
Interval Trees and

Segment Trees
slides by Andy Mirzaian
(a subset of the original slides are used here)

References:

• [M. de Berge et al] chapter 10

Applications:
• Windowing Queries

• Vehicle navigation systems

• Geographic Information Systems

• Flight simulation in computer graphics

• CAD/CAM of printed circuit design

Data Structures:

• Interval Trees

• Priority Search Trees

• Segment Trees

Windowing

PROBLEM 1: Preprocess a set S of non-crossing line-segments in the

plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W,

report all segments in S that intersect W.

Windowing

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments

in the plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W,

report all segments in S that intersect W.

INTERVAL TREES

W

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments

in the plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W,

report all segments in S that intersect W.

INTERVAL TREES

SUB-PROBLEM 1.1 & 2.1:
Let S be a set of n line-segments in the plane. Given an axis-parallel query

window W, the segments of S that have at least one end-point inside W

can be reported in O(K + log n) time with a data structure that uses

O(n log n) space and O(n log n) preprocessing time, where K is the

number of reported segments.

Method:

Use 2D Range Tree on segment end-points and fractional cascading.

INTERVAL TREES

SUB-PROBLEM 2.2:
Preprocess a set SH of horizontal line-segments in the plane, so that the subset of

SH that intersects a query vertical line can be reported efficiently.

Method: Use Interval Trees.

Now consider horizontal (similarly, vertical) segments in S that intersect W,

but their end-points are outside W.

They must all cross the left edge of W.

W

INTERVAL TREES

Associated structure for Imed :

L left = list of segments in Imed sorted by their left end-points,

L right = list of segments in Imed sorted by their right end-points.

xmed

Imed

Iright
Ileft

Imed

Ileft Iright

1

2 3

4

5

6
7

L left = 3,4,5

L left =1,2 L left =6,7

L right = 5,3,4

L right = 1,2 L right = 7,6

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

• O(n) storage space

• O(n log n) construction time

• O(K + log n) query time

[report all K data intervals that contain

a query x-coordinate.]

INTERVAL TREES

SUB-PROBLEM 2.3:

Now instead of the query being on a vertical line, suppose it is on

a vertical line-segment.

q
(qx, q’y)

(qx, qy)

The primary structure of Interval Trees is still valid.

Modify the associated secondary structure.

SOLUTION:

L left = Range Tree on left end-points of Imed ,

L right = Range Tree on right end-points of Imed .

q(-: qx]  [qy : q’y]

xmed

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

• O(n log n) storage space

• O(n log n) construction time

• O(K + log2 n) query time

[report all K data intervals that intersect

a query vertical line-segment.]

COROLLARY: Let S be a set of n horizontal or vertical line-segments in

the plane. We can preprocess S for axis-parallel rectangular query window

intersection with the following complexities:

• O(n log n) storage space

• O(n log n) construction time

• O(K + log2 n) query time

[report all K data intervals that intersect

the query window.]

PRIORITY SEARCH TREES

P = {p1, p2, … , pn }  2.

A Priority Search Tree (PST) T on P is:

• a binary tree, one point per node,

• heap-ordered by x-coordinates,

• (almost) symmetrically ordered by y-coordinates.

Improving the previous solution:

the associated structure can be implemented by Priority Search Trees,

instead of Range Trees.

PRIORITY SEARCH TREES

pmin  point in P with minimum x-coordinate.

ymin  min y-coordinate of points in P

ymax  max y-coordinate of points in P

P’  P – {pmin}

ymed  y-median of points in P’

Pbelow  { p P’ | py  ymed }

Pabove  { p P’ | py > ymed }

PST

on

Pbelow

PST

on

Pabove

pmin

ymin , ymax

p1

y4 y3

p3

y6 y3

p2

y4 y2

p7

y7 y7

p6

y6 y6

p5

y5 y5

p4

y4 y4

p1

p2

pmin

ymed

p3

p6

p7

p4

p5

PRIORITY SEARCH TREES

Priority Search Tree T on n points in the plane requires:

• O(n) storage space

• O(n log n) construction time:

 either recursively, or
 pre-sort P on y-axis, then construct T

in O(n) time bottom-up. (How?)

