
2D Linear

Programming
slides by Andy Mirzaian
(a subset of the original slides are used here)

The LP Problem

subject to:

dd xcxcxc  2211

ndndnn

dd

dd

bxaxaxa

bxaxaxa

bxaxaxa







2211

22222121

11212111



maximize

Applications

• The most widely used Mathematical Optimization Model.

• Management science (Operations Research).

• Engineering, technology, industry, commerce, economics.

• Efficient resource allocation:

– Airline transportation,

– Communication network – opt. transmission routing,

– Factory inventory/production control,

– Fund management, stock portfolio optimization.

• Approximation of hard optimization problems.

• . . .

Feasible

Region

Example in 2D

optimum

basic

constraints

max x1 + 8x2

subject to:

(1) x1  3

(2) x2  2

(3) –3x1 + 4x2  14

(4) 4x1 – 3x2  25

(5) x1 + x2  15

x2

x1

(1)

(2)

(4)

(5)

(3)

(5)

(3)

x1 = 46/7

x2 = 59/7

Example in 3D

subject to:

maximize z

Optimum

(x,y,z)=(0,0,3)

x

y

z

0

0

0

2

3











z

y

x

y

zyx

History of LP
 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry & algebra]

Egypt: polyhedra & pyramids.

India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]

China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)

[Precursor of Gauss-Jordan elimination method on linear equations]

Greece: Pythagoras, Euclid, Archimedes, …

 825 AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):

“Al-Maqhaleh fi Hisab al-jabr w’almoqhabeleh” (An essay on Algebra and equations)

“Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi” (Book on Hindu Arithmetic).

originated the words algebra & algorithm for solution procedures of algebraic systems.

 Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]

 Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930’s],

Kantorovich [1939], Gale [1960] [LP duality theory & precursor of Simplex]

 George Dantzig [1947]: Simplex algorithm.

Exponential time in the worst case, but effective in practice.

 Leonid Khachiyan [1979]: Ellipsoid algorithm.

The first weakly polynomial-time LP algorithm: poly(n,d,L).

 Narendra Karmarkar [1984]: Interior Point Method.

Also weakly polynomial-time. IPM variations are very well studied.

 Megiddo-Dyer [1984]: Prune-&-Search method.

O(n) time if the dimension is a fixed constant. Super-exponential on dimension.

http://www.tlca.com/adults/origin-math.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Nine_chapters.html
http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Archimedes
http://en.wikipedia.org/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB
http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Leonid_Khachiyan
http://en.wikipedia.org/wiki/Narendra_Karmarkar

LP: Fundamental Facts

Fundamental Theorem of LP
For any instance of LP exactly one of the following three possibilities holds:

(a) Infeasible.

(b) Feasible but no bounded optimum.

(c) Bounded optimum.

[Note: Feasible polyhedron could be unbounded even if optimum is bounded.

It depends on the direction of the objective vector.]

Moreover, if A has full rank (i.e.,  basis), then every nonempty face of

the feasible polyhedron contains a BFS, and this implies:

(1)  feasible solution   BFS.

(2)  optimum solution   optimum solution that is a BFS.

c

Proof: If there is a basis, the basic cone

contains the feasible region but does not

contain any line. So the feasible region does

not contain any line, hence it is pointed. So every

non-empty face of it (including the optimal face,

if non-empty) is pointed, and thus contains a vertex.

(For details see exercise 4.)

2D Linear Programming

F

y

x

Objective function  = c1 x + c2 y, c
T =(c1 , c2)

Feasible region F
c

optimum

2D Linear Programming

 Feasible region F is the intersection of n half-planes.

 F is (empty, bounded or unbounded) convex polygon with  n vertices.

 F can be computed in O(n log n) time by divide-&-conquer

(See Lecture-Slide 3).

 If F is empty, then LP is infeasible.

 Otherwise, we can check its vertices, and its possibly up to

2 unbounded edges, to determine the optimum.

 The latter step can be done by binary search in O(log n) time.

 If objective changes but constraints do not, we can update the optimum

in only O(log n) time. (We don’t need to start from scratch).

 Improvement Next:

Feasible region need not be computed to find the optimum vertex.

Optimum can be found in O(n) time both randomized & deterministic.

2D LP Example: Manufacturing with Molds

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that

P can be removed from the mold by translation?

