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OutlineOutline
• Profiles Position Specific Scoring Matrices• Profiles, Position Specific Scoring Matrices
• Profile Hidden Markov Models
• Alignment of Profiles• Alignment of Profiles
• Multiple Alignment Algorithms

• Problem definitionProblem definition
• Can we use Dynamic Programming to solve MSA?
• Progressive Alignment
• ClustalW
• Scoring Multiple Alignments

Entropy• Entropy
• Sum of Pairs (SP) Score

• Sequence Pattern Discoveryq y



Multiple SequencesMultiple Sequences
• Up to this point we have considered pairwiseUp to this point we have considered pairwise 

relationships between sequences
P t i f ili t i lti l• Protein families contain multiple sequences
• E.g. Globins
• Conserved, important regions

• A common task is to find out whether a newA common task is to find out whether a new 
sequence can be included in a protein family 
or notor not.
• We can then assign a function and predict 3D 

structurestructure



Profile Representation of Multiple SequencesProfile Representation of Multiple Sequences
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G C  A  G  C  T  A  T  C  G  C  G  G 

A 1              1       .8                 
C .6           1       .4  1    .6 .2             
G 1 2 2 4 1G 1 .2                .2       .4  1
T .2              1    .6             .2        
- .2       .8                   .4 .8 .4         



Profile Representation of Multiple SequencesProfile Representation of Multiple Sequences
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T A G – C T A C C A - - - GT  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G 

A 1              1       .8        
C .6           1       .4  1    .6 .2
G 1 2 2 4 1G 1 .2                .2       .4  1
T .2              1    .6             .2
- .2       .8                   .4 .8 .4

Earlier, we were aligning a sequence against a sequence

Can we align a sequence against a profile in order to find out 
whether this sequence belongs to that protein family?



PSSMPSSM
• Position Specific Scoring Matrices

• The profile representation of a protein family can y
be a considered as the coefficients of a scoring 
matrix which give amino acid preferences for each 
alignment position separately

• How to obtain PSSMs?
• From a given multiple alignment of sequences
• Database searches (where a set of databaseDatabase searches (where a set of database 

proteins are aligned to the query (i.e. reference) 
sequence)q )



How to obtain PSSMs?How to obtain PSSMs?
• Suppose we have a multiple alignment of N 

sequences. To obtain the values of the 
PSSM matrix (mu,b), we can use the technique 
we have used to align a sequence to a profile g q p
and use the frequencies of amino acids at 
each column as coefficients:each column as coefficients:
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A better way to weigh residue preferencesA better way to weigh residue preferences

• It is better to give preferred residues extra 
weight, because residue types rarely found 
are probably highly disfavored at that column

• Use logarithmic weighting:Use logarithmic weighting:
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Using log odds ratiosUsing log-odds ratios
• We can also use a technique similar to the 

construction of the common scoring matrices
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• If sufficient data is available:
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If sufficient data is not availableIf sufficient data is not available
• q will cause problemsqu,a will cause problems
• Amino acids that do not occur in a column will 

fcause a score of -∞
• A simple solution: assume at least one 

occurrence of each residue type
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A better formulaA better formula
• Incorporate background amino acid 

composition
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• β is the total number of pseudocounts in a

β+N

β is the total number of pseudocounts in a 
column. Can be adjusted based on the 
amount of data availableamount of data available.



Viewing Profiles/PSSMs as logosViewing Profiles/PSSMs as logos
• Residue contribution at each position:

uau If uauf ,

uu HI −= 20log2 ∑−= auauu ffH ,2, log
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http://weblogo berkeley eduhttp://weblogo.berkeley.edu



Profile Hidden Markov ModelsProfile Hidden Markov Models
• Using HMMs to represent a profile and to 

align a sequence to a profile



Hidden Markov ModelHidden Markov Model
• Hidden Markov models are 

probabilistic finite state 
machines. A hidden Markov 
model λ is determined by the 
following parameters:

– A set of finite number of states: Si, 1 ≤ i ≤ N
– The probability of starting in state Si, πi

– The transition probability from state Si to Sj, aijThe transition probability from state Si to Sj, aij

– The emission probability density of a symbol ω
in state Sin state Si



What is hidden?What is hidden?
• With a hidden Markov model, we usually 

model a temporal process whose output we 
can observe but do not know the actual 
underlying mathematical or physical model.y g p y
• We try to model this process statistically.

