Analysis of Biological Networks

1. Clustering
2. Random Walks

Problem 1: Graph Clustering

- Finding dense subgraphs
- Applications
- Identification of novel pathways, complexes, other modules?
- Example algorithm: MCODE

The Problem

- Given a protein interaction network find strongly connected components (clusters) with the network that may correspond to biological functional modules (complexes or pathways)

Some Algorithms

- MCL
- Markov CLustering
- RNSC
- Restricted Neighborhood Search Clustering
- SPC
- Super Paramagnetic Clustering
- MCODE
- Molecular COmplex DEtection

Markov Cluster Algorithm

- Simulates a flow on the graph.
- Calculates successive powers of the adjacency matrix
- Parameters
- One parameter: inflation parameter
- The process partitions the graph (i.e., no overlapping clusters)
- The inflation parameter influence the number of clusters generated

Restricted Neighborhood Search Clustering

- Starts with an initial random clustering
- Tries to minimize a cost function by iteratively moving vertices between neighboring clusters.
- Parameters:
- Number of iterations
- Diversification frequency
- and 5 other parameters

Super Paramagnetic Clustering

- Hierarchical algorithm inspired from an analogy with the physical properties of a ferromagnetic model subject to fluctuation at nonzero temperature.
- Parameters:
- Number of nearest neighbors
- Temperature

MCODE

- Weight each vertex by its local neighborhood density (using a modified version of clustering coefficient)
- Starting from the top weighted vertex, include neighborhood vertices with similar weights to the cluster
- Remove the vertices from the clusters
- Continue with the next highest weight vertex in the network
- May provide overlapping clusters

Vertex weighting

- Clustering coefficient

$$
C C_{i}=\frac{2 e_{i}}{d_{i}\left(d_{i}-1\right)}
$$

where e_{i} is the number of edges between the neighbors of node i and d_{i} is the number of neighbors of node i.

k-core

- A part of a graph where every node is connected to other nodes with at least k edges ($k=0,1,2,3 \ldots$)
- Finding a k-core in a graph proceeds by progressively removing vertices of degree $<k$ until all remaining vertices are connected to each other by degree k or more. Complexity: $\mathrm{O}\left(n^{2}\right)$. The highest k -core is found by trying to find k -cores from one up until the highest degree in the neighborhood graph. Overall complexity: $\mathrm{O}\left(n^{3}\right)$

k-core example

Core-clustering Coefficient

- Product of the clustering coefficient of the highest k-core in the neighborhood of a vertex and k.

Problem 2: Finding relationships

- Random Walks on Graphs
- Finding important nodes (Google's PageRank)
- Function prediction
- Adding new members to known pathways, complexes
- Finding relationships of genes/diseases in gene-disease networks

Google's PageRank

- Assumption: A link from page A to page B is a recommendation of page B by the author of A (we say B is successor of A)
\rightarrow Quality of a page is related to its in-degree
- Recursion: Quality of a page is related to
- its in-degree, and to
- the quality of pages linking to it
\rightarrow PageRank [BP '98]

Definition of PageRank

- Consider the following infinite random walk (surf):
- Initially the surfer is at a random page
- At each step, the surfer proceeds
- to a randomly chosen web page with probability d
- to a randomly chosen successor of the current page with probability 1-d
- The PageRank of a page p is the fraction of steps the surfer spends at p in the limit.

Random walks with restarts on

 interaction networks- Consider a random walker that starts on a source node, s. At every time tick, the walker chooses randomly among the available edges (based on edge weights), or goes back to node s with probability c.

Random walks on graphs

- The probability $p_{s}(v)^{(t)}$, is defined as the probability of finding the random walker at node v at time t.
- The steady state probability $p_{s}(v)$ gives a measure of affinity to node s, and can be computed efficiently using iterative matrix operations.

