k that starts with I and ends at v. If no such simple

path exists, the algorithm should report this fact.

• Simple-path restriction makes the problem a difficult one.

– without simple path restriction we can get the a shortest path of

desired length by looping at smallest edges back and forth.

Dynamic programming

• The best simple-path of length k problem can be

solved by dynamic programming.

• Define W(v , S) as the minimum weight of a

simple path of length |S| which starts at some

vertex in I, visits each vertex in S, and ends at v.

Starting at smaller sets we can use the following

recurrence function to fill in a table of W(v , S) for

all v and S.

• Complexity: O(knk)

Color coding

• Idea: Instead of using vertex ids (resulting

in nk possible subsets of length k), let’s

assign random colors (out of k possible

colors) to the vertices.

• Instead of searching for paths with distinct

vertices, search for paths with distinct

colors (colorful paths)

• This reduces the possible sets to look for

to (2k)

Color-Coding

• Colorful paths can be found with dynamic
programming

• Key point: a colorful path of length k contains a
colorful path of length k-1.

• Store path information at each node for each
subset of k colors
– Only 2k color subsets, rather than O(nk) node subsets

• Runtime is O(2kkm) << O(knk) brute force

• Space is O(2kn) << O(knk) brute force

Coloring Example

• Two different colorings on toy graph, k=3

• In coloring I, W(A,RGB) is built C->BC->ABC

• In coloring II, W(A,RGB) is built G->BG->ABG

• ABC is not colorful in coloring II

F

D E

G H

C
A B

F

D E

G H

C
A B

I II

