2D Linear

Programming
slides by Andy Mirzaian

(a subset of the original slides are used here)

The LP Problem

Applications

The most widely used Mathematical Optimization Model.
Management science (Operations Research).

Engineering, technology, industry, commerce, economics.
Efficient resource allocation:
— Airline transportation,
— Communication network — opt. transmission routing,
— Factory inventory/production control,
— Fund management, stock portfolio optimization.

Approximation of hard optimization problems.

Example in 2D

X X, =46/7
max X, + 8x, Xz X, = 99/7
Plimy,,,
O 5
O x, P N 5 N\
(2) X, 2 2 / Feasible
(3) -3x, +4x, <14 | Region
(4) 4x; — 3x, < 25
(5) X, + x, <15
2
optimum . / X,

basic
constraints

Example in 3D

Optimum

(x.¥,2)=(0,0,3)

maximize Z
subject to:

X+y+z <3
y<2
x>0
y>0
2>0

History of LP

0 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry & algebra]
Egypt: polyhedra & pyramids.
India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]
China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)
[Precursor of Gauss-Jordan elimination method on linear equations]
Greece: Pythaqgoras, Euclid, Archimedes, ...
0 825 AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):
“Al-Maghaleh fi Hisab al-jabr w’almoghabeleh” (An essay on Algebra and equations)
“Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi” (Book on Hindu Arithmetic).
originated the words algebra & algorithm for solution procedures of algebraic systems.

U Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]

O Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930’s],
Kantorovich [1939], Gale [1960] [LP duality theory & precursor of Simplex|

U George Dantzig [1947]: Simplex algorithm.
Exponential time in the worst case, but effective in practice.

O Leonid Khachiyan [1979]: Ellipsoid algorithm.

The first weakly polynomial-time LP algorithm: poly(n,d,L).

O Narendra Karmarkar [1984]: Interior Point Method.
Also weakly polynomial-time. IPM variations are very well studied.

O Megiddo-Dyer [1984]: Prune-&-Search method.
O(n) time if the dimension is a fixed constant. Super-exponential on dimension.

http://www.tlca.com/adults/origin-math.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Nine_chapters.html
http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Archimedes
http://en.wikipedia.org/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB
http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Leonid_Khachiyan
http://en.wikipedia.org/wiki/Narendra_Karmarkar

Fundamental Theorem of LP

For any instance of LP exactly one of the following three possibilities holds:
(a) Infeasible.
(b) Feasible but no bounded optimum.
(c) Bounded optimum.

Moreover, if A has full rank (i.e., 3 basis), then every nonempty face of
the feasible polyhedron contains a BFS, and this implies:

(1) 3 feasible solution = 3 BFS.

(2) 3 optimum solution = 3 optimum solution that is a BFS.

Proof. If there is a basis, the basic cone

contains the feasible region but does not

contain any line. So the feasible region does

not contain any line, hence it is pointed. So every
non-empty face of it (including the optimal face,

if non-empty) is pointed, and thus contains a vertex.
(For details see exercise 4.)

2D Linear Programming

Objective function a=c,;x +¢c,y, c'=(c,, C,)
Feasible region F

U C

2D Linear Programming

Feasible region F is the intersection of n half-planes.

F is (empty, bounded or unbounded) convex polygon with < n vertices.
F can be computed in O(n log n) time by divide-&-conquer
(See Lecture-Slide 3).
If Fis empty, then LP is infeasible.
Otherwise, we can check its vertices, and its possibly up to
2 unbounded edges, to determine the optimum.
The latter step can be done by binary search in O(log n) time.
If objective changes but constraints do not, we can update the optimum
in only O(log n) time. (We don’t need to start from scratch).

Improvement Next:
Feasible region need not be computed to find the optimum vertex.
Optimum can be found in O(n) time both randomized & deterministic.

2D LP Example: Manufacturing with Molds

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that
P can be removed from the mold by translation?

%

N

f

i

Lemma: P can be removed from its mold with a single translation in direction d
<> d makes an angle > 90° with the outward normal of all non-top facets of P.

Corollary: Many small translations possible < Single translation possible.

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that
P can be removed from the mold by translation?

n(f) = (nu(f) , n,(H) , n,(f)) outward normal to facet f of P.

d'm({f) =<0 V non-top facetfof P <

N . x+ n).y +n,(f)<0 Vi n-1 constraints

THEOREM: The mold casting problem can be solved in O(n log n) time.

Randomization

Random(k): Returns an integer i € 1..k, each with equal probability 1/k.
[Use a random number generator.]

This is a basic “initial” part of many randomized incremental algorithms.

2D LP: Incremental Algorithm

Method: Add constraints one-by-one, while maintaining the current optimum vertex.

Possible Outcomes:

Infeasible Unbounded Non-unique optimum Unique optimum

Note: C(1) 2 C(2) o ... = C(n).

2D LP: Incremental Algorithm

LEMMA: (1) v(i-1) € H(i)) = v(i-1) € C(i) = V(i) « v(i-1).
(2) v(i-1) ¢ H(i) =
(2a) C(i) = <, or

(2b) V(i) € L(i) » C(i-1), L(i) =bounding-line of H().

