
Analysis of Biological 
Networks 
1. Clustering 

2. Random Walks 



Problem 1: Graph Clustering 

•  Finding dense subgraphs 
•  Applications 

–  Identification of novel pathways, complexes, 
other modules? 

•  Example algorithm: MCODE 



The Problem 

•  Given a protein interaction network find 
strongly connected components (clusters) 
with the network that may correspond to 
biological functional modules (complexes 
or pathways) 



Some Algorithms 

•  MCL 
– Markov CLustering  

•  RNSC 
– Restricted Neighborhood Search Clustering 

•  SPC 
– Super Paramagnetic Clustering 

•  MCODE 
– Molecular COmplex DEtection  



Markov Cluster Algorithm 

•  Simulates a flow on the graph. 
•  Calculates successive powers of the 

adjacency matrix 
•  Parameters 

– One parameter: inflation parameter 
•  The process partitions the graph (i.e., no 

overlapping clusters) 
•  The inflation parameter influence the 

number of clusters generated 



Restricted Neighborhood Search Clustering 

•  Starts with an initial random clustering 
•  Tries to minimize a cost function by 

iteratively moving vertices between 
neighboring clusters. 

•  Parameters: 
– Number of iterations 
– Diversification frequency 
– …. and 5 other parameters 



Super Paramagnetic Clustering 

•  Hierarchical algorithm inspired from an 
analogy with the physical properties of a 
ferromagnetic model subject to fluctuation 
at nonzero temperature. 

•  Parameters: 
– Number of nearest neighbors 
– Temperature 



MCODE 

•  Weight each vertex by its local 
neighborhood density (using a modified 
version of clustering coefficient) 

•  Starting from the top weighted vertex, 
include neighborhood vertices with similar 
weights to the cluster 

•  Remove the vertices from the clusters 
•  Continue with the next highest weight 

vertex in the network 
•  May provide overlapping clusters 









Core-clustering Coefficient 

•  Product of the clustering coefficient of the 
highest k-core in the neighborhood of a 
vertex and k. 



Problem 2: Finding relationships 

•  Random Walks on Graphs 
– Finding important nodes (Google’s PageRank) 
– Function prediction 
– Adding new members to known pathways, 

complexes 
– Finding relationships of genes/diseases in 

gene-disease networks 



Google’s PageRank 

•  Assumption: A link from page A to page B is a 
recommendation of page B by the author of A 
(we say B is successor of A) 

è Quality of a page is related to its in-degree 

•  Recursion: Quality of a page is related to 
–   its in-degree, and to  
–   the quality of pages linking to it 

è PageRank [BP ‘98] 



Definition of PageRank 

•  Consider the following infinite random walk 
(surf): 
–  Initially the surfer is at a random page 

–  At each step, the surfer proceeds  
•  to a randomly chosen web page with probability d 
•  to a randomly chosen successor of the current page with 

probability 1-d 

•  The PageRank of a page p is the fraction of 
steps the surfer spends at p in the limit. 



Random walks with restarts on 
interaction networks 

•  Consider a random walker that starts on a 
source node, s. At every time tick, the 
walker chooses randomly among the 
available edges (based on edge weights), 
or goes back to node s with probability c.  
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Random walks on graphs 
•  The probability             ,  is defined as the 

probability of finding the random walker at 
node v at time t.  

•  The steady state probability             gives 
a measure of affinity to node s, and can be 
computed efficiently using iterative matrix 
operations.  
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Computing the steady  
state p vector 

•  Let s be the vector that represents the 
source nodes (i.e., si=1/n if node i is one 
the n source nodes, and 0 otherwise). 

•  Compute the following until p converges: 
             p = (1-c)ATp + cs 

   where A is the row normalized 
adjacency matrix and c is the restart 
probability. 

 



Same example 

•  Start nodes: p1 and p2 



Random walk results 

•  Restart probability, c = 0.3 



A small example 

•  Let n5 and n6 be the restart nodes 



Adjacency	matrix	and	the	restart	vector	

A:		
						n1	n2	n3	n4	n5	n6	
n1		0			0				0			1				0			1	
n2		0			0				0			1				0			0	
n3		0			0				0			1				0			1	
n4		1			1				1			0				1			1	
n5		0			0				0			1				0			1	
n6		1			0				1			1				1			0	
	

s	=	p0		
	
n1		0	
n2		0	
n3		0	
n4		0	
n5	0.5	
n6	0.5	



Normalized	adjanceny	matrix	
A:		
						n1	n2	n3	n4	n5	n6	
n1		0			0				0			.5				0				.5	
n2		0			0				0			1					0					0	
n3		0			0				0			.5				0				.5	
n4		.2		.2		.2			0				.2				.2	
n5		0				0				0			.5				0				.5	
n6	.25		0	.25	.25		.25			0	
	

s	=	p0		
	
n1		0	
n2		0	
n3		0	
n4		0	
n5	0.5	
n6	0.5	



Computing	p1	

Let c	=	0.3	

AT:		
						n1	n2	n3	n4	n5	n6	
n1		0			0				0			.2				0			.25	
n2		0			0				0			.2				0					0	
n3		0			0				0			.2				0			.25	
n4	.5			1			.5				0			.5			.25	
n5		0			0				0			.2				0			.25	
n6	.5			0			.5			.2			.5				0		
	

p0:		
	
n1		0	
n2		0	
n3		0	
n4		0	
n5	0.5	
n6	0.5	

p1	=	0.7																																			x											+	0.3	

s:	
	
n1		0	
n2		0	
n3		0	
n4		0	
n5	0.5	
n6	0.5	

p1	=	
n1		0.087	
n2		0.0	
n3		0.087	
n4		0.262	
n5		0.238	
n6		0.325	



Computing	p2	

p2	=	0.7																																			x													+	0.3	

s	
	
n1		0	
n2		0	
n3		0	
n4		0	
n5	0.5	
n6	0.5	

p2	=	

AT:		
						n1	n2	n3	n4	n5	n6	
n1		0			0				0			.2				0			.25	
n2		0			0				0			.2				0					0	
n3		0			0				0			.2				0			.25	
n4		.5		1			.5				0			.5			.25	
n5		0			0				0			.2				0			.25	
n6	.5			0			.5			.2			.5				0		
	

p1:	
	
n1		0.087	
n2		0.0	
n3		0.087	
n4		0.262	
n5		0.238	
n6		0.325	

n1		0.094	
n2		0.037	
n3		0.094	
n4		0.201	
n5		0.244	
n6		0.331	



p21	=	p22	

n1		0.089	
n2		0.032	
n3		0.089	
n4		0.225	
n5		0.239	
n6		0.327	


