Interval Trees and Segment Trees slides by Andy Mirzaian

(a subset of the original slides are used here)

References:

- [M. de Berge et al] chapter 10

Data Structures:

- Interval Trees
- Priority Search Trees
- Segment Trees

Applications:

- Windowing Queries
- Vehicle navigation systems
- Geographic Information Systems
- Flight simulation in computer graphics
- CAD/CAM of printed circuit design

Windowing

PROBLEM 1: Preprocess a set S of non-crossing line-segments in the plane for efficient query processing of the following type: Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W.

Windowing

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments in the plane for efficient query processing of the following type:
Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W .

INTERVAL TREES

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments in the plane for efficient query processing of the following type:
Query: given an axis-parallel rectangular query window W, report all segments in S that intersect W .

INTERVAL TREES

SUB-PROBLEM 1.1 \& 2.1:

Let S be a set of n line-segments in the plane. Given an axis-parallel query window W , the segments of S that have at least one end-point inside W can be reported in $\mathrm{O}(\mathrm{K}+\log n)$ time with a data structure that uses $O(n \log n)$ space and $O(n \log n)$ preprocessing time, where K is the number of reported segments.

Method:
Use 2D Range Tree on segment end-points and fractional cascading.

INTERVAL TREES

Now consider horizontal (similarly, vertical) segments in S that intersect W, but their end-points are outside W.
They must all cross the left edge of W .

SUB-PROBLEM 2.2:

Preprocess a set S_{H} of horizontal line-segments in the plane, so that the subset of S_{H} that intersects a query vertical line can be reported efficiently.

Method: Use Interval Trees.

INTERVAL TREES

Associated structure for $\mathrm{I}_{\text {med }}$:

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

- O(n)
- O(n $\log \mathrm{n})$
- $\mathrm{O}(\mathrm{K}+\log \mathrm{n})$
storage space construction time query time
[report all K data intervals that contain a query \mathbf{x}-coordinate.]

INTERVAL TREES

SUB-PROBLEM 2.3:

Now instead of the query being on a vertical line, suppose it is on a vertical line-segment.

The primary structure of Interval Trees is still valid. Modify the associated secondary structure.

SOLUTION:

$\mathcal{L}_{\text {left }}=$ Range Tree on \quad left \quad end-points of $I_{\text {med }}$,
$\mathcal{L}_{\text {right }}=$ Range Tree on right end-points of $I_{\text {med }}$.

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

- $\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad$ storage space
- $O(n \log n) \quad$ construction time
- $\mathrm{O}\left(\mathrm{K}+\log ^{2} \mathrm{n}\right) \quad$ query time
[report all K data intervals that intersect a query vertical line-segment.]

COROLLARY: Let S be a set of n horizontal or vertical line-segments in the plane. We can preprocess S for axis-parallel rectangular query window intersection with the following complexities:

- $O(n \log n) \quad$ storage space
- $O(n \log n) \quad$ construction time
- $\mathrm{O}\left(\mathrm{K}+\log ^{2} \mathrm{n}\right) \quad$ query time
[report all K data intervals that intersect the query window.]

PRIORITY SEARCH TREES

Improving the previous solution:
the associated structure can be implemented by Priority Search Trees, instead of Range Trees.
$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathfrak{R}^{2}$.
A Priority Search Tree (PST) \mathcal{T} on P is:

- a binary tree, one point per node,
- heap-ordered by x-coordinates,
- (almost) symmetrically ordered by y-coordinates.

PRIORITY SEARCH TREES

$$
\begin{aligned}
& \mathrm{p}_{\text {min }} \leftarrow \text { point in } \mathrm{P} \text { with minimum } \mathrm{x} \text {-coordinate. } \\
& \mathrm{y}_{\text {min }} \leftarrow \text { min } \mathrm{y} \text {-coordinate of points in } \mathrm{P} \\
& y_{\text {max }} \leftarrow \text { max } y \text {-coordinate of points in } P \\
& P^{\prime} \quad \leftarrow P-\left\{p_{\min }\right\} \\
& \mathrm{y}_{\text {med }} \leftarrow \mathrm{y} \text {-median of points in } \mathrm{P}^{\prime} \\
& P_{\text {below }} \leftarrow\left\{p \in P^{\prime} \mid p_{y} \leq y_{\text {med }}\right\} \\
& P_{\text {above }} \leftarrow\left\{p \in P^{\prime} \mid p_{y}>y_{\text {med }}\right\}
\end{aligned}
$$

PRIORITY SEARCH TREES

Priority Search Tree \mathcal{T} on n points in the plane requires:

- O(n) storage space
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ construction time:
$>$ either recursively, or
$>$ pre-sort P on y -axis, then construct \mathcal{T} in $\mathrm{O}(\mathrm{n})$ time bottom-up. (How?)

