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FASTAFASTA

• Derived from logic of the dot plot• Derived from logic of the dot plot 
– compute best diagonals from all frames of 

alignment
• Word method looks for exact matches 

between words in query and test sequence
construct word position tables– construct word position tables

– DNA words are usually 6 bases
– protein words are 1 or 2 amino acids
– only searches for diagonals in region of word 
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y g g
matches = faster searching



Steps of FASTA

1. Find k-tups in the two sequences (k=1-2 
for proteins, 4-6 for DNA sequences)

2 Create a table of positions for those k-tups2. Create a table of positions for those k tups
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The offset tableThe offset table
position 1 2 3 4 5 6 7 8 9 10 11
proteinA n c s p t a . . . . . 
proteinB . . . . . a c s p r k

position in          offset
amino acid protein A protein B pos A - posBamino acid       protein A protein B   pos A posB
-----------------------------------------------------
a                   6         6              0
c                   2         7             -5
k                   - 11
n                   1         -
p                   4         9             -5
r - 10r                   10
s                   3         8             -5
t                   5         -
-----------------------------------------------------
Note the common offset for the 3 amino acids c,s and p
A possible alignment is thus quickly found -
protein 1 n c s p t a

| | |
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| | | 
protein 2 a c s p r k



FASTA
3.    Select top 10 scoring “local diagonals” 

ith t h d i t h b twith matches and mismatches but no gaps.

4.    Rescan top 10 diagonals (representing 
alignments), score with PAM250 (proteins) a g e ts), sco e w t 50 (p ote s)
or DNA scoring matrix. Trim off the ends 
of the regions to achieve highest scoresof the regions to achieve highest scores.  
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FASTA Algorithm
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FASTA

5.   After finding the best initial region, 
FASTA performs a DP global alignment 
centered on the best initial region.g
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FASTA Ali tFASTA Alignments
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History of sequence searching

• 1970: NW
• 1981: SW• 1981: SW
• 1985: FASTA
• 1990: BLAST

1997 BLAST2• 1997: BLAST2 
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The purpose of sequence alignment

• Homology
• Function identificationFunction identification

– about 70% of the genes of M. jannaschii were 
assigned a function using sequence similarityassigned a function using sequence similarity 
(1997)
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Similarity

• How much similar do the sequences have to be 
to infer homology?gy

T ibili i h i il i i d d• Two possibilities when similarity is detected:
– The similarity is by chancey y
– They evolved from a common ancestor – hence, 

have similar functionshave similar functions
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Measures of similarityMeasures of similarity

• Percent identity:
– 40% similar, 70% similar% , %
– problems with percent identity?

S i t i• Scoring matrices
– matching of some amino acids may be more 

significant than matching of other amino acids
– PAM matrix in 1970, BLOSUM in 1992,
– problems?
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Statistical Significance
G l id i l f i f i• Goal: to provide a universal measure for inferring 
homology

H diff t i th lt f d t h– How different is the result from a random match, or a 
match between unrelated requences?

– Given a set of sequences not related to the query (or a setGiven a set of sequences not related to the query (or a set 
of random sequences), what is the probability of finding a 
match with the same alignment score by chance?

• Different statistical measures
– p-value
– E-value
– z-score
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Statistical significance measures
• p-value: the probability that at least one sequence will 

produce the same score by chance

• E-value: expected number of sequences that willE value: expected number of sequences that will 
produce same or better score by chance

• z-score: measures how much standard deviations 
b th f th di t ib tiabove the mean of the score distribution
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How to compute statistical significance?How to compute statistical significance?

• Significance of a match run• Significance of a match-run
– Erdös-Renyí

• Significance of local alignments without gaps
– Karlin-Altschul statisticsKarlin-Altschul statistics
– Scoring matrices revisited

• Significance of local alignments with gaps
• Significance of global alignmentsSignificance of global alignments
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Analysis of coin tosses

• Let black circles indicate heads
• Let p be the probability of a “head”

– For a “fair” coin, p = 0.5, p
• Probability of 5 heads in a row is (1/2)^5=0.031
• The expected number of times that 5H occurs in• The expected number of times that 5H occurs in 

above 14 coin tosses is 10*0.031 = 0.31
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Analysis of coin tosses

• The expected number of a length l run of heads in n
tosses.

llnplE ≅)(

• What is the expected length R of the longest match 
in n tosses?in n tosses?