• Here the states of the hidden Markov model• Here the states of the hidden Markov model 
are hidden to us. We assume that there is 
some underlying model (or some logic) thatsome underlying model (or some logic) that 
produces a set of output signals.



Problems associated with HMMsProblems associated with HMMs
• There are three typical questions one can ask 

regarding HMMs:

• Given the parameters of the model, compute the probability of a 
particular output sequence This problem is solved by theparticular output sequence. This problem is solved by the 
forward-backward procedure. 

• Given the parameters of the model, find the most likely sequence 
of hidden states that could have generated a given output 
sequence. This problem is solved by the Viterbi algorithm. 

• Given an output sequence or a set of such sequences find theGiven an output sequence or a set of such sequences, find the 
most likely set of state transition and output probabilities. In other 
words, train the parameters of the HMM given a dataset of output 
sequences This problem is solved by the Baum Welch algorithmsequences. This problem is solved by the Baum-Welch algorithm. 



Example (from Wikipedia)Example (from Wikipedia)
Y h f i d h lk d il h h Y f i d• You have a friend to whom you talk daily on the phone. Your friend 
is only interested in three activities: walking in the park, shopping, 
and cleaning his apartment. The choice of what to do is determined 
exclusively by the weather on a given day. You have no definite 
information about the weather where your friend lives, but you know 
general trends. Based on what he tells you he did each day, you try g y y, y y
to guess what the weather must have been like.

Th t t t "R i " d "S " b t t b• There are two states, "Rainy" and "Sunny", but you cannot observe 
them directly, that is, they are hidden from you. On each day, there 
is a certain chance that your friend will perform one of the following 
activities, depending on the weather: "walk", "shop", or "clean". 
Since your friend tells you about his activities, those are the 
observations. 



Example (from Wikipedia)Example (from Wikipedia)
• You know the general weather trends in the area, and 

what your friend likes to do on the average. In other 
words the parameters of the HMM are knownwords, the parameters of the HMM are known. 

0.4
walk: 0.1
shop: 0 4

walk: 0.6
shop: 0 3

Rainy Sunny

shop: 0.4
clean: 0.5

shop: 0.3
clean: 0.1

Rainy Sunny

0.7 0.3

0.60.6

start

0 40.4



Example (from Wikipedia)Example (from Wikipedia)
• Now, you talked to your friend for three days, and he told 

you that on the first day walked, the next day he 
shopped and the last day he cleaned. 
What is the most likely sequence of days that could have 
produced this outcome? (Solved by the Viterbi algorithm)
Wh t i th ll b bilit f th b ti ?What is the overall probability of the observations? 
(Solved by forward-backward algorithm)

0 4walk: 0.1 walk: 0.6

Rainy Sunny

0.4walk: 0.1
shop: 0.4
clean: 0.5

walk: 0.6
shop: 0.3
clean: 0.1

a y Su y

0.7
0.3 0.6

t t

0.6

start
0.4



HMMs to represent a family of sequencesHMMs to represent a family of sequences
• Given a multiple alignment of sequences, we G e a u p e a g e o seque ces, e

can use an HMM to model the sequences. 
Each column of the alignment may beEach column of the alignment may be 
represented by a hidden state that produced 
that column Insertions and deletions can bethat column. Insertions and deletions can be 
represented by other states.



Profile HMMs from alignmentsProfile HMMs from alignments
• A given multiple sequence alignment may be 

used to get the following HMM.



Profile HMMsProfile HMMs
• The structure of the profile HMM is given by:

From: http://www.ifm.liu.se/bioinfo/assignments/hmm-simple.png

• There are match, insert, and delete states. Given a 
multiple sequence alignment we can easily determine

From: http://www.ifm.liu.se/bioinfo/assignments/hmm simple.png

multiple sequence alignment we can easily determine 
the HMM parameters (no Baum-Welch needed in this 
case)



Profile HMMSProfile HMMS
• The structure is of profile HMMs is usually 

fixed following some biological observations:



Variants for non-global alignmentsVariants for non-global alignments
• Local alignments (flanking model)g ( g )

• Emission prob. in flanking states use background 
values pa.a

• Looping prob. close to 1, e.g. (1- η) for some small η.

