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References:

• [M. de Berge et al] chapter 10

Applications: 
• Windowing Queries

• Vehicle navigation systems

• Geographic Information Systems

• Flight simulation in computer graphics

• CAD/CAM of printed circuit design

Data Structures:

• Interval Trees 

• Priority Search Trees

• Segment Trees



Windowing

PROBLEM 1: Preprocess a set S of non-crossing line-segments in the 

plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W, 

report all segments in S that intersect W.



Windowing

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments 

in the plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W, 

report all segments in S that intersect W.



INTERVAL TREES

W

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments 

in the plane for efficient query processing of the following type:

Query: given an axis-parallel rectangular query window W, 

report all segments in S that intersect W.



INTERVAL TREES

SUB-PROBLEM 1.1 & 2.1:  
Let S be a set of n line-segments in the plane. Given an axis-parallel query 

window W, the segments of S that have at least one end-point inside W 

can be reported in O(K + log n) time with a data structure that uses 

O(n log n) space and O(n log n) preprocessing time, where K is the 

number of reported segments.

Method:  

Use 2D Range Tree on segment end-points and fractional cascading.



INTERVAL TREES

SUB-PROBLEM 2.2:  
Preprocess a set SH of horizontal line-segments in the plane, so that the subset of

SH that intersects a query vertical line can be reported efficiently.

Method: Use Interval Trees.

Now consider horizontal (similarly, vertical) segments in S that intersect W, 

but their end-points are outside W.

They must all cross the left edge of W.

W



INTERVAL TREES

Associated structure for Imed :

L left = list of segments in Imed sorted by their   left end-points,

L right = list of segments in Imed sorted by their  right end-points.
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INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

• O(n)  storage space

• O(n log n) construction time

• O(K + log n) query time 

[report all K data intervals that contain 

a query x-coordinate.]



INTERVAL TREES

SUB-PROBLEM 2.3:  

Now instead of the query being on a vertical line, suppose it is on 

a vertical line-segment.

q
(qx, q’y)

(qx, qy)

The primary structure of Interval Trees is still valid.

Modify the associated secondary structure.

SOLUTION:

L left =  Range Tree on    left     end-points of Imed ,

L right =  Range Tree on   right   end-points of Imed .

q(-: qx]  [qy : q’y]

xmed



INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:

• O(n log n)  storage space

• O(n log n) construction time

• O(K + log2 n) query time 

[report all K data intervals that intersect 

a query vertical line-segment.]

COROLLARY: Let S be a set of n horizontal or vertical line-segments in 

the plane. We can preprocess S for axis-parallel rectangular query window 

intersection with the following complexities:

• O(n log n)  storage space

• O(n log n) construction time

• O(K + log2 n) query time 

[report all K data intervals that intersect 

the query window.]



PRIORITY SEARCH TREES

P = {p1, p2, … , pn }  2.  

A Priority Search Tree (PST) T on P is: 

• a binary tree, one point per node, 

• heap-ordered by x-coordinates, 

• (almost) symmetrically ordered by y-coordinates.

Improving the previous solution:

the associated structure can be implemented by Priority Search Trees, 

instead of Range Trees.



PRIORITY SEARCH TREES

pmin  point in P with minimum x-coordinate.

ymin  min y-coordinate of points in P

ymax  max y-coordinate of points in P

P’       P – {pmin}

ymed  y-median of points in P’

Pbelow  { p P’  | py  ymed }

Pabove  { p P’  | py > ymed }
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PRIORITY SEARCH TREES

Priority Search Tree T on n points in the plane requires:

• O(n) storage space

• O(n log n) construction time:

 either recursively, or 
 pre-sort P on y-axis, then construct T

in O(n) time bottom-up. (How?)

Priority Search Trees can replace the secondary structures (range trees) 

in Interval Trees.

• simpler (no fractional cascading)

• linear space for secondary structure.



How to use PST to search for a query range  R = (-: qx]  [qy : q’y] ?

ALGORITHM QueryPST (v, R)

if v = nil  or  pmin x(v) > qx or ymin(v) > q’y or ymax(v) < qy  

then return

if  pmin x (v)  qx and  qy  ymin(v)  ymax(v)  q’y
then Report.In.Subtree (v, qx)
else do

if pmin x (v)  R   then report pmin x(v) 

QueryPST (lc(v), R)

QueryPST (rc(v), R)

end else

end

q’y

qy

R

ymax

ymin

pmin

PROCEDURE Report.In.Subtree (v, qx)

if v=nil   then return

if pmin x (v)  qx then do

report  pmin x(v)

Report.In.Subtree (lc(v), qx)

Report.In.Subtree (rc(v), qx)
end if

end

Truncated Pre-Order on 

the Heap: O(1 + Kv) time.

v

PST

T vqx



LEMMA: Report.In.Subtree(v, qx)  takes O(1 + Kv) time to report all points in the 

subtree rooted at v whose x-cooridnate is  qx , where Kv is the number 

of reported points.

THEOREM: Priority Search Tree for a set P of n points in the plane has complexities:

• O(n) Storage space

• O(n log n) Construction time

• O(K + log n) Query time

[report all K points of P in a query range

R = (-: qx]  [qy : q’y] .]

qy q’y

PST



SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 1: Bounding box method. 

W W

Bad worst-case. 

Many false hits.



SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 2: Use Segment Trees.

a) Segments with end-points in W can be reported 

using range trees (as before).

b) Segments that intersect the boundary of W can

be reported by Segment Trees.

SUB-PROBLEM 1.1: Preprocess a set S of n non-crossing line-segments 

in the plane into a data structure to report those segments in 

S that intersect a given vertical query segment 

q = qx  [qy : q’y]  efficiently. 



Elementary x-intervals of S

(-: p1), [p1 : p1], (p1 : p2), [p2 : p2], … , (pm-1 : pm), [pm : pm], (pm : +). 

Build a balanced search tree with each leaf corresponding (left-to-right) 

to an elementary interval (in increasing x-order). 

Leaf v:    

Int(v) =  set of intervals (in S) that contain the elementary interval 

corresponding to v.

SEGMENT TREES

p1 p2 p3 pm. . .

IDEA 1: Store Int(v) with each leaf v. 

Storage O(n2), because intervals in S that span many elementary intervals will be 

stored in many leaves.



SEGMENT TREES

s1

s2 s3 s4

IDEA 2:
 internal node v: 

Int(v)  =  union of elementary intervals corresponding to the leaf-descendents of v.

Store an interval [x:x’] of S at a node v iff  Int(v)  [x:x’]  but Int(parent(v))  [x:x’].

Each interval of S is stored in at most 2 nodes per level (i.e., O(log n) nodes).

Thus, storage space reduces to O(n log n). 
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s1

s1 s1
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s3
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s2,s5

s2,s5

s3,s4

What should the

associated structure be?



SEGMENT TREES

s1

s2

s3

s4

s5

v1

v2
v3

S(v1) = {s3}

S(v2) = {s1 , s2}
S(v3) = {s5 , s7}

s6

s7



SEGMENT TREES

Associated structure
is a balanced search tree based on the vertical ordering

of segments S(v) that cross the slab Int(v)  (- : +).
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SEGMENT TREES

THEOREM:

Segment Tree for a set S of n non-crossing line-segments in the plane:

• O(n log n) Storage space

• O(n log n) Construction time

• O(K + log2 n) Query time

[report all K segments of S that intersect a

vertical query line-segment.

COROLLARY:

Segment Trees can be used to solve Problem 1 with the above

complexities. That is, the above complexities applies if the query is       

with respect to an axis-parallel rectangular window.