R1 )(lRRnp=1 )(log /1 nR p=
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Analysis of coin tosses

• (Erdös-Rényi) If there are n throws, then the 
expected length R of the longest run of p g g
heads is

R = log (n)R = log1/p (n)

18



Example 

• Example: Suppose n = 20 for a “fair” coin
R=log2(20)=4.32

– In other words: in 20 coin tosses we expect a run of heads of p
length 4.32, once.

• Trick is how to model DNA (or amino acid) 
li t i tsequence alignments as coin tosses.
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Analysis of an alignment

• Probability of an individual match p = 0.05
• Expected number of matches: 10x8x0.05 = 4Expected number of matches: 10x8x0.05  4
• Expected number of two successive matches

10 8 0 05 0 05 0 2≅
20

10x8x0.05x0.05 = 0.2≅



Matching runsMatching runs
in sequence alignments

• Consider two sequences a1..m and b1..n
• If the probability of occurrence for every 

symbol is p, then a match of a residue aiy p i
with bj is p, and a match of length l from 
ai,bj to ai+l-1,bj+l-1 is pl.i, j i+l 1, j+l 1 p

• The head-run problem of coin tosses  
corresponds to the longest run of matchescorresponds to the longest run of matches 
along the diagonals
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Matching runsMatching runs
in sequence alignments

• There are m-l+1 x n-l+1 places where the match 
could startcould start

lmnplE ≅)(

• The expected length of the longest match can be 
i d

p)(

approximated as
R=log1/p(mn)

where m and n are the lengths of the two sequences.
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Matching runsMatching runs
in sequence alignments

• So suppose m = n = 10 and we’re looking at 
DNA sequences

R=log4(100)=3 32R log4(100) 3.32
• This analysis makes assumptions about the 

b i i ( if ) dbase composition (uniform) and no gaps, 
but it’s a good estimate.
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Statistics for matching runs
• Statistics of matching runs:

llE ≅)(
• Length versus score?

lmnplE ≅)(
Length versus score?
– Consider all mismatches receive a negative score of -∞ and 

aibj match receives a positive score of si,j.j ,j

• What is the expected number of matching runs with a 
score x or higher?

Using this theory of matching runs Karlin and Altschul

xmnpxSE ∝>= )(
– Using this theory of matching runs, Karlin and Altschul 

developed a theory for statistics of local alignments without 
gaps (extended this theory to allow for mismatches).
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Statistics of local alignments 
without gapsg p

• A scoring matrix which satisfy the following 
constraint:
– The expected score of a single match obtained by a scoring 

matrix should be negative. 

Oth i ?

0)(
, ,, <=∑ ji jijiji sppsE

– Otherwise?
• Arbitrarily long random sequences will get higher scores just because 

they are long, not because there’s a significant match.

• If this requirement is met then the expected number of 
alignments with score x or higher is given by:

xKmnexSE λ−=≥ )(
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Statistics of local alignments 
without gaps

xKmnexSE λ−=≥ )(

– K < 1 is a proportionality constant that corrects the mn “space 
f ” f h f h h ll i d dfactor” for the fact that there are not really mn independent 
places that could have produced score S ≥ x.

– K has little effect on the statistical significance of a similarityK has little effect on the statistical significance of a similarity 
score

– λ is closely related to the scoring matrix used and it takes into 
account that the scoring matrices do not contain actual 
probabilities of co-occurence, but instead a scaled version of 
those values To understand how λ is computed we have tothose values. To understand how λ is computed, we have to 
look at the construction of scoring matrices.
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Scoring Matricesg
• In 1970s there were few protein sequences available. 

Dayhoff used a limited set of families of protein 
sequences multiply aligned to infer mutation 
likelihoods.
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Scoring Matricesg

• Dayhoff represented the similarity of amino acids as a 
log odds ratio:g

where q is the observed frequency of co occurrence and p p

)/log( jiijij ppqs =
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where qij is the observed frequency of co-occurrence, and pi, pj
are the individual frequencies.



ExampleExample

• If M occurs in the sequences with 0 01• If M occurs in the sequences with 0.01 
frequency and L occurs with 0.1 frequency. By 

d i i t 0 001 i idrandom pairing, you expect 0.001 amino acid 
pairs to be M-L. If the observed frequency of 
M-L is actually 0.003, score of matching M-L 
will be
– log2(3)=1.585 bits or loge(3) = ln(3) = 1.1 nats

• Since scoring matrices are usually provided as• Since, scoring matrices are usually provided as 
integer matrices, these values are scaled by a constant 
factor λ is approximately the inverse of the original
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factor. λ is approximately the inverse of the original 
scaling factor.