D

Ij

Dj
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Begin End

Q Q



Variants for non global alignmentsVariants for non-global alignments

• Overlap alignments
• Only transitions to the first model state are allowed.
• When expecting to find either present as a whole or 

absent
• Transition to first delete state allows missing first 

residue

Dj

IjQ Q

Begin Mj End



Variants for non global alignmentsVariants for non-global alignments
• Repeat alignments

• Transition from right flanking state back to random 
model

• Can find multiple matching segments in query string

D

Ij

Dj

Mj

Begin EndQ



Determining the states of the HMMDetermining the states of the HMM
• The structure is usually fixed and only the 

number of “match” states is to be determined

• An alignment column with no gaps can be• An alignment column with no gaps can be 
considered as a “match” state.

• An alignment column with a majority of gaps 
can be considered an “insert” state.

• Usually a threshold on the gap proportion is 
determined to find the “match” statesdetermined to find the match  states 



Determining the transition probabilitiesDetermining the transition probabilities

• The transition probabilities “from” a state 
always add up to 1 (except the “end” state 
which do not have any transitions from it).

1),( =∑ vut ),(∑
w



Determining the transition probabilitiesDetermining the transition probabilities

• Count all the transitions on the given multiple 
alignment from an alignment position (or 
state) and use them in the following equation 
to find transition probabilities from a statep
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Determining the emission probabilitiesDetermining the emission probabilities

• Emission probabilities in a match or insert 
state also adds up to 1.
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Pseudocounts in HMMsPseudocounts in HMMs
• If we do not observe a certain amino acid at a 

column of an MSA the emission probability is 0 
for that amino acid.for that amino acid. 
• This strategy will give 0 probability to such 

sequences However we do not want to do thatsequences. However, we do not want to do that, 
(i.e., we do not want to miss sequences that may be 
biologically important because of only one mismatch)g y p y )

• Solution: Add hypothetical occurrences of  those 
amino acids into the columns. E.g, assume aamino acids into the columns. E.g, assume a 
background distribution for each column. The actual 
appearances of amino acids at a column update the pp p
background distribution.



ExampleExample
(without pseudocounts)(without pseudocounts)



Example (with pseudocounts)Example (with pseudocounts)



Scoring a sequence against a profile HMMScoring a sequence against a profile HMM

• Given a profile HMM, any given path through 
the model will emit a sequence with an 
associated probability

• The path probability is the product of allThe path probability is the product of all 
transition and emission probabilities along the 
pathpath.



Scoring a sequence against a profile HMMScoring a sequence against a profile HMM

• Given a query sequence using algorithms 
similar to DP for sequence alignment we can 
compute the most probable path that will emit 
that query sequence (Viterbi algorithm)q y q ( g )

• The probability that the given query sequence 
is emitted by that HMM is given by the sum ofis emitted by that HMM is given by the sum of 
all probabilities over all possible paths 
(forward/backward algorithms)(forward/backward algorithms).



Viterbi algorithmViterbi algorithm
• It is a dynamic programming algorithm It isIt is a dynamic programming algorithm. It is 

based on the following assumptions:
• At any time the process we are modeling is in someAt any time the process we are modeling is in some 

state
• We have finite number of statesWe have finite number of states
• Each state produces a single output
• Computing the most likely hidden sequence up to aComputing the most likely hidden sequence up to a 

certain point t must depend only on the observed event 
at point t, and the most likely sequence at point t − 1. 

• These assumptions are satisfied by a first order 
HMM.



Viterbi DP recurrence relationsViterbi DP recurrence relations
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Viterbi algorithmViterbi algorithm
• Using these equations we can fill in a partial 

scores table v of size 
lengthquery x number of states in HMM

• Initialization:Initialization:
• set vStart(“”) = 1, vu(“”) = 0 for all states u
H lti l i b biliti ill• However, multiplying many probabilities will 
lead to very small numbers for long 
sequences. Therefore use log of probabilities 
instead and convert products to summation



Viterbi DP recurrence relationsViterbi DP recurrence relations
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Forward algorithmForward algorithm
• Forward and backward algorithms are used 

to compute the probability of the sequence 
being emitted from an HMM by summing up 
the probabilities over all possible paths.p p p

• Modification on Viterbi DP equations:
• Instead of using max sum all options• Instead of using max, sum all options



Forward algorithmForward algorithm
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Searching a databaseSearching a database
• Given the hidden Markov model for a protein 

family. We can evaluate all the sequences in 
a database in terms of “how likely” they could 
have been produced by this HMM model. p y
This likelihood score can be used to find new 
protein sequences as candidate members forprotein sequences as candidate members for 
that protein family.