Lemma: P can be removed from its mold with a single translation in direction d

 d makes an angle  90 with the outward normal of all non-top facets of P.

mold

P

f

f ’

(f ‘) = - (f)

d

Corollary: Many small translations possible  Single translation possible.

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that

P can be removed from the mold by translation?

mold

P

f

f ’

(f ‘) = - (f)

d

(f) = (x(f) , y(f) , z(f)) outward normal to facet f of P.

dT.(f) ≤ 0  non-top facet f of P 

x(f) . x + y(f) . y + z(f) ≤ 0 f n-1 constraints

x

y

z

z=1
d=(x,y,1)

THEOREM: The mold casting problem can be solved in O(n log n) time.
(This will be improved to O(n) time on the next slides.)

Randomized Incremental

Algorithm

Randomization

Random(k): Returns an integer i  1..k, each with equal probability 1/k.

[Use a random number generator.]

Algorithm RandomPermute (A) O(n) time

Input: Array A[1..n]

Output: A random permutation of A[1..n] with each

of n! possible permutations equally likely.

for k  n downto 2 do Swap A[k] with A[Random(k)]

end.

This is a basic “initial” part of many randomized incremental algorithms.

2D LP: Incremental Algorithm

Method: Add constraints one-by-one, while maintaining the current optimum vertex.

Input: (H, c), H = { H(1), H(2), … , H(n)} n half-planes, c = objective vector

Output: Infeasible: (i,j,k), or

Unbounded: , or

Optimum: v = argmaxx { cTx | x  H(1)H(2)…H(n) }.

Define: C(i) = H(1)H(2)…H(i) , for i = 1..n

v(i) = optimum vertex of C(i) , for i=2..n. cTv(i) = max { cTx | x  C(i) }

Note: C(1)  C(2)  …  C(n).

e

v

Infeasible Unbounded Non-unique optimum Unique optimum

cPossible Outcomes:

H(i)
H(j)

H(k)

2D LP: Incremental Algorithm

LEMMA: (1) v(i-1)  H(i)  v(i-1)  C(i)  v(i)  v(i-1).

(2) v(i-1)  H(i) 

(2a) C(i) = , or

(2b) v(i)  L(i)  C(i-1), L(i) =bounding-line of H(i).

H(i) v(i)=v(i-1)

(1)

C(i-1)

H(i)

(2a)

C(i-1)

v(i-1)

H(j)

H(k)

H(i)

(2b)

C(i-1)

v(i-1)

v(i)

L(i)L(i)

c

2D LP: Incremental Algorithm

Algorithm PreProcess (H,c) O(n) time
1.   min { angle between c and outward normal of H(i) | i=1..n }

H(i) = most restrictive constraint with angle 

Swap H(i) with H(1) (L(1) is bounding-line of H(1)).

2. If (parallel) H(j) with angle  and H(1)H(j)= then return “infeasible”.

3. If L(1)  H(j) is unbounded for all H(j) H, then

  most restrictive L(1)  H(j) over all H(j) H

return (“unbounded”, )

4. If L(1)  H(j) is bounded for some H(j)H, then

Swap H(j) with H(2) and return “bounded”.


c L(1)

H(1)

L(1)
H(j)



H(2)H(1)

(1) (3) (4)

L(1)

H(1)

(2)

H(j)

v(2)

Input: (H, c), H = { H(1), H(2), … , H(n)} n half-planes, c = objective vector

Output: Solution to max { cTx | x  H(1)H(2)…H(n) }

1. if PreProcess(H,c) returns (“unbounded”, ) or “infeasible”

then return the same answer

(* else bounded or infeasible *)

2. v(2)  vertex of H(1)  H(2)

3. RandomPermute (H[3..n])

4. for i  3..n do

5. if v(i-1)  H(i) then v(i)  v(i-1)

6. else v(i)  optimum vertex p of L(i)(H(1)…H(i-1)) (* 1D LP *)

7. if p does not exist then return “infeasible”

8. end-for

9. return (“optimum”, v(n))

end.

Randomized Incremental 2D LP Algorithm

THEOREM: 2D LP Randomized Incremental algorithm has the following complexity:

Space complexity = O(n)

Time Complexity: (a) O(n2) worst-case

(b) O(n) expected-case.

Randomized Incremental 2D LP Algorithm

.)()(
3

2



n

i

nOiO

Proof of (a):

Line 6 is a 1D LP with i-1constraints and takes O(i) time.

