Analysis of Biological
Networks

1. Clustering
2. Random Walks

Problem 1: Graph Clustering

* Finding dense subgraphs

* Applications

— ldentification of novel pathways, complexes,
other modules?

« Example algorithm: MCODE

The Problem

* Given a protein interaction network find
strongly connected components (clusters)
with the network that may correspond to
biological functional modules (complexes
or pathways)

Some Algorithms

MCL
— Markov CLustering

RNSC
— Restricted Neighborhood Search Clustering

SPC

— Super Paramagnetic Clustering

MCODE
— Molecular COmplex DEtection

Markov Cluster Algorithm

Simulates a flow on the graph.

Calculates successive powers of the
adjacency matrix

Parameters
— One parameter: inflation parameter

The process partitions the graph (i.e., no
overlapping clusters)

The inflation parameter influence the
number of clusters generated

Restricted Neighborhood Search Clustering

« Starts with an initial random clustering

* Tries to minimize a cost function by
iteratively moving vertices between
neighboring clusters.

 Parameters:

— Number of iterations
— Diversification frequency
— and 5 other parameters

Super Paramagnetic Clustering

 Hierarchical algorithm inspired from an
analogy with the physical properties of a
ferromagnetic model subject to fluctuation

at nonzero temperature.

 Parameters:
— Number of nearest neighbors

— Temperature

MCODE

Weight each vertex by its local
neighborhood density (using a modified
version of clustering coefficient)

Starting from the top weighted vertex,
include neighborhood vertices with similar
weights to the cluster

Remove the vertices from the clusters

Continue with the next highest weight
vertex in the network

May provide overlapping clusters

Vertex weighting

» Clustering coefficient

cC=——24
Td(d 1)

where e, Is the number of edges between the
neighbors of node i and d. is the number of
neighbors of node 1.

K-core

* A part of a graph where every node is
connected to other nodes with at least k
edges (k=0,1,2,3...)

« Finding a k-core Iin a graph proceeds by progressively
removing vertices of degree < k until all remaining
vertices are connected to each other by degree k or
more. Complexity: O(n?). The highest k-core is found by
trying to find k-cores from one up until the highest
degree in the neighborhood graph. Overall complexity:
O(n3)

K-core example

Core-clustering Coefficient

* Product of the clustering coefficient of the
highest k-core in the neighborhood of a
vertex and k.

Problem 2: Finding relationships

« Random Walks on Graphs
— Finding important nodes (Google’'s PageRank)
— Function prediction

— Adding new members to known pathways,
complexes

— Finding relationships of genes/diseases in
gene-disease networks

Google’'s PageRank

« Assumption: A link from page Ato page B is a
recommendation of page B by the author of A
(we say B is successor of A)

=>»Quality of a page is related to its in-degree

* Recursion: Quality of a page is related to
— Its in-degree, and to
— the quality of pages linking to it

= PageRank [BP ‘98]

Definition of PageRank

* Consider the following infinite random walk
(surf):
— Initially the surfer is at a random page

— At each step, the surfer proceeds

» to a randomly chosen web page with probability d

« to a randomly chosen successor of the current page with
probability 1-d

 The PageRank of a page p is the fraction of
steps the surfer spends at p in the limit.

Random walks with restarts on
Interaction networks

» Consider a random walker that starts on a
source node, s. At every time tick, the
walker chooses randomly among the
available edges (based on edge weights),
or goes back to node s with probability c.

O 0.2 04 O
< \O/g/
0.3

Random walks on graphs

« The probability »,()"", is defined as the
probability of finding the random walker at
node v at time 1.

» The steady state probability p (v) gives
a measure of affinity to node s, and can be
computed efficiently using iterative matrix
operations.

Computing the steady
state p vector

* Let s be the vector that represents the
source nodes (i.e., s=1/n if node i is one
the n source nodes, and 0 otherwise).

« Compute the following until p converges:
p=(1-c)ATp + cs
where A is the row normalized

adjacency matrix and c is the restart
probabillity.

Same example

» Start nodes: p, and p,

0.92

0.34
’ 090 @ 0.42

0.23 @ 0.36 @ 0.25
@ 0.13

Random walk results

» Restart probability, ¢ = 0.3

@ 0.0 0.47

0.90
- @

0.82

(o)
@ 0.13 @

@ 0.36 @

A small example

* Let ng; and ng be the restart nodes

BN

Adjacency matrix and the restart vector

A:

nl n2n3n4n5
n10 0 01 O
n20 0 01 O
n30 0 01 O
nd 11 10 1
n500 01 O
ne1 0 11 1

n6

1
0
1
1
1
0

nl O
n2 0
n3 0
n4 O
n5 0.5
n6 0.5

Normalized adjanceny matrix

A: S=Pg
Nl n2n3 n4dn5n6
ni1O 0O 0.5 0 . nl O

5
n20 0 01 0 O n2 0
n300 0.5 0 .5 n3 0
@ e n4d .2.2.20 .2 .2 n4 0
n50 0 0.5 0 .5 n5 0.5
n6.25 0.25.25 .25 0O n6 0.5

Computing p,

AT:
nl1n2 n3 n4d n5n6
nf0 0 0 .2 0 .25
Ga’ n20O0 0.2 0 O
n30 0 0.2 0 .25
P, =0.7 nd5 1 5 0.5 25X
n50 0 0 .2 0 .25
‘B’ N> 650 .5 .2 .5 0
@ nl 0.087
‘B’ n6 n2 0.0
P1= n3 0.087
nd 0.262
n5 0.238

Letc=0.3

n6 0.325

Po: S:

nl O nl O
n2 0 n2 0
n3 0 n3 0
nd 0 +0.3n40
n5 0.5 n5 0.5
n6 0.5 n6 0.5

Computing p,

) :

AT: ¥ S
nl1n2n3n4dn5n6
nN0 O 0.2 0 .25 nl 0.087 nl 0
n200 0.2 0 0 n2o0.0 n2 0
N300 0.2 0 .25 n3 0.087 n3 0
P, =0.7 na 51 5 0 .5 .25 Xn4 0.262+0.3n4 0
nS50 0 0.2 0 .25 n5 0.238 n50.5
n65 0 .5.2.5 0 n60.325 n6 0.5
nl 0.094
n2 0.037
P2 = n3 0.094
n4 0.201
n5 0.244

n6 0.331

P21 = P2

nl 0.089
n2 0.032
n3 0.089
n4 0.225
n5 0.239
n6 0.327