• We can use the Viterbi algorithm or the• We can use the Viterbi algorithm or the 
forward/backward algorithms to compute the 

b bilitprobability.



Fi di th HMM f t i f ilFinding the HMM for a protein family

• Given a set of sequences, can we find the 
parameters of an HMM without performing a 
multiple sequence alignment first?p q g
• Yes. We can use the Baum-Welch algorithm

• However we have to decide first• However, we have to decide first
• How many match states are there?



Baum Welch AlgorithmBaum-Welch Algorithm
• The Baum-Welch algorithm is an expectation-

maximization (EM) algorithm. It can compute 
maximum likelihood estimates and posterior 
mode estimates for the parameters (transition 
and emission probabilities) of an HMM, when 
given only emissions as training data.



Available profile HMM toolsAvailable profile HMM tools
• SAM
• HMMER2
• and many others



Multiple alignment algorithmsMultiple alignment algorithms
• One of the most essential tools in molecular• One of the most essential tools in molecular 

biology
• Finding highly conserved subregions or embeddedFinding highly conserved subregions or embedded 

patterns of a set of biological sequences
• Conserved regions usually are key functional regions, prime 

targets for drug developments
• Estimation of evolutionary distance between sequences

P di ti f t i d /t ti t t• Prediction of protein secondary/tertiary structure
• Practically useful methods only since 1987 (D. 

Sankoff)Sankoff) 
• Before 1987 they were constructed by hand 
• Dynamic programming is expensiveDynamic programming is expensive 



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• What is multiple sequence alignment?
• Given k sequences:q

VTISCTGSSSNIGAGNHVKWYQQLPG
VTISCTGTSSNIGSITVNWYQQLPG
LRLSCSSSGFIFSSYAMYWVRQAPG
LSLTCTVSGTSFDDYYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDGPEVTCVVVDVSHEDPQVKFNWYVDG
ATLVCLISDFYPGAVTVAWKADS
AALGCLVKDYFPEPVTVSWNSG
VSLTCLVKGFYPSDIAVEWESNGVSLTCLVKGFYPSDIAVEWESNG



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--VSLTCLVKGFYPSD IAVEWESNG



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--VSLTCLVKGFYPSD IAVEWESNG

Conserved residues



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--VSLTCLVKGFYPSD IAVEWESNG

Conserved regions



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--VSLTCLVKGFYPSD IAVEWESNG

Patterns? Positions 1 and 3 are hydrophobic
residues



Multiple Sequence Alignment (MSA)Multiple Sequence Alignment (MSA)
• An MSA of these sequences:

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--VSLTCLVKGFYPSD IAVEWESNG

Conserved residues, regions, patterns



MSA WarningsMSA Warnings
• MSA algorithms work under the assumption 

that they are aligning related sequences
• They will align ANYTHING they are given, 

even if unrelatedeven if unrelated
• If it just “looks wrong” it probably is



Generalizing the Notion of Pairwise AlignmentGeneralizing the Notion of Pairwise Alignment

• Alignment of 2 sequences is represented as a• Alignment of 2 sequences is represented as a 
2-row matrix

• In a similar way, we represent alignment of 3In a similar way, we represent alignment of 3 
sequences as a 3-row matrix 

A T _ G C G _
A _ C G T _ A
A T C A C _ A

• Score: more conserved columns, better alignment



Alignments = Paths in kAlignments = Paths in k
dimensional gridsdimensional grids
• Align  3 sequences:   ATGC, AATC,ATGC

A -- T G C

A A T -- C

-- A T G C



Alignment PathsAlignment Paths

0 1 1 2 3 4

A -- T G C
x coordinate

A A T -- C

-- A T G C



Alignment PathsAlignment Paths

0 1 1 2 3 4

0 1 2 3 3 4

A -- T G C
x coordinate

y coordinate0 1 2 3 3 4

A A T -- C

y coordinate

-- A T G C

•



Alignment PathsAlignment Paths

0 1 1 2 3 4

0 1 2 3 3 4

A -- T G C
x coordinate

y coordinate0 1 2 3 3 4

A A T -- C

0 0 1 2 3 4

y coordinate

z coordinate
-- A T G C

R lti th i ( )

z coordinate

• Resulting path in (x,y,z) space: 
(0,0,0)→(1,1,0)→(1,2,1) →(2,3,2) →(3,3,3) →(4,4,4)( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )



