Biological networks

Construction and Analysis

Interactions in a cell

Interactions \rightarrow Pathways \rightarrow Network

- A collection of interactions defines a network
- Pathways are subsets of networks
- All pathways are networks of interactions, however not all networks are pathways!
- Difference in the level of annotation or understanding
- We can define a pathway as a biological network that relates to a known physiological process or complete function

A biological network

The network around the BRCA1 gene in human.
The snapshot is from the STRING Database at string.embl.de

Types of protein interactions

- Metabolic and signaling (genetic) pathways
- Morphogenic pathways in which groups of proteins participate in the same cellular function during a developmental process
- Structural complexes and molecular machines in which numerous proteins are brought together

Signaling pathways

Morphogenic pathways

Structural complexes and molecular machines

ATPase

Experimental methods

- Tagged Fusion Proteins
- Coimmunoprecipitation
- Yeast Two-hybrid
- Biacore
- Atomic Force Microscopy (AFM)
- Fluorescence Resonace Energy Trasfer (FRET)
- X-ray Diffraction

Where is the data?

- Results of high-throughput experiments are usually collected in databases
- What about low-throughput experiments?

The literature

- Thousands of small scale, low throughput experiments performed in labs worldwide for years
- The results are published as articles
- So we can collect this information to get individual data about pairs of proteins/genes
-What is the difficulty?

Text mining

- Hundreds of thousands of unstructured free text articles should be processed automatically to extract this information
- Challenges
- Non standard naming of genes, proteins, processes
- Understanding natural language
- Concerns
- Accuracy?
- Coverage?

BioCreative Challenge

- A competition of algorithms for text mining
- Problems
- Identify whether an article contains the relevant information or not
- Extract the information

What else can we do?

- Computational prediction of relationships between pairs of genes/proteins
- Data sources for prediction
- Sequence data
- Genome data:
- Interologs
- Existence of genes in multiple organisms
- Locations of the genes
- Bio-image data
- Gene Ontology annotations
- Microarray experiments
- Sub-cellular localization data

Probabilistic network approach

- Each "interaction" link between two proteins has a posterior probability of existence, based on the quality of supporting evidence.

Computing the posterior

- Using Bayes' rule and with naïve Bayes assumption that different evidence types are independent of one another given the truth about interaction:

$$
p(y=1 \mid \mathbf{z})=\frac{\left(\prod_{i=1}^{T} p\left(z_{i} \mid y=1\right)\right) \cdot p(y=1)}{\sum_{j \in 0,1}\left(\left(\prod_{i=1}^{T} p\left(z_{i} \mid y=j\right)\right) \cdot p(y=j)\right)}
$$

Asthana et al. Genome Research, 13:1170:1174 (2004)

Bayesian Network approach

- Jansen et al. (2003) Science. Lee et al. (2004) Science.
- Combine individual probabilities of likelihood computed for each data source into a single likelihood (or probability)
- Naïve Bayes:
- Assume independence of data sources
- Combine likelihoods using simple multiplication

Bayesian Network approach

MIPS function
 Essentiality

Jansen et al. (2003) Science

Bayesian Approach

- A scalar score for a pair of genes is computed separately for each information source.
- Using gold positives (known interacting pairs) and gold negatives (known non-interacting pairs) interaction likelihoods for each information source is computed.
- The product of likelihoods can be used to combine multiple information sources
- Assumption: A score from a source is independent from a score from another source.

Naïve Bayes vs. Fully Connected Bayes

- In Naïve Bayes approach we can find the correlation of each data source with the gold standards separately and then compute the combined likelihood of a protein pair by just multiplying the individual likelihoods.

$$
L\left(f_{1} \ldots f_{N}\right)=\prod_{i=1}^{N} L\left(f_{i}\right)=\prod_{i=1}^{N} \frac{P\left(f_{i} \mid \text { pos }\right)}{P\left(f_{i} \mid n e g\right)}
$$

Computing the likelihoods

- Partition the pair scores of an information source into bins and provide likelihoods for score-ranges
- E.g. Using the microarray information source and using Pearson correlation for scoring protein pairs you may get scores between -1 and 1. You want to know what is the likelihood of interaction for a protein pair that gets a Pearson correlation of 0.6.