(1)

(2b)

2D LP: Incremental Algorithm

Algorithm PreProcess (H,c)
1. ¢ < min {angle between c and outward normal of H(i) | i=1..n}
H(i) = most restrictive constraint with angle ¢
Swap H(i) with H(1) (L(2) is bounding-line of H(1)).
If I(parallel) H(j) with angle n—¢ and H(1)nH(j)=< then return “infeasible”.
If L(1) n H()) is unbounded for all H(j) €H, then
p < most restrictive L(1) n H(j) over all H(j) eH
return (“unbounded”, p)
4. If L(1) n H(j) is bounded for some H(j)eH, then
Swap H(j) with H(2) and return “bounded”.

b e

v(2)

H(1 H2)

(1) 2) (3) (4)

Randomized Incremental 2D LP Algorithm

Input: (H,c), H={H(1), H2), ..., H(n)} n half-planes, c = objective vector
Output: Solutionto max {c™ | x € H(1)nH(2)N...~H(n) }

1. if PreProcess(H,c) returns (“unbounded”, p) or “infeasible”

then return the same answer
(* else bounded or infeasible *)

V(2) < vertex of H(1) N H(2)
RandomPermute (H[3..n])
fori« 3.n do
if v(i-1) € H() then v(i) < v(i-1)
else v(i) « optimum vertex p of L(i)N(H(1)N...nH(i-1))
If p does not exist then return “infeasible”
end-for

© 00N O A~ WD

return (“optimum?, v(n))
end.

Randomized Incremental 2D LP Algorithm

THEOREM: 2D LP Randomized Incremental algorithm has the following complexity:
Space complexity = O(n)
Time Complexity: (a) O(n?) worst-case
(b) O(n) expected-case.

Proof of (a):
Line 6 is a 1D LP with i-1constraints and takes O(i) time.

Total time over for-loop of lines 4-8: »_O(i) =O0(n?).

i=3

Randomized Incremental 2D LP Algorithm

_ _ _ 1 if v(i—-1) ¢ H(i)
Proof of (b): Define 0/1 random variables X(i) = :
0 otherwise

for 1=3..n.

Lines 5-7 take O(i*X(i) +1) time. Total timeis T = o(n)+z O(i)* X (i)

i=3

Expected time:
L, linearity of
ni=3

= 0O(n) + ZO(i) * E[X(1)]

E[X(1)] = Priv(i-l) ¢ H()] < 2/(i-2)

“Fix” C(i) = { H(1), H2)} U {HB), ..., H()}

Random : C(i-1) = C(i) — {H(i)}
v(i) is defined by 2 H(j)’s. The probability that one of them is H(i) is < 2/(i-2).
This does not depend on C(i). Hence, remove the “Fix” assumption.

Therefore : E[T] < O(n)+zn:O(i)*i_22 ~ o).

Randomized Incremental

Algorithm for
Smallest Enclosing Disk

Smallest Enclosing Disk

Input: Aset P={p,, p,, ..., P, } Of n points in the plane.
Output: Smallest enclosing disk D of P.

(i) foadh by

Lemma: Output is unique. ‘

Incremental Construction:

P[1..]1={py Py --- , P;i } Pi+1
D(i)= smallest enclosing disk of P[1..] .

D(i+1)

Lemma: (1) p,e D(i-1) = D(i) = D(i-1)
(2) p; 2 D(i-1) = p; lies on the boundary of D(i). \

D(i)=D(i-1)

Smallest Enclosing Disk

LEMMA: LetP and R be disjoint point sets in the plane. peP, R possibly empty.

Define MD(P, R) = minimum disk D such thatP < D & R < ¢ D (¢ D = boundary of D).

(1) If MD(P, R) exists, then it’s unique,
(2) peMD(P-{p}, R) = MD(PR)=MD(P-{p}, R),
(3) p e MD(P-{p},R) = MD(P, R)=MD(P-{p}, R U {p}).

Proof: (1) If non-unique = 3 smaller such disk:

(2) is obvious. .

(3) D(0) « MD(P-{p}, R)
D(1) « MD(P, R)
D(A) « (1-A)D(0)+AD(1) 0 <ia<1

As A goes from 0 to 1, D(A) continuously deforms from D(0) to D(1) s.t.
0 D(0) n 0 D(1) < 0 D(A).

p € D(1) - D(0) = by continuity 3 smallest A*, 0 <A*<1s.t.
peD(*) = pedDO¥.

= PcD(AY)&RcoD(A*) = A*=1Dby uniqueness.
Therefore, p is on the boundary of D(1). D(0)

D(1)

Smallest Enclosing Disk

Algorithm MinDisk (P[1..n])

1 RandomPermute(P[1..n])

2 D(2) « smallest enclosing disk of P[1..2]

3. for i< 3.n do

4. if p; e D(i-1) then D(i) « D(i-1)

5 else D(i) « MinDiskWithPoint (P[1..i-1] , p;)
6 return D(n)

Procedure MinDiskWithPoint (P[1..j],q)

1 RandomPermute(P[1..]])

2 D(1) « smallest enclosing disk of p; and g

3. for i« 2. do

4, if p,e D(i-1) then D(i) « D(i-1)

5 else D(i) « MinDiskWith2Points (P[1..i-1], q, p;)
6 return D())

Procedure MinDiskWith2Points (P[1..j],9,,05)

1. D(0) « smallest enclosing disk of q, and q,
2 for i« 1. do

3 if p,e D(i-1) then D(i) « D(i-1)

4, else D(i) « Disk (4;, 95, Py)

5 return D())

Smallest Enclosing Disk

THEOREM: The smallest enclosing disk of n points in the plane can be computed in
randomized O(n) expected time and O(n) space.

Proof: Space O(n) is obvious.
MinDiskWith2Points (P,q,,q,) takes O(n) time.
MinDiskWithPoint (P,q) takes time:

T= O(n)+ZO(i)*X(i) where X(i)= {1 It p; €D -D(-1)

0 otherwise
E[X(1)]<2/i (by backwards analysis)

E[T] = omniom*% = o(n).

Apply this idea once more: expected running time of MinDisk is also O(n).