Aligning Three SequencesAligning Three Sequences
• Same strategy as

source
• Same strategy as 

aligning two sequences
• Use a 3 D matrix with• Use a 3-D matrix, with 

each axis representing a 
sequence to alignsequence to align

• For global alignments, 
go from source to sinkgo from source to sink

sinksink



2 D vs 3 D Alignment Grid2-D vs 3-D Alignment Grid

V

W

2-D alignment matrix

3-D alignment matrix



2 D cell versus 3 D Alignment Cell2-D cell versus 3-D Alignment Cell 

In 2-D, 3 edges 
in each unitin each unit 
square

In 3-D, 7 edges 
in each unit cube



Architecture of 3 D Alignment CellArchitecture of 3-D Alignment Cell
(i-1,j-1,k-1) (i-1,j,k-1)

(i-1,j-1,k) (i-1,j,k)

(i,j,k-1)
(i,j-1,k-1)

(i,j-1,k) (i,j,k)( ,j , )



Multiple Alignment: Dynamic ProgrammingMultiple Alignment: Dynamic Programming

s + δ(v w u ) cube diagonal: 

• si,j,k = max

si-1,j-1,k-1 +  δ(vi, wj, uk)
si-1,j-1,k + δ (vi, wj, _ )
si 1 j k 1 + δ (vi uk)

g
no indels

fsi-1,j,k-1 + δ (vi, _,  uk)
si,j-1,k-1 + δ (_, wj, uk)
si 1 j k + δ (vi,  , )

face diagonal: 
one indel

i-1,j,k ( i, _ , _)
si,j-1,k + δ (_, wj, _)
si,j,k-1 + δ (_, _, uk)

edge diagonal: 
two indels

• δ(x, y, z) is an entry in the 3-D scoring matrixδ(x, y, z) is an entry in the 3 D scoring matrix



Multiple Alignment: Running TimeMultiple Alignment: Running Time

F 3 f l th th ti i• For 3 sequences of length n, the run time is 
7n3; O(n3)

• For k sequences, build a k-dimensional 
t i ith ti (2k 1)( k) O(2k k)matrix, with run time (2k-1)(nk); O(2knk)

C l i d i i h• Conclusion: dynamic programming approach 
for alignment between two sequences is 

il t d d t k b t it ieasily extended to k sequences but it is 
impractical due to exponential running time



Multiple Alignment Induces PairwiseMultiple Alignment Induces Pairwise 
Alignmentsg
Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

I dInduces:

x: ACGCGG-C;  x: AC-GCGG-C;  y: AC-GCGAG
y: ACGC-GAC;  z: GCCGC-GAG;  z: GCCGCGAG



Reverse Problem: Constructing MultipleReverse Problem: Constructing Multiple 
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments: 

x: ACGCTGG-C;  x: AC-GCTGG-C;  y: AC-GC-GAG
y: ACGC--GAC;  z: GCCGCA-GAG;  z: GCCGCAGAGy

can we construct a multiple alignment that inducescan we construct a multiple alignment that induces
them?



Reverse Problem: Constructing MultipleReverse Problem: Constructing Multiple 
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments: 

x: ACGCTGG-C;  x: AC-GCTGG-C;  y: AC-GC-GAG
y: ACGC--GAC;  z: GCCGCA-GAG;  z: GCCGCAGAGy

can we construct a multiple alignment that inducescan we construct a multiple alignment that induces
them?