Priority Search Trees can replace the secondary structures (range trees) in Interval Trees.

- simpler (no fractional cascading)
- linear space for secondary structure.

```
How to use PST to search for a query range R = (-\infty: \mp@subsup{q}{x}{}]\times[\mp@subsup{q}{y}{}:\mp@subsup{q}{y}{\prime}]}\mathrm{ ? 
```


ALGORITHM QueryPST (v, R)

if $v=$ nil or $p_{\min x}(v)>q_{x}$ or $y_{\text {min }}(v)>q_{y}^{\prime}$ or $y_{\max }(v)<q_{y}$ then return
if $p_{\min x}(v) \leq q_{x}$ and $q_{y} \leq y_{\min }(v) \leq y_{\max }(v) \leq q_{y}^{\prime}$ then Report.In.Subtree $\left(v, q_{x}\right)$ else do
if $p_{\text {min } x}(v) \in R$ then report $p_{\text {min } x}(v)$
QueryPST (lc(v), R)
QueryPST (rc(v), R)
end else
end

```
PROCEDURE Report.In.Subtree (v, qu)
if v=nil then return
if }\mp@subsup{p}{\operatorname{min}x}{}(v)\leq\mp@subsup{q}{x}{}\mathrm{ then do
    report p pmin (v)
    Report.In.Subtree (Ic(v), qux)
    Report.In.Subtree (rc(v), qx
end if
end
```

Truncated Pre-Order on the Heap: $\mathrm{O}\left(1+\mathrm{K}_{\mathrm{v}}\right)$ time.

LEMMA: Report.In.Subtree $\left(v, q_{x}\right)$ takes $\mathrm{O}\left(1+\mathrm{K}_{\mathrm{v}}\right)$ time to report all points in the subtree rooted at v whose x-cooridnate is $\leq q_{x}$, where K_{v} is the number of reported points.

THEOREM: Priority Search Tree for a set P of n points in the plane has complexities:

- O(n)
- O(n log n)
- O(K + $\log n)$

Storage space
Construction time
Query time
[report all K points of P in a query range

$$
\left.R=\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right] .\right]
$$

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 1: Bounding box method.

> Bad worst-case. Many false hits.

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 2: Use Segment Trees.
a) Segments with end-points in W can be reported using range trees (as before).
b) Segments that intersect the boundary of W can be reported by Segment Trees.

SUB-PROBLEM 1.1: Preprocess a set S of n non-crossing line-segments in the plane into a data structure to report those segments in S that intersect a given vertical query segment $q=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$ efficiently.

SEGMENT TREES

Elementary x-intervals of S

$\left(-\infty: p_{1}\right),\left[p_{1}: p_{1}\right],\left(p_{1}: p_{2}\right),\left[p_{2}: p_{2}\right], \ldots,\left(p_{m-1}: p_{m}\right),\left[p_{m}: p_{m}\right],\left(p_{m}:+\infty\right)$.
Build a balanced search tree with each leaf corresponding (left-to-right) to an elementary interval (in increasing x-order).

Leaf v :
$\operatorname{Int}(\mathbf{v})=$ set of intervals (in S) that contain the elementary interval corresponding to v .

IDEA 1: Store $\operatorname{Int}(\mathrm{v})$ with each leaf v .
Storage $\mathbf{O}\left(\mathbf{n}^{2}\right)$, because intervals in S that span many elementary intervals will be stored in many leaves.

SEGMENT TREES

IDEA 2:

\forall internal node v:
$\operatorname{lnt}(v)=$ union of elementary intervals corresponding to the leaf-descendents of v.
Store an interval $\left[x: x^{\prime}\right]$ of S at a node v iff $\operatorname{lnt}(v) \subseteq\left[x: x^{\prime}\right]$ but $\operatorname{lnt}(p a r e n t(v)) \not \subset\left[x: x^{\prime}\right]$. Each interval of S is stored in at most 2 nodes per level (i.e., O(log n) nodes). Thus, storage space reduces to $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

SEGMENT TREES

SEGMENT TREES

Associated structure

is a balanced search tree based on the vertical ordering of segments $S(v)$ that cross the slab $\operatorname{Int}(v) \times(-\infty:+\infty)$.

SEGMENT TREES

THEOREM:

Segment Tree for a set S of n non-crossing line-segments in the plane:

- O($n \log n) \quad$ Storage space
- O($\mathrm{n} \log \mathrm{n}$) Construction time
- $O\left(K+\log ^{2} n\right) \quad$ Query time
[report all K segments of S that intersect a vertical query line-segment.

COROLLARY:

Segment Trees can be used to solve Problem 1 with the above complexities. That is, the above complexities applies if the query is with respect to an axis-parallel rectangular window.