Priority Search Trees can replace the secondary structures (range trees)

in Interval Trees.

• simpler (no fractional cascading)

• linear space for secondary structure.

How to use PST to search for a query range R = (-: qx]  [qy : q’y] ?

ALGORITHM QueryPST (v, R)

if v = nil or pmin x(v) > qx or ymin(v) > q’y or ymax(v) < qy

then return

if pmin x (v)  qx and qy  ymin(v)  ymax(v)  q’y
then Report.In.Subtree (v, qx)
else do

if pmin x (v)  R then report pmin x(v)

QueryPST (lc(v), R)

QueryPST (rc(v), R)

end else

end

q’y

qy

R

ymax

ymin

pmin

PROCEDURE Report.In.Subtree (v, qx)

if v=nil then return

if pmin x (v)  qx then do

report pmin x(v)

Report.In.Subtree (lc(v), qx)

Report.In.Subtree (rc(v), qx)
end if

end

Truncated Pre-Order on

the Heap: O(1 + Kv) time.

v

PST

T vqx

LEMMA: Report.In.Subtree(v, qx) takes O(1 + Kv) time to report all points in the

subtree rooted at v whose x-cooridnate is  qx , where Kv is the number

of reported points.

THEOREM: Priority Search Tree for a set P of n points in the plane has complexities:

• O(n) Storage space

• O(n log n) Construction time

• O(K + log n) Query time

[report all K points of P in a query range

R = (-: qx]  [qy : q’y] .]

qy q’y

PST

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 1: Bounding box method.

W W

Bad worst-case.

Many false hits.

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 2: Use Segment Trees.

a) Segments with end-points in W can be reported

using range trees (as before).

b) Segments that intersect the boundary of W can

be reported by Segment Trees.

SUB-PROBLEM 1.1: Preprocess a set S of n non-crossing line-segments

in the plane into a data structure to report those segments in

S that intersect a given vertical query segment

q = qx  [qy : q’y] efficiently.

Elementary x-intervals of S

(-: p1), [p1 : p1], (p1 : p2), [p2 : p2], … , (pm-1 : pm), [pm : pm], (pm : +).

Build a balanced search tree with each leaf corresponding (left-to-right)

to an elementary interval (in increasing x-order).

Leaf v:

Int(v) = set of intervals (in S) that contain the elementary interval

corresponding to v.

SEGMENT TREES

p1 p2 p3 pm. . .

IDEA 1: Store Int(v) with each leaf v.

Storage O(n2), because intervals in S that span many elementary intervals will be

stored in many leaves.

SEGMENT TREES

s1

s2 s3 s4

IDEA 2:
 internal node v:

Int(v) = union of elementary intervals corresponding to the leaf-descendents of v.

Store an interval [x:x’] of S at a node v iff Int(v)  [x:x’] but Int(parent(v))  [x:x’].

Each interval of S is stored in at most 2 nodes per level (i.e., O(log n) nodes).

Thus, storage space reduces to O(n log n).

s5

s1

s1 s1

s5

s3

s4

s3

s2,s5

s2,s5

s3,s4

What should the

associated structure be?

SEGMENT TREES

s1

s2

s3

s4

s5

v1

v2
v3

S(v1) = {s3}

S(v2) = {s1 , s2}
S(v3) = {s5 , s7}

s6

s7

SEGMENT TREES

Associated structure
is a balanced search tree based on the vertical ordering

of segments S(v) that cross the slab Int(v)  (- : +).

s1

s2

s3

s4

s5

s6

s6

s4

s2

s5

s1

s3

SEGMENT TREES

THEOREM:

Segment Tree for a set S of n non-crossing line-segments in the plane:

• O(n log n) Storage space

• O(n log n) Construction time

• O(K + log2 n) Query time

[report all K segments of S that intersect a

vertical query line-segment.

COROLLARY:

Segment Trees can be used to solve Problem 1 with the above

complexities. That is, the above complexities applies if the query is

with respect to an axis-parallel rectangular window.