Total time over for-loop of lines 4-8:

Proof of (b): Define 0/1 random variables

Lines 5-7 take O(i*X(i) +1) time. Total time is

Randomized Incremental 2D LP Algorithm

.n..3ifor
otherwise0

H(i)1)v(iif1
)i(X 



 







n

3i

)i(X*)i(O)n(OT

])i(X*)i(O[E)n(O]T[E
n

3i






v(i) is defined by 2 H(j)’s. The probability that one of them is H(i) is  2/(i-2).

This does not depend on C(i). Hence, remove the “Fix” assumption.








n

i

nO
i

iOnOTE

3

).(
2

2*)()(][:Theref ore

Expected time:

)2/(i-2]H(i))1v(i-[Pr]X(i)[E 

])i(X[E*)i(O)n(O
n

3i






Backwards

Analysis

linearity of

expectation

“Fix” C(i) = { H(1), H(2)}  {H(3), …, H(i)}

Random : C(i-1) = C(i) – {H(i)}
random

Randomized Incremental

Algorithm for

Smallest Enclosing Disk

Smallest Enclosing Disk

pi+1

Lemma: (1) pi  D(i-1)  D(i) = D(i-1)

(2) pi  D(i-1)  pi lies on the boundary of D(i).

pi

D(i+1)

D(i)=D(i-1)

Input: A set P={p1, p2, … , pn } of n points in the plane.

Output: Smallest enclosing disk D of P.

Lemma: Output is unique.

Incremental Construction:
P[1..i] = {p1, p2, … , pi }

D(i)= smallest enclosing disk of P[1..i] .

Smallest Enclosing Disk

LEMMA: Let P and R be disjoint point sets in the plane. pP, R possibly empty.

Define MD(P, R) = minimum disk D such that P  D & R   D ( D = boundary of D).

(1) If MD(P, R) exists, then it’s unique,

(2) p  MD(P-{p}, R)  MD(P,R) = MD(P-{p}, R),

(3) p  MD(P-{p}, R)  MD(P, R) = MD(P-{p}, R  {p}).

D(0)

D(1)
R

p

D()

(3) D(0)  MD(P-{p}, R)

D(1)  MD(P, R)

D()  (1-) D(0) +  D(1) 0    1

As  goes from 0 to 1, D() continuously deforms from D(0) to D(1) s.t.

 D(0)   D(1)   D().

p  D(1) – D(0)  by continuity  smallest *, 0 < *  1 s.t.

p  D(*)  p   D(*).

 P  D(*) & R   D(*)  *=1 by uniqueness.

Therefore, p is on the boundary of D(1).

Proof: (1) If non-unique   smaller such disk:

(2) is obvious.

Smallest Enclosing Disk

Algorithm MinDisk (P[1..n])

1. RandomPermute(P[1..n])

2. D(2)  smallest enclosing disk of P[1..2]

3. for i  3..n do

4. if pi  D(i-1) then D(i)  D(i-1)

5. else D(i)  MinDiskWithPoint (P[1..i-1] , pi)

6. return D(n)

Procedure MinDiskWithPoint (P[1..j],q)

1. RandomPermute(P[1..j])

2. D(1)  smallest enclosing disk of p1 and q

3. for i  2..j do

4. if pi  D(i-1) then D(i)  D(i-1)

5. else D(i)  MinDiskWith2Points (P[1..i-1] , q, pi)

6. return D(j)

Procedure MinDiskWith2Points (P[1..j],q1,q2)

1. D(0)  smallest enclosing disk of q1 and q2

2. for i  1..j do

3. if pi  D(i-1) then D(i)  D(i-1)

4. else D(i)  Disk (q1, q2, pi)

5. return D(j)

Smallest Enclosing Disk

Proof: Space O(n) is obvious.

MinDiskWith2Points (P,q1,q2) takes O(n) time.

MinDiskWithPoint (P,q) takes time:





n

2i

)i(X*)i(O)n(OT where
otherwise0

)1i(D(i)Dpif1
)i(X

i



 










n

2i

).n(O
i

2
*)i(O)n(O]T[E

analysis) backwards(by i/2)]i(X[E

Apply this idea once more: expected running time of MinDisk is also O(n).

P[1..i]

q

“Fix” P[1..i] = {p1, … , pi} backwards

P[1..i-1] = {p1, … , pi} - {pi}

one of these is pi with prob.  2/i

THEOREM: The smallest enclosing disk of n points in the plane can be computed in

randomized O(n) expected time and O(n) space.

