
Suffix Trees andSuffix Trees and
Suffix Arraysy

Some problemsp
• Given a pattern P = P[1..m], find all p []

occurrences of P in a text S = S[1..n]
• Another problem:• Another problem:

– Given two strings S1[1..n1] and S2[1..n2] find their
l t b t ilongest common substring.

• find i, j, k such that S1[i .. i+k-1] = S2[j .. j+k-1] and k is
l iblas large as possible.

• Any solutions? How do you solve these
problems (efficiently)?

Exact string matchingg g
• Finding the pattern P[1..m] in S[1..n] can be g p [] []

solved simply with a scan of the string S in
O(m+n) time However when S is very longO(m n) time. However, when S is very long
and we want to perform many queries, it
would be desirable to have a searchwould be desirable to have a search
algorithm that could take O(m) time.

• To do that we have to preprocess S. The
preprocessing step is especially useful inpreprocessing step is especially useful in
scenarios where the text is relatively constant
over time (e g a genome) and when searchover time (e.g., a genome), and when search
is needed for many different patterns.

Applications in Bioinformaticspp
• Multiple genome alignmentp g g

– Michael Hohl et al. 2002
– Longest common substring problem– Longest common substring problem
– Common substrings of more than two strings

• Selection of signature oligonucleotides for
microarraysy
– Kaderali and Schliep, 2002

Identification of sequence repeats• Identification of sequence repeats
– Kurtz and Schleiermacher, 1999

Suffix trees
• Any string of length m can be degenerated

i t ffiinto m suffixes.
– abcdefgh (length: 8)g (g)
– 8 suffixes:

• h gh fgh efgh defgh cdefgh bcefgh abcdefghh, gh, fgh, efgh, defgh, cdefgh, bcefgh, abcdefgh

• The suffixes can be stored in a suffix-tree and
thi t b t d i O() tithis tree can be generated in O(n) time

• A string pattern of length m can be searched g p g
in this suffix tree in O(m) time.

Whereas a regular sequential search would take– Whereas, a regular sequential search would take
O(n) time.

History of suffix treesy
• Weiner, 1973: suffix trees introduced, linear-

time construction algorithm
• McCreight 1976: reduced space complexity• McCreight, 1976: reduced space-complexity
• Ukkonen, 1995: new algorithm, easier to

describe
• In this course we will only cover a naiveIn this course, we will only cover a naive

(quadratic-time) construction.

Definition of a suffix tree
• Let S=S[1..n] be a string of length n over a [] g g

fixed alphabet Σ. A suffix tree for S is a tree
with n leaves (representing n suffixes) andwith n leaves (representing n suffixes) and
the following properties:

Every internal node other than the root has at least 2– Every internal node other than the root has at least 2
children

– Every edge is labeled with a nonempty substring of S– Every edge is labeled with a nonempty substring of S.
– The edges leaving a given node have labels starting with

different letters.different letters.
– The concatenation of the labels of the path from the root

to leaf i spells out the i-th suffix S[i..n] of S. We denote p []
S[i..n] by Si.

An example suffix treep
• The suffix tree for string: 1 2 3 4 5 6 g

x a b x a c

Does a suffix tree
always exist?always exist?

What about the tree for xabxa?
• The suffix tree for string: 1 2 3 4 5g

x a b x a

xa an a are not leaf
dnodes.

Problem
• Note that if a suffix is a prefix of another suffix p

we cannot have a tree with the properties
defined in the previous slidesdefined in the previous slides.
– e.g. xabxa

The fourth suffix xa or the fifth suffix a won’t be
represented by a leaf node.

Solution: the terminal character $

• Note that if a suffix is a prefix of another suffix p
we cannot have a tree with the properties
defined in the previous slidesdefined in the previous slides.
– e.g. xabxa

The fourth suffix xa or the fifth suffix a won’t be
represented by a leaf node.

• Solution: insert a special terminal character at
the end such as $ Therefore xa$ will not be athe end such as $. Therefore xa$ will not be a
prefix of the suffix xabxa.