Computing the steady state \mathbf{p} vector

- Let \mathbf{s} be the vector that represents the source nodes (i.e., $\mathbf{s}_{i}=1 / n$ if node i is one the n source nodes, and 0 otherwise).
- Compute the following until \mathbf{p} converges:

$$
\mathbf{p}=(1-c) \mathbf{A}^{\mathbf{T}} \mathbf{p}+c \mathbf{s}
$$

where \mathbf{A} is the row normalized adjacency matrix and c is the restart probability.

Same example

- Start nodes: p_{1} and p_{2}

Random walk results

- Restart probability, $c=0.3$

A small example

- Let n_{5} and n_{6} be the restart nodes

Adjacency matrix and the restart vector

A:					$s=p_{0}$
n1 n2 n3 n4 n5 n6					
n1	100	01	0	1	n1 0
n2	200	01	0	0	n2 0
n3	30	01	0	1	n3 0
n4	411	10	1	1	n4 0
n5	50	01	0		n5 0.5
n6	610	11	1		n6 0.5

Normalized adjanceny matrix

A:							= p_{0}
	n 1 n 2 n 3 n 4 n 5 n 6						
	0	00	. 5	0	. 5		10
n2	0	00	1	0	0		20
	0	00	. 5	0	. 5		30
	. 2	. 2.2	0	. 2	. 2		4 0
	0	00	. 5	0	. 5		50.5
	. 25	5.25	. 25	. 25			60.5

Computing p_{1}

Let $\mathrm{c}=0.3$

$$
\begin{aligned}
& A^{\top}: \quad p_{0}: \quad s: \\
& \text { n1 n2 n3 n4 n5 n6 } \\
& \begin{array}{lllllllll}
\mathrm{n} 1 & 0 & 0 & 0 & .2 & 0 & .25 & \mathrm{n} 1 & 0
\end{array} \\
& \text { n1 } 0 \\
& \text { n2 } 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}_{1}=0.7 \mathrm{n} 4.512 .5 \quad 0 \quad .5 .25 \mathrm{X} 440+0.3 \mathrm{n} 40
\end{aligned}
$$

$$
\begin{aligned}
& \text { n6.5 } 0 \text {.5 .2 } .5 \text { 0 } \quad \text { n6 } 0.5 \quad \text { n6 } 0.5 \\
& \text { n1 } 0.087 \\
& \text { n2 } 0.0 \\
& \mathrm{p}_{1}=\begin{array}{lll}
\text { n2 } & 0.0 \\
\text { n4 } & 0.087 \\
\text { n } & 0.262
\end{array} \\
& \text { n5 } 0.238 \\
& \text { n6 } 0.325
\end{aligned}
$$

Computing p_{2}

$$
\mathrm{p}_{1}:
$$

n1 n2 n3 n4 n5 n6

n 1	0	0	0	.2	0	.25	n 1	0.087	n 1	0
n 2	0	0	0	.2	0	0	n 2	0.0	n 2	0
n 3	0	0	0	.2	0	.25	n 3	0.087	n3	0

$$
\mathrm{p}_{2}=0.7 \mathrm{n} 4.5 \begin{array}{lllllll}
& 1 & .5 & 0 & .5 & .25 & \mathrm{Xn} 4 \\
0.262 & +0.3 \mathrm{n} 4 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
\text { n5 } & 0 & 0 & 0 & .2 & 0 & .25 & \text { n5 }
\end{array} 0.238
$$

n5 0.5

$$
\begin{array}{lllllllll}
\text { n6 } 6 & 0 & .5 & .2 & .5 & 0 & & \text { n6 } & 0.325
\end{array}
$$

n6 0.5

$$
\begin{aligned}
& A^{T} \text { : } \\
& \text { n1 } 0.094 \\
& \mathrm{p}_{2}=\begin{array}{ll}
\text { n2 } & 0.037 \\
\text { n3 } & 0.094 \\
\text { n4 } & 0.201
\end{array} \\
& \text { n5 } 0.244 \\
& \text { n6 } 0.331
\end{aligned}
$$

$p_{21}=p_{22}$

n1 0.089
n2 0.032
n3 0.089
n4 0.225
n5 0.239
n6 0.327