NOT ALWAYS

Pairwise alignments may be inconsistent



Inferring Multiple Alignment fromInferring Multiple Alignment from 
Pairwise AlignmentsPairwise Alignments 

• From an optimal multiple alignment we can• From an optimal multiple alignment, we can 
infer pairwise alignments between all pairs of 

b t th t ilsequences, but they are not necessarily 
optimal

• It is difficult to infer a “good” multiple 
alignment from optimal pairwise alignments g p p g
between all sequences



Combining Optimal Pairwise Alignments into MultipleCombining Optimal Pairwise Alignments into Multiple 
Alignment

Can combine pairwise 
alignments intoalignments into 
multiple alignment

Can not combine 
pairwise alignments 
into multiple 
alignment



Consensus String of a Multiple AlignmentConsensus String of a Multiple Alignment
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T A G – C T A C C A - - - GT  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G 

C  A  G  - C  T  A  T  C  A  C  - G  G
Consensus
String: C A G C T A T C A C G G

• The consensus string SM derived from multiple alignment 
M is the concatenation of the consensus characters for

String: C  A  G  C  T  A  T  C  A  C  G  G

M is the concatenation of the consensus characters for 
each column of M.
• The consensus character for column i is the character that 

minimizes the summed distance to it from all the characters in 
column i. (i.e., if match and mismatch scores are equal for all 
symbols, the majority symbol is the consensus character)



Profile Representation of Multiple AlignmentProfile Representation of Multiple Alignment
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G C  A  G  C  T  A  T  C  G  C  G  G 

A 1              1       .8                 
C .6           1       .4  1    .6 .2             
G 1 2 2 4 1G 1 .2                .2       .4  1
T .2              1    .6             .2        
- .2       .8                   .4 .8 .4         



Profile Representation of Multiple AlignmentProfile Representation of Multiple Alignment
- A  G  G  C  T  A  T  C  A  C  C  T  G 
T A G – C T A C C A - - - GT  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  C  C  A  - - - G 
C  A  G  – C  T  A  T  C  A  C  – G  G 
C  A  G  – C  T  A  T  C  G  C  – G  G 

A 1              1       .8        
C .6           1       .4  1    .6 .2
G 1 2 2 4 1G 1 .2                .2       .4  1
T .2              1    .6             .2
- .2       .8                   .4 .8 .4

Earlier, we were aligning a sequence against a sequence

Can we align a sequence against a profile? 

Can we align a profile against a profile?Can we align a profile against a profile? 



Aligning alignmentsAligning alignments
• Given two alignments, can we align them? 

GGGCACTGCATx GGGCACTGCAT
y GGTTACGTC-- Alignment 1 
z GGGAACTGCAG

w GGACGTACC-- Alignment 2
v GGACCT-----



Aligning alignmentsAligning alignments
• Given two alignments, can we align them? 
• Hint: use alignment of corresponding profiles

x GGGCACTGCATx GGGCACTGCAT
y GGTTACGTC-- Combined Alignment  
z GGGAACTGCAG
w GGACGTACCw GGACGTACC--
v GGACCT-----



Multiple Alignment: Greedy ApproachMultiple Alignment: Greedy Approach

• Choose most similar pair of strings and combine into a 
profile , thereby reducing alignment of k sequences to an 
alignment of of k 1 sequences/profiles Repeatalignment of of k-1 sequences/profiles. Repeat

• This is a heuristic greedy method

u1= ACGTACGTACGT… u1= ACg/tTACg/tTACg/cT…

TTAATTAATTAAu2 = TTAATTAATTAA…

u3 = ACTACTACTACT…

u2 = TTAATTAATTAA…

…

u = CCGGCCGGCCGG
k

k-1

…

uk = CCGGCCGGCCGG

uk = CCGGCCGGCCGG…



Greedy Approach: ExampleGreedy Approach: Example
• Consider these 4 sequences

s1 GATTCA
s2 GTCTGAs2 GTCTGA
s3 GATATT
s4 GTCAGCs4 GTCAGC



Greedy Approach: Example ( ’d)Greedy Approach: Example (cont’d)

4• There are       = 6 possible alignments







2
4

s2 GTCTGA
4 GTCAGC (   2)

s1  GATTCA--
4 G T CAGC(   0)s4 GTCAGC (score = 2)

s1 GAT-TCA

s4 G—T-CAGC(score = 0)

s2 G-TCTGA
s2 G-TCTGA (score = 1)

s1 GAT-TCA

s3 GATAT-T (score = -1)

s3 GAT-ATTs1 GAT TCA
s3 GATAT-T (score  = 1)

s3 GAT ATT
s4 G-TCAGC (score = -1)



Greedy Approach: Example ( ’d)Greedy Approach: Example (cont’d)

s2 and s4 are closest; combine:
s2 GTCTGA

/ /
s2 GTCTGA
s4 GTCAGC

s2,4 GTCt/aGa/cA
(profile) 

new set of 3 sequences:

s1 GATTCA

new set of 3 sequences:

1

s3 GATATT
s2 4 GTCt/aGa/cs2,4 GTCt/aGa/c



Progressive AlignmentProgressive Alignment
• Progressive alignment is a variation of greedy 

algorithm with a somewhat more intelligent 
strategy for choosing the order of alignments. 