Partitioning the scores

pearson corr.	likelihood
$(0.8,1.0]$	
$(0.6,0.8]$	
$(0.4,0.6]$	
$(0.2,0.4]$	
$(0.0,0.2]$	
$(-0.2,0.0]$	
$(-0.4,-0.2]$	
$(-0.6,-0.4]$	
$(-0.8,-0.6]$	
$[-1.0,-0.8]$	

Computing the likelihood

P(Score | Interaction) / P (Interaction)

L =
P(Score | ~Interaction) / P (~Interaction)

- Example

Example

- Calculating the likelihood ratio for
expression dataset.

Expression correlation		\# protein pairs	Gold standard overlap					P (exp\|pos)	P (exp\|neg)	L	
		pos	neg	sum(pos)	sum(neg)	$\text { sum(pos })$ sum(neg)					
$\stackrel{\text { a }}{\text { - }}$	0.9		678	16	45	16	45	0.36	$2.10 \mathrm{E}-03$	$1.68 \mathrm{E}-05$	124.9
	0.8	4,827	137	563	153	608	0.25	$1.80 \mathrm{E}-02$	$2.10 \mathrm{E}-04$	85.5	
	0.7	17,626	530	2,117	683	2,725	0.25	$6.96 \mathrm{E}-02$	$7.91 \mathrm{E}-04$	88.0	
	0.6	42,815	1,073	5,597	1,756	8,322	0.21	$1.41 \mathrm{E}-01$	$2.09 \mathrm{E}-03$	67.4	
	0.5	96,650	1,089	14,459	2,845	22,781	0.12	$1.43 \mathrm{E}-01$	$5.40 \mathrm{E}-03$	26.5	
	0.4	225,712	993	35,350	3,838	58,131	0.07	$1.30 \mathrm{E}-01$	$1.32 \mathrm{E}-02$	9.9	
	0.3	529,268	1,028	83,483	4,866	141,614	0.03	$1.35 \mathrm{E}-01$	$3.12 \mathrm{E}-02$	4.3	
	0.2	1,200,331	870	183,356	5,736	324,970	0.02	1.14E-01	$6.85 \mathrm{E}-02$	1.7	
	0.1	2,575,103	739	368,469	6,475	693,439	0.01	$9.71 \mathrm{E}-02$	$1.38 \mathrm{E}-01$	0.7	
	0	9,363,627	894	1,244,477	7,369	1,937,916	0.00	1.17E-01	$4.65 \mathrm{E}-01$	0.3	
	-0.1	2,753,735	164	408,562	7,533	2,346,478	0.00	2.15E-02	$1.53 \mathrm{E}-01$	0.1	
	-0.2	1,241,907	63	203,663	7,596	2,550,141	0.00	$8.27 \mathrm{E}-03$	$7.61 \mathrm{E}-02$	0.1	
	-0.3	484,524	13	84,957	7,609	2,635,098	0.00	$1.71 \mathrm{E}-03$	$3.18 \mathrm{E}-02$	0.1	
	-0.4	160,234	3	28,870	7,612	2,663,968	0.00	$3.94 \mathrm{E}-04$	$1.08 \mathrm{E}-02$	0.0	
	-0.5	48,852	2	8,091	7,614	2,672,059	0.00	2.63E-04	$3.02 \mathrm{E}-03$	0.1	
	-0.6	17,423	-	2,134	7,614	2,674,193	0.00	$0.00 \mathrm{E}+00$	$7.98 \mathrm{E}-04$	0.0	
	-0.7	7,602	-	807	7,614	2,675,000	0.00	$0.00 \mathrm{E}+00$	$3.02 \mathrm{E}-04$	0.0	
	-0.8	2,147	-	261	7,614	2,675,261	0.00	$0.00 \mathrm{E}+00$	$9.76 \mathrm{E}-05$	0.0	
	-0.9	67	-	12	7,614	2,675,273	0.00	$0.00 \mathrm{E}+00$	$4.49 \mathrm{E}-06$	0.0	
Sum		18,773,128	7,614	2,675,273	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

Example

- Calculating the likelihood ratio for the Biological Process (GO) dataset.