How to compute λ

• Recall that:
)/log( jiijij ppqs =λ )g( jiijij ppq

ijs
jiij eppq λ=⇒

and: 1∑∑
n i

jiij ppq

and: 1
1 1

=∑∑
= =i j

ijq Sum of observed frequencies is 1.

Gi th f i f
1

1 1

=⇒∑∑
= =

n

i

i

j

s
ji

ijepp λ
Given the frequencies of 
individual amino acids and 
the scores in the matrix, λ
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j the scores in the matrix, λ
can be estimated.



Extreme value distribution

• Consider an experiment that obtains the 
maximum value of locally aligning a random y g g
string with query string (without gaps).  Repeat 
with another random string and so on Plot thewith another random string and so on.  Plot the 
distribution of these maximum values.  

• The resulting distribution is an extreme value 
distribution, called a Gumbel distribution. 
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Normal vs. Extreme Value Distribution

0.4

Normal distribution:Normal Normal distribution: 

y = (1/√2π)e-x2/2

Extreme
Value

Extreme value distribution:
Value y = e-x – e-x

0.0
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Local alignments with gaps

• The EVD distribution• The EVD distribution 
is not always observed.
Theory of local alignments
with gaps is not well studiedg p
as in without gaps.
Mostly empirical resultsMostly empirical results.
For example, BLAST allows
only a certain range of
gap penalties.
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BLAST statistics

• Pre-computed λ and K values for different p
scoring matrices and gap penalties are used for 
faster computationfaster computation.

• Raw score is converted to bit score:
lSλ

• E-value is computed using
2ln
ln KSSbit

−
=
λ

• E-value is computed using
bitSsssE −⋅= 2

• m is query size n is database size and L is the
))(( LNnLmsss ⋅−−=
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• m is query size, n is database size and L is the 
typical length of maximal scoring alignment.



FASTA Statistics
• FASTA tries to estimate the probability 

distribution of alignments for every querydistribution of alignments for every query.
• For any query sequence, a large collection of 

i h d d i h h f hscores is gathered during the search of the 
database. 

• They estimate the parameters of the EVD 
distribution based on the histogram of scoresdistribution based on the histogram of scores.

• Advantages:
– reliable statistics for different parameters

• different databases, different gap penalties, different 
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, g p p ,
scoring matrices, queries with different amino acid 
compositions.



Statistical significance
th lanother example

• Suppose we have a huge graph with weighted• Suppose, we have a huge graph with weighted 
edges and we want to find strongly connected 
clusters of nodes.

• Suppose, an algorithm for this task is given.Suppose, an algorithm for this task is given.
• The algorithms gives you the best hundred 

l t i thi hclusters in this graph.
• How do you define best?y
• Cluster size?

l i h f d ?
36

• Total weight of edges?



Statistical significance

• How different is a found cluster of size N fromHow different is a found cluster of size N from 
a random cluster of the same size?
Thi ill bl i f• This measure will enable comparison of 
clusters of different sizes.
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Statistical significance of a cluster

• Use maximum spanning tree weight of aUse maximum spanning tree weight of a 
cluster as a quantitative representation of that 
clustercluster.

• And see what 
values random 
clusters getclusters get.
(sample many
random
l t )
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Statistical significance of a cluster

Looks like an exponential 
decay. We may fit an 

ti l di t ib ti thiexponential distribution on this 
histogram.

λxey λλ −=
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Fitting an exponentialFitting an exponential

λxey λλ −=
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Statistical significance of a cluster

After we fit an exponential distribution, we compute the probability that 
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another random cluster gets a higher score than the score of found cluster.
wkewxP λ−=≥ )(



Examples

• λ5 = 1.7 for clusters of size 5 and λ20 = 0.36 for 
clusters of size 20.

• Suppose you have found a cluster of size 5Suppose you have found a cluster of size 5 
with weights of its edges sum up to 15 and you 
h f d l t f i 20 ith i ht 45have found a cluster of size 20 with weight 45 
which one would you prefer?

1215 10428)15( 5 −− ×==≥ λexP 1042.8)15( 5 ×==≥ exP
845 10219)45( 20 −− ×≥ λP
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81021.9)45( 20 ×==≥ exP