• Progressive alignment works well for close g g
sequences, but deteriorates for distant 
sequences
• Gaps in consensus string are permanent
• Use profiles to compare sequences• Use profiles to compare sequences



Star alignmentStar alignment
H i ti th d f lti l• Heuristic method for multiple sequence 
alignments

• Select a sequence c as the center of the star• Select a sequence c as the center of the star
• For each sequence x1, …, xk such that index i ≠

c perform a Needleman-Wunsch globalc, perform a Needleman-Wunsch global 
alignment

• Aggregate alignments with the principle “once aAggregate alignments with the principle once a 
gap, always a gap.”



Choosing a centerChoosing a center
T th ll d i k th hi h i t i il• Try them all and pick the one which is most similar 
to all of the sequences

• Let S(x x ) be the optimal score between• Let S(xi,xj) be the optimal score between 
sequences xi and xj.

• Calculate all O(k2) alignments and choose as x• Calculate all O(k ) alignments, and choose as xc
the sequence xi that maximizes the following

Σ S(xi,xj)Σ S(xi,xj)j ≠ i



St li t lStar alignment example

s1 s3

S1: MPE
S2: MKE

MPE

| |

MSKE   

| ||

s

s1 3 S2: MKE
S3: MSKE
S4: SKE

MKE M-KE

s2

SKE

|| M PE

s4

||

MKE MPE
MKE

M-PE
M-KE
MSKE

M-PE
M-KE
MSKEs4 MSKE
S-KE



AnalysisAnalysis

• Assuming all sequences have length n
• O(k2n2) to calculate centerO(k n ) to calculate center
• Step i of iterative pairwise alignment takes 

O((i ) ) tiO((i·n)·n) time
• two strings of length n and i·n

• O(k2n2) overall cost



ClustalWClustalW
• Most popular multiple alignment tool todayMost popular multiple alignment tool today
• ‘W’ stands for ‘weighted’ (different parts of 

alignment are weighted differently).
• Three-step processThree step process

1.) Construct pairwise alignments
2.) Build Guide Tree (by Neighbor Joining method)
3.) Progressive Alignment guided by the tree) g g g y

- The sequences are aligned progressively  
according to the branching order in the guide treeaccording to the branching order in the guide tree



Step 1: Pairwise AlignmentStep 1: Pairwise Alignment
• Aligns each sequence again each other 

giving a similarity matrix
• Similarity = exact matches / sequence length 

(percent identity)(percent identity)
v1 v2 v3 v4

v1 -
v2 .17  -
v3 .87 .28  -

59 33 62 (.17 means 17 % identical)v4 .59 .33 .62 - ( ea s % de ca )



Step 2: Guide TreeStep 2: Guide Tree
• Create Guide Tree using the similarity matrix

• ClustalW uses the neighbor-joining method

• Guide tree roughly reflects evolutionary g y y
relations



Step 2: Guide Tree ( ’d)Step 2: Guide Tree (cont’d)

v1
v3
v

v1 v2 v3 v4
v - v4

v2
v1 -
v2 .17  -
v3 .87 .28  -

Calculate:

3
v4 .59 .33 .62 -

v1,3 = alignment (v1, v3)
v1,3,4 = alignment((v1,3),v4)

 li t(( ) )v1,2,3,4 = alignment((v1,3,4),v2)



Step 3: Progressive AlignmentStep 3: Progressive Alignment
• Start by aligning the two most similar• Start by aligning the two most similar 

sequences
F ll i th id t dd i th t• Following the guide tree, add in the next 
sequences, aligning to the existing alignment

• Insert gaps as necessary
FOS RAT PEEMSVTS LDLTGGLPEATTPESEEAFTLPLLNDPEPK PSLEPVKNISNMELKAEPFDFOS_RAT         PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
FOS_MOUSE       PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
FOS_CHICK       SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
FOSB_MOUSE      PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ
FOSB HUMAN PGPGPLAEVRDLPG SAPAKEDGFSWLLPPPPPPP LPFQFOSB_HUMAN      PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ

.   . :   ** .     :..  *:.*   *   . *                   **:

Dots and stars show how well-conserved a column isDots and stars show how well-conserved a column is.