GO biological process similarity		\# protein pairs	Gold standard overlap					P(GO\|pos)	P(GO\|neg)	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l} \hline \begin{array}{l} \text { sum(pos }) \\ \text { sum(neg) } \end{array} \\ \hline \end{array}$					
	1-9		4,789	88	819	88	819	0.11	1.17E-02	$1.27 \mathrm{E}-03$	9.2
	$10-99$	20,467	555	3,315	643	4,134	0.16	$7.38 \mathrm{E}-02$	$5.14 \mathrm{E}-03$	14.4	
	100-1000	58,738	523	10,232	1,166	14,366	0.08	$6.95 \mathrm{E}-02$	$1.59 \mathrm{E}-02$	4.4	
	1000--10000	152,850	1,003	28,225	2,169	42,591	0.05	$1.33 \mathrm{E}-01$	$4.38 \mathrm{E}-02$	3.0	
	10000 -- Inf	2,909,442	5,351	602,434	7,520	645,025	0.01	7.12E-01	$9.34 \mathrm{E}-01$	0.8	
Sum		3,146,286	7,520	645,025	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

- Given a pair of proteins with microarray Pearson correlation 0.65 and GO biological process similarity 2500, what is the likelihood of interaction?

$$
67.4 * 3.0=202.2
$$

Protein interaction networks

- Large scale (genome wide networks):

ProNet (Asthana et al.) Yeast
3,112 nodes 12,594 edges

Analyzing Protein Networks

- Predict members of a partially known protein complex/pathway.
- Infer individual genes' functions on the basis of linked neighbors.
- Find strongly connected components, clusters to reveal unknown complexes.
- Find the best interaction path between a source and a target gene.

Simple analysis

The network can be thresholded to reveal clusters of interacting proteins

Advanced Analysis

- Clustering algorithms
- MCL (Markov CLustering)
- RNSC (Restricted Neighborhood Search Clustering)
- SPC (Super Paramagnetic Clustering)
- MCODE (Molecular COmplex DEtection)
- and many more
- "Evaluation of clustering algorithms for protein-protein interaction networks," by Brohee and van Helden in BMC Bioinformatics, November 2006.

Markov Cluster Algorithm

- Simulates a flow on the graph.
- Calculates successive powers of the adjacency matrix
- Parameters
- One parameter: inflation parameter
- The process partitions the graph (i.e., no overlapping clusters)
- The inflation parameter influence the number of clusters generated

Restricted Neighborhood Search Clustering

- Starts with an initial random clustering
- Tries to minimize a cost function by iteratively moving vertices between neighboring clusters.
- Parameters:
- Number of iterations
- Diversification frequency
- and 5 other parameters

Super Paramagnetic Clustering

- Hierarchical algorithm inspired from an analogy with the physical properties of a ferromagnetic model subject to fluctuation at nonzero temperature.
- Parameters:
- Number of nearest neighbors
- Temperature

MCODE

- Weight each vertex by its local neighborhood density (using a modified version of clustering coefficient using k-cores)
- Starting from the top weighted vertex, include neighborhood vertices with similar weights to the cluster
- Post-process to remove or add new vertices
- Continue with the next highest weight vertex in the network
- May provide overlapping clusters

Vertex weighting

- Clustering coefficient

$$
C C_{i}=\frac{2 e_{i}}{d_{i}\left(d_{i}-1\right)}
$$

where e_{i} is the number of edges between the neighbors of node i and d_{i} is the number of neighbors of node i.

k-core

- A part of a graph where every node is connected to other nodes with at least k edges ($k=0,1,2,3 \ldots$)
- Finding a k-core in a graph proceeds by progressively removing vertices of degree $<k$ until all remaining vertices are connected to each other by degree k or more. Complexity: $\mathrm{O}\left(n^{2}\right)$. The highest k-core is found by trying to find k-cores from one up until the highest degree in the neighborhood graph. Overall complexity: $\mathrm{O}\left(n^{3}\right)$

k-core example

Core-clustering Coefficient

- Product of the clustering coefficient of the highest k -core in the neighborhood of a vertex and k.

Features of the algorithms

	Restricted Neighborhood Search Clustering (RNSC)	Markov Clustering (MCL)	Molecular Complex Detection (MCODE)	Super-paramagnetic clustering (SPC)
Type	Local search cost based	Flow simulation	Local neighbourhood density search	Hierarchical
Allow multiple assignations	No	No	Yes	No
Allow unassigned nodes Edge-weighted graphs supported	No	No	No	Yes