The suffix tree for xabxa$

Suffix tree construction
• Start with a root and a leaf numbered 1, connected

by an edge labeled S$.
• Enter suffixes S[2..n]$; S[3...n]$; ... ; S[n]$ into the [] ; [] ; ; []

tree as follows:
• To insert Ki = S[i n]$ follow the path from the rootTo insert Ki S[i..n]$, follow the path from the root

matching characters of Ki until the first mismatch at
character Ki[j] (which is bound to happen)character Ki[j] (which is bound to happen)

(a) If the matching cannot continue from a node, denote
that node by wthat node by w
(b) Otherwise the mismatch occurs at the middle of an
edge, which has to be splitedge, which has to be split

Suffix tree construction - 2
• If the mismatch occurs at the middle of an

edge e = S[u ... v]
– let the label of that edge be a1 allet the label of that edge be a1...al

– If the mismatch occurred at character ak, then
create a new node w and replace e by two edgescreate a new node w, and replace e by two edges
S[u ... u+k-1] and S[u+k ... v] labeled by a1...ak and
a aak+1...al

• Finally, in both cases (a) and (b), create a
new leaf numbered i, and connect w to it by
an edge labeled with Ki[j ... |Ki|]g i[j | i|]

Example constructionp
• Let’s construct a suffix tree for xabxac$

St t ith $• Start with: $

• After inserting the second and third suffix:
$$

$$

$

Example contd...p
• Inserting the fourth suffix xac$ will cause the g

first edge to be split:
$

$

$

$

S thi h f th d d• Same thing happens for the second edge
when ac$ is inserted.

Example contd...p
• After inserting the remaining suffixes the tree g g

will be completed:

Complexity of the naive constructionp y

• We need O(n-i+1) time for the ith suffix. ()
Therefore the total running time is:

n

)()(2

1
nOiO

n

=∑

• What about space complexity?
Can also take O(n2) because we may need to– Can also take O(n2) because we may need to
store every suffix in the tree separately,

b d f hijkl– e.g., abcdefghijklmn

Storing the edge labels efficientlyg g y
• Note that, we do not store the actual

substrings S[i ... j] of S in the edges, but only
their start and end indices (i j)their start and end indices (i, j).

• Nevertheless we keep thinking of the edge
l b l b t i f Slabels as substrings of S.

• This will reduce the space complexity to O(n)p p y ()

Suffix tree appletpp
• http://pauillac.inria.fr/~quercia/documents-p p q

info/Luminy-
98/albert/JAVA+html/SuffixTreeGrow html98/albert/JAVA html/SuffixTreeGrow.html

Using suffix trees for pattern matchingg p g
• Given S and P. How do we find all occurrences of P in S?
• Observation. Each occurrence has to be a prefix of some

suffix. Each such prefix corresponds to a path starting at the
rootroot.

1. Of course, as a first step, we construct the suffix tree for S. Using
the naive method this takes quadratic time but linear time algorithmsthe naive method this takes quadratic time, but linear-time algorithms
(e.g., Ukkonen’s algorithm) exist.

2. Try to match P on a path, starting from the root. Three cases:

(a) The pattern does not match → P does not occur in T

(b) The match ends in a node u of the tree. Set x = u.()

(c) The match ends inside an edge (v,w) of the tree. Set x = w.

3 All leaves below x represent occurrences of P3. All leaves below x represent occurrences of P.

Illustrationust at o
• T = xabxac

suffixes ={xabxac abxac bxac xac ac c}– suffixes ={xabxac, abxac, bxac, xac, ac, c}
• Pattern P1: xa

Pattern P b• Pattern P2: xb

b x

b

b
x

x

a

a
a

c

c
6

b
x

x

aa
c c5

4 cc

2
3

1

Running Time Analysisg y
• Search time:

– O(m+k) where k is the number of occurrences of
P in T and m is the length of P

– O(m) to find match point if it exists
– O(k) to find all leaves below match point () p

Scalabilityy
• For very large problems a linear time and y g p

space bound is not good enough. This lead to
the development of structures such as Suffixthe development of structures such as Suffix
Arrays to conserve memory .

Two implementation issuesp
• Alphabet sizep
• Generalizing to multiple strings

Effects of alphabet size on
suffix treessuffix trees

• We have generally been assuming that the
trees are built in such a way thattrees are built in such a way that
– from any node, we can find an edge in constant

ti f ifi h t i Σtime for any specific character in Σ
• an array of size |Σ| at each node

• This takes Θ(m|Σ|) space.

More compact representationp p
• We may try to be more compact taking only O(m)

space.
– At each node, have pointers to only the edges that are

neededneeded
• This slows down the search time

How much?• How much?
– typically the minimum of O(log m) or O(log |Σ|) with a

binary tree representationbinary tree representation.
• This effects both suffix tree construction time and

later searching time against the suffix treelater searching time against the suffix tree.

Generalized suffix trees
• Build a suffix tree for a set of strings S = {S1, …, Sz}
• Some issues
• Nodes in tree may corresponds to substrings ofNodes in tree may corresponds to substrings of

potentially multiple strings Si
– compact edge labels: need 3 fields (start position stopcompact edge labels: need 3 fields (start position, stop

position, string)
– leaf labels now a set of pairs indicating starting positionleaf labels now a set of pairs indicating starting position

and string

Longest common substring problem

• Build a generalized suffix tree for S1$1S2$2. g 1 1 2 2
Here $1 and $2 are different new symbols not
occurring in S1 and S2occurring in S1 and S2.

