Interval Trees and Segment Trees slides by Andy Mirzaian (a subset of the original slides are used here)

References:

• [M. de Berge et al] chapter 10

Data Structures:

- Interval Trees
- Priority Search Trees
- Segment Trees

Applications:

- Windowing Queries
- Vehicle navigation systems
- Geographic Information Systems
- Flight simulation in computer graphics
- CAD/CAM of printed circuit design

Windowing

PROBLEM 1: Preprocess a set S of <u>non-crossing</u> line-segments in the plane for efficient query processing of the following type:
 Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W.

Windowing

PROBLEM 2: Preprocess a set S of <u>horizontal or vertical</u> line-segments in the plane for efficient query processing of the following type:
 Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W.

PROBLEM 2: Preprocess a set S of <u>horizontal or vertical</u> line-segments in the plane for efficient query processing of the following type:
 Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W.

SUB-PROBLEM 1.1 & 2.1:

Let S be a set of n line-segments in the plane. Given an axis-parallel query window W, the segments of S that have at least one <u>end-point inside</u> W can be reported in $O(K + \log n)$ time with a data structure that uses $O(n \log n)$ space and $O(n \log n)$ preprocessing time, where K is the number of reported segments.

Method:

Use 2D Range Tree on segment end-points and fractional cascading.

Now consider horizontal (similarly, vertical) segments in S that intersect W, but their end-points are **<u>outside</u>** W.

They must all cross the left edge of W.

SUB-PROBLEM 2.2:

Preprocess a set S_H of horizontal line-segments in the plane, so that the subset of S_H that intersects a query <u>vertical line</u> can be reported efficiently.

Method: Use Interval Trees.

Associated structure for I_{med} :

 $\mathcal{L}_{\text{left}}$ = list of segments in I_{med} sorted by their left end-points, $\mathcal{L}_{\text{right}}$ = list of segments in I_{med} sorted by their right end-points.

 O(n) storage space O(n log n) construction time O(K + log n) query time [report all K data intervals that contain a query x-coordinate.] 	THEOREM: Interval Tree for a set of n horizontal intervals:	
 O(n log n) construction time O(K + log n) query time [report all K data intervals that contain a query <u>x-coordinate</u>.] 	• O(n)	storage space
O(K + log n) query time [report all K data intervals that contain a query <u>x-coordinate</u> .]	• O(n log n)	construction time
[report all K data intervals that contain a query <u>x-coordinate</u> .]	• O(K + log n)	query time
a query <u>x-coordinate</u> .]		[report all K data intervals that contain
		a query <u>x-coordinate</u> .]

SUB-PROBLEM 2.3: Now instead of the query being on a vertical line, suppose it is on a vertical <u>line-segment</u>.

THEOREM: Interval Tree for a set of n horizontal intervals:	
• O(n log n)	storage space
• O(n log n)	construction time
• O(K + log² n)	query time
	[report all K data intervals that intersect
	a query vertical line-segment .]

COROLLARY: Let S be a set of n horizontal or vertical line-segments in the plane. We can preprocess S for axis-parallel rectangular query window intersection with the following complexities:

- O(n log n) storage space
- O(n log n) construction time
- $O(K + \log^2 n)$ query time

[report all K data intervals that intersect

the query **window**.]

PRIORITY SEARCH TREES

Improving the previous solution: the associated structure can be implemented by Priority Search Trees, instead of Range Trees.

$$\mathsf{P} = \{\mathsf{p}_1, \mathsf{p}_2, \ldots, \mathsf{p}_n\} \subseteq \mathfrak{R}^2.$$

A Priority Search Tree (PST) \mathcal{T} on P is:

- a binary tree, one point per node,
- heap-ordered by x-coordinates,
- (almost) symmetrically ordered by y-coordinates.

PRIORITY SEARCH TREES

PRIORITY SEARCH TREES

Priority Search Tree \mathcal{T} on n points in the plane requires:

- O(n) storage space
- O(n log n) construction time:
 - either recursively, or
 - \succ pre-sort P on y-axis, then construct \mathcal{T}
 - in O(n) time bottom-up. (How?)

Priority Search Trees can replace the secondary structures (range trees) in **Interval Trees**.

- simpler (no fractional cascading)
- linear space for secondary structure.

How to use PST to search for a query range $\mathbf{R} = (-\infty; \mathbf{q}_x] \times [\mathbf{q}_y; \mathbf{q}_y]$?

PROCEDURE Report.In.Subtree (v, q_x) if v=nil then return if $p_{min x}$ (v) $\leq q_x$ then do report $p_{min x}$ (v) Report.In.Subtree (lc(v), q_x) Report.In.Subtree (rc(v), q_x) end if end Truncated Pre-Order on the Heap: $O(1 + K_v)$ time.

LEMMA: Report.In.Subtree(v, q_x) takes $O(1 + K_v)$ time to report all points in the subtree rooted at v whose x-cooridnate is $\leq q_x$, where K_v is the number of reported points.

THEOREM: Priority Search Tree for a set P of n points in the plane has complexities:

 $\begin{array}{lll} \bullet O(n) & Storage space \\ \bullet O(n \log n) & Construction time \\ \bullet O(K + \log n) & Query time \\ [report all K points of P in a query range \\ R = (-\infty; q_x] \times [q_y; q'_y] .] \end{array}$

Back to Problem 1: Arbitrarily oriented line segments.

Solution 1: Bounding box method.

Bad worst-case. Many false hits.

Back to Problem 1: Arbitrarily oriented line segments.

Solution 2: Use Segment Trees.

- a) Segments with end-points in W can be reported using range trees (as before).
- b) Segments that intersect the boundary of W can be reported by Segment Trees.

SUB-PROBLEM 1.1: Preprocess a set S of n non-crossing line-segments in the plane into a data structure to report those segments in S that intersect a given <u>vertical</u> query segment $q = q_x \times [q_y : q'_y]$ efficiently.

 $(-\infty; p_1), [p_1; p_1], (p_1; p_2), [p_2; p_2], \dots, (p_{m-1}; p_m), [p_m; p_m], (p_m; +\infty).$

Build a balanced search tree with each **leaf** corresponding (left-to-right) to an elementary interval (in increasing x-order).

Leaf v:

Int(v) = set of intervals (in S) that contain the elementary interval corresponding to v.

IDEA 1: Store Int(v) with each leaf v.

Storage O(n²), because intervals in S that span many elementary intervals will be stored in many leaves.

IDEA 2:

 \forall internal node v: Int(v) = union of elementary intervals corresponding to the leaf-descendents of v.

Store an interval [x:x'] of S at a node v iff $Int(v) \subseteq [x:x']$ but $Int(parent(v)) \not\subset [x:x']$. Each interval of S is stored in at most 2 nodes per level (i.e., O(log n) nodes). Thus, storage space reduces to O(n log n).

Associated structure

is a balanced search tree based on the vertical ordering of segments S(v) that cross the slab $Int(v) \times (-\infty : +\infty)$.

COROLLARY:

Segment Trees can be used to solve Problem 1 with the above complexities. That is, the above complexities applies if the query is with respect to an axis-parallel rectangular window.