ClustalW: another exampleClustalW: another example
S1 ALSK1
S2 TNSD
S3 NASK
S4 NTSD



ClustalW exampleClustalW example
S1 ALSK1
S2 TNSD
S3 NASK
S4 NTSD

All pairwise
alignments

S1 S2 S3 S4

alignments

1 2 3 4

S1 0 9 4 7

S2 0 8 3

S3 0 7

S4 0

Distance Matrix



ClustalW exampleClustalW example
S1 ALSK1
S2 TNSD
S3 NASK
S4 NTSD

All pairwise
alignments

S1 S2 S3 S4 S3

S1

alignments

N hb1 2 3 4

S1 0 9 4 7

S2 0 8 3

S3

S2

S

Neighbor
Joining

S3 0 7

S4 0

S4

Rooted Tree

Distance Matrix



ClustalW exampleClustalW example
S1 ALSK Multiple Alignment Steps1
S2 TNSD
S3 NASK 1. Align S1 with S3

2 Align S2 with S4

Multiple Alignment Steps

S4 NTSD
2. Align S2 with S4
3. Align (S1, S3) with (S2, S4)

All pairwise
alignments

S1 S2 S3 S4 S3

S1

alignments

N hb1 2 3 4

S1 0 9 4 7

S2 0 8 3

S3

S2

S

Neighbor
Joining

S3 0 7

S4 0

S4

Rooted Tree

Distance Matrix



ClustalW exampleClustalW example
S1 ALSK 1. Align S1 with S3

Multiple Alignment Steps
-ALSK
NA SK-ALSK1

S2 TNSD
S3 NASK 2. Align S2 with S4

NA-SK

-TNSD
NT-SD

-TNSD
NA-SK

S4 NTSD
3. Align (S1, S3) with (S2, S4)All pairwise

alignments

NT SDNT-SD
Multiple

Alignment

S1 S2 S3 S4

alignments

N hb

Alignment

S3

S1

1 2 3 4

S1 0 9 4 7

S2 0 8 3

Neighbor
Joining

S3

S2

SS3 0 7

S4 0

S4

Rooted Tree

Distance Matrix



Oth i hOther progressive approaches

• PILEUP
• Similar to CLUSTALW
• Uses UPGMA to produce tree 



Problems with progressiveProblems with progressive 
alignmentsg

• Depend on pairwise alignments
• If sequences are very distantly related, 

much higher likelihood of errorsg
• Care must be made in choosing scoring 

matrices and penaltiesmatrices and penalties





Iterative refinement inIterative refinement in 
progressive alignment
Another problem of progressive alignment:
• Initial alignments are “frozen” even when new 

idevidence comes

Example:
x: GAAGTT
y: GAC-TT Frozen!y: GAC TT

z: GAACTG
GTACTG

Frozen!

Now clear that correct y = GA-CTTw: GTACTG Now clear that correct y = GA CTT



Evaluating multiple alignmentsEvaluating multiple alignments
• Balibase benchmark (Thompson, 1999)( )
• De-facto standard for assessing the quality of a 

multiple alignment toolmultiple alignment tool
• Manually refined multiple sequence alignments
• Quality measured by how good it matches the 

core blocks
• Another benchmark: SABmark benchmark

• Based on protein structural families• Based on protein structural families



Scoring multiple alignmentsScoring multiple alignments
• Ideally, a scoring scheme shouldIdeally, a scoring scheme should

• Penalize variations in conserved positions higher
• Relate sequences by a phylogenetic treeRelate sequences by a phylogenetic tree

• Tree alignment

• Usually assumeUsually assume
• Independence of columns
• Quality computationQuality computation

• Entropy-based scoring
• Compute the Shannon entropy of each column

• Sum-of-pairs (SP) score



Multiple Alignments: ScoringMultiple Alignments: Scoring 
• Number of matches (multiple longest 

common subsequence score)

• Entropy score• Entropy score

• Sum of pairs (SP-Score)