• Mark every internal node of the tree with {1},
{2} {1 2} d di h th it th{2}, or {1,2} depending on whether its path
label is a substring of S1 and/or S2.

• Find the internal node which is labeled by
{1 2} and has the largest “string depth”{1,2} and has the largest string depth .

• Example: (with the applet)
– pessimist%mississippi$

Selecting probes for microarrays g p y
• Wikipedia: Oligonucleotides are short p g

sequences of nucleotides (RNA or DNA),
typically with twenty or fewer base pairstypically with twenty or fewer base pairs.

• Given a set of genomic sequences, the problem is to identify at least one
signature oligonucleotide (probe) for each sequence. These probes must
hybridize to only the desired sequence. The algorithm produces a GST
from the reverse compliment of all the genomic sequences (candidate
probe sequences). Using the GST, the algorithm identifies all common) g g
substrings and rejects these regions because probes designed in them
would not be specific to a single genomic sequence. Criteria such as

b l th d t f th thi tprobe length are used to further prune this tree.

• http://www.zaik.uni-
koeln.de/bioinformatik/arraydesign.html.en

Suffix arraysy
• Suffix arrays were introduced by Manber and

Myers in 1993
• More space efficient than suffix treesp
• A suffix array for a string x of length m is an

array of size m that specifies the lexicographicarray of size m that specifies the lexicographic
ordering of the suffixes of x.

Suffix arraysy
Example of a suffix array for acaaacatat$

3
4
1
5
7
9
2
6
8
10
11

Suffix array constructiony
• Naive in place constructionp

– Similar to insertion sort
– Insert all the suffixes into the array one by one– Insert all the suffixes into the array one by one

making sure that the new inserted suffix is in its
correct placecorrect place

– Running time complexity:
O(2) h i th l th f th t i• O(m2) where m is the length of the string

• Manber and Myers give a O(m log m)
construction in their 1993 paper.

Suffix arraysy
• O(n) space where n is the size of the database

string
• Space efficient. However, there’s an increase in p ,

query time
• Lookup queryLookup query

– Binary search
O(m log n) time; m is the size of the query– O(m log n) time; m is the size of the query

– Can reduce time to O(m + log n) using a more
efficient implementationefficient implementation

Searching for a pattern in Suffix
ArraysArrays
find(Pattern P in SuffixArray A):

i = 0
lo = 0, hi = length(A)
for 0<=i<length(P):g ()

Binary search for x,y
where P[i]=S[A[j]+i] for lo<=x<=j<y<=hiwhere P[i] S[A[j]+i] for lo< x< j<y< hi
lo = x, hi = y

return {A[lo],A[lo+1],...,A[hi-1]}return {A[lo],A[lo+1],...,A[hi 1]}

Search examplep
• Search is in mississippi$pp

0 11 i$
1 8 ippi$

Examine the pattern letter
by letter reducing the range pp

2 5 issippi$
3 2 ississippi$

by letter, reducing the range
of occurrence each time.

4 1 mississippi$
5 10 pi$

First letter i:
occurs in indices from 0 to 3

S h ld b 6 9 ppi$
7 7 sippi$
8 4 i i i$

So, pattern should be
between these indices.

S d l tt 8 4 sissippi$
9 6 ssippi$

10 3 ssissippi$

Second letter s:
occurs in indices from 2 to 3

Done 10 3 ssissippi$
11 12 $

Done.
Output: issippi$ and ississippi$

Suffix ArraysSuffix Arrays

It b b ilt f t• It can be built very fast.
• It can answer queries very fast:

– How many times ATG appears?
• Disadvantages: g

– Can’t do approximate matching
– Hard to insert new stuff (need to rebuild the array)Hard to insert new stuff (need to rebuild the array)

dynamically.

Useful links
• http://pauillac.inria.fr/~quercia/documents-info/Luminy-

98/ lb t/JAVA ht l/S ffi T G ht l98/albert/JAVA+html/SuffixTreeGrow.html
• http://home.in.tum.de/~maass/suffix.html

htt //h k / tl271/857/ ffi t ht l• http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml
• http://homepage.usask.ca/~ctl271/810/approximate_matchin

g shtmlg.shtml
• http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

htt //d t/ k / ti l / ffi t/ ffi t ht• http://dogma.net/markn/articles/suffixt/suffixt.htm
• http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tree/Suffi

x/x/

