Analysis of Biological Networks

Clustering
Random Walks

Problem 1: Graph Clustering

- Finding dense subgraphs
- Applications
 - Identification of novel pathways, complexes, other modules?
- Example algorithm: MCODE

The Problem

 Given a protein interaction network find strongly connected components (clusters) with the network that may correspond to biological functional modules (complexes or pathways)

Some Algorithms

- MCL
 - Markov CLustering
- RNSC
 - Restricted Neighborhood Search Clustering
- SPC
 - Super Paramagnetic Clustering
- MCODE
 - Molecular COmplex DEtection

Markov Cluster Algorithm

- Simulates a flow on the graph.
- Calculates successive powers of the adjacency matrix
- Parameters
 - One parameter: *inflation parameter*
- The process partitions the graph (i.e., no overlapping clusters)
- The inflation parameter influence the number of clusters generated

Restricted Neighborhood Search Clustering

- Starts with an initial random clustering
- Tries to minimize a cost function by iteratively moving vertices between neighboring clusters.
- Parameters:
 - Number of iterations
 - Diversification frequency
 - and 5 other parameters

Super Paramagnetic Clustering

- Hierarchical algorithm inspired from an analogy with the physical properties of a ferromagnetic model subject to fluctuation at nonzero temperature.
- Parameters:
 - Number of nearest neighbors
 - Temperature

MCODE

- Weight each vertex by its local neighborhood density (using a modified version of clustering coefficient)
- Starting from the top weighted vertex, include neighborhood vertices with similar weights to the cluster
- Remove the vertices from the clusters
- Continue with the next highest weight vertex in the network
- May provide overlapping clusters

Vertex weighting

Clustering coefficient

$$CC_i = \frac{2e_i}{d_i(d_i - 1)}$$

where e_i is the number of edges between the neighbors of node *i* and d_i is the number of neighbors of node *i*.

k-core

- A part of a graph where every node is connected to other nodes with at least k edges (k=0,1,2,3...)
- Finding a k-core in a graph proceeds by progressively removing vertices of degree < k until all remaining vertices are connected to each other by degree k or more. Complexity: O(n²). The highest k-core is found by trying to find k-cores from one up until the highest degree in the neighborhood graph. Overall complexity: O(n³)

k-core example

Core-clustering Coefficient

 Product of the clustering coefficient of the highest k-core in the neighborhood of a vertex and k.

Problem 2: Finding relationships

- Random Walks on Graphs
 - Finding important nodes (Google's PageRank)
 - Function prediction
 - Adding new members to known pathways, complexes
 - Finding relationships of genes/diseases in gene-disease networks

Google's PageRank

- Assumption: A link from page A to page B is a recommendation of page B by the author of A (we say B is *successor* of A)
- →Quality of a page is related to its in-degree
- Recursion: Quality of a page is related to
 - its in-degree, and to
 - the *quality* of pages linking to it
- →PageRank [BP '98]

Definition of PageRank

- Consider the following infinite random walk (surf):
 - Initially the surfer is at a random page
 - At each step, the surfer proceeds
 - to a randomly chosen web page with probability d
 - to a randomly chosen successor of the current page with probability 1-d
- The PageRank of a page p is the fraction of steps the surfer spends at p in the limit.

Random walks with restarts on interaction networks

Consider a random walker that starts on a source node, s. At every time tick, the walker chooses randomly among the available edges (based on edge weights), or goes back to node s with probability c.

Random walks on graphs

• The probability $p_s(v)^{(t)}$, is defined as the probability of finding the random walker at node v at time t.

• The steady state probability $p_s(v)$ gives a measure of affinity to node *s*, and can be computed efficiently using iterative matrix operations.

Computing the steady state **p** vector

- Let s be the vector that represents the source nodes (i.e., s_i=1/n if node *i* is one the *n* source nodes, and 0 otherwise).
- Compute the following until p converges: $\mathbf{p} = (1-c)\mathbf{A}^{T}\mathbf{p} + c\mathbf{s}$ where A is the row normalized

adjacency matrix and *c* is the restart probability.

Same example

• Start nodes: p₁ and p₂

Random walk results

• Restart probability, c = 0.3

A small example

• Let n_5 and n_6 be the restart nodes

Adjacency matrix and the restart vector

A:							$s = p_0$
n1	0	0	0	1	0	1	n1 0
n2	0	0	0	1	0	0	n2 0
n3	0	0	0	1	0	1	n3 0
n4	1	1	1	0	1	1	n4 0
n5	0	0	0	1	0	1	n5 0.5
n6	1	0	1	1	1	0	n6 0.5

Normalized adjanceny matrix

n2 n5 n4 n1 n6 n3

A: $s = p_0$ n1 n2 n3 n4 n5 n6 n1000.50.5 n1 0 n2 0 0 0 1 n2 0 0 0 n3 0 0 0 .5 0 .5 n3 0 n4 .2 .2 .2 0 .2 .2 n4 0 n5000.50.5 n5 0.5 n6.25 0.25.25 .25 0 n6 0.5

Computing p_1

	A ^T :						p ₀ :	s:
	n1	n2	n3	n4				
	n1 0	0	0	.2	0	.25	n1 0	n1 0
	n2 0	0	0	.2	0	0	n2 0	n2 0
	n3 0	0	0	.2	0	.25	n3 0	n3 0
0.7	n4 .5	1	.5	0	.5	.25 X	n4 0 + 0 .3	n4 0
	n5 0	0	0	.2	0	.25	n5 0.5	n5 0.5
	n6 .5	0	.5	.2	.5	0	n6 0.5	n6 0.5

Computing p₂

n2

n4 0.201 n5 0.244

n6 0.331

p₂₁ = p₂₂

n1 0.089

n2 0.032

n3 0.089

n4 0.225

n5 0.239

n6 0.327

