Interval Trees and

Segment Trees
slides by Andy Mirzaian

(a subset of the original slides are used here)

References:

« [M. de Berge et al] chapter 10

Windowing

PROBLEM 1. Preprocess a set S of non-crossing line-segments in the

plane for efficient query processing of the following type:
Query: given an axis-parallel rectangular query window W,
report all segments in S that intersect W.

GWENT

EOF> TN
Lesey / f¥ R 8
&/

K CONWY
)

-~
GWYNEDD

COUNTY OF
HEREFORDSHIRE

GLAMORGAN

..........
.........
.........
......
......

.........
..........
......

......
......
.......

HAMPSHIRE

BeD)

SOMERSET

WEST

Windowing

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments
in the plane for efficient query processing of the following type:
Query: given an axis-parallel rectangular query window W,

report all segments in S that intersect W.

-}

1

4
L

5|
r
ir
|F
w
b -
1%

I

LY

INTERVAL TREES

PROBLEM 2: Preprocess a set S of horizontal or vertical line-segments
In the plane for efficient query processing of the following type:
Query: given an axis-parallel rectangular query window W,

report all segments in S that intersect W.

I @ o ¢ !
“ W w

INTERVAL TREES

SUB-PROBLEM 1.1 & 2.1:

Let S be a set of n line-segments in the plane. Given an axis-parallel query
window W, the segments of S that have at least one end-point inside W
can be reported in O(K + log n) time with a data structure that uses

O(n log n) space and O(n log n) preprocessing time, where K is the
number of reported segments.

Method:
Use 2D Range Tree on segment end-points and fractional cascading.

INTERVAL TREES

Now consider horizontal (similarly, vertical) segments in S that intersect W,
but their end-points are outside W.
They must all cross the left edge of W.

SUB-PROBLEM 2.2:

Preprocess a set S,, of horizontal line-segments in the plane, so that the subset of
S, that intersects a query vertical line can be reported efficiently.

Method: Use Interval Trees.

INTERVAL TREES

° ®
® ® Imed
.
——o i e °
e —° o ————o
—————o : i @— ——— o
———o
IIeft | .
right
Xmed

Associated structure for |4 :
L . =listof segmentsinl_., sorted by their left end-points,
L = list of segments in |4 sorted by their right end-points.

right

L ignt = 5,3,4

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:
* O(n) storage space
* O(n log n) construction time
* O(K + log n) query time
[report all K data intervals that contain
a query x-coordinate.]

INTERVAL TREES

SUB-PROBLEM 2.3:
Now instead of the query being on a vertical line, suppose it is on
a vertical line-segment.

The primary structure of Interval Trees is still valid. q G 9
Modify the associated secondary structure.)
([®
SOLUTION: £ (0 ay)
L .« = Range Treeon left end-pointsofl_ .,
L ;e = Range Tree on right end-points of I, .
([®
([®
@ ®
@ ®
® ®
(—OO: qx] ”» [qy -9 y] adl e— °
([®
Xmed

INTERVAL TREES

THEOREM: Interval Tree for a set of n horizontal intervals:
* O(n log n) storage space
* O(n log n) construction time
* O(K+log?n) querytime
[report all K data intervals that intersect
a query vertical line-segment.]

COROLLARY: Let S be a set of n horizontal or vertical line-segments in
the plane. We can preprocess S for axis-parallel rectangular query window
intersection with the following complexities:
* O(n log n) storage space
* O(n log n) construction time
* O(K+1log?n) querytime
[report all K data intervals that intersect
the query window.]

PRIORITY SEARCH TREES

Improving the previous solution:
the associated structure can be implemented by Priority Search Trees,
instead of Range Trees.

P={p, P, ..., P, } < K2

A Priority Search Tree (PST) 7 on P is:

* a binary tree, one point per node,
» heap-ordered by x-coordinates,
* (almost) symmetrically ordered by y-coordinates.

PRIORITY SEARCH TREES

Pmin < pPoint in P with minimum x-coordinate.
Ymin < Min y-coordinate of points in P
Ymax < Max y-coordinate of points in P

P’ «~ P- {pmin}

Ymed < Y-median of points in P’
ey & 196 B | By € Viea b
Pt = L BE P | By 2 Vi b

)

P7

Ps \y7

Y7,

Yo | Y3

Py

)

Ps

Ys

Ye)

Ya Y3

P, [—

)

Ps

Y5)

b’4 Y2) Vs
S
Pa

Y4

Ya,

pmin
ymin) ymax

PST PST
on on
I:)below I:)above
1
1
®Ps
1
Prmin ® P2 ! ol
1
| Ps
F-—"®-—=—====--
P, |
ymed T
: Ps®
1
l P4
I T
1
1
1

PRIORITY SEARCH TREES

Priority Search Tree 7 on n points in the plane requires:

* O(n) storage space

* O(n log n) construction time:
» either recursively, or
> pre-sort P on y-axis, then construct T

In O(n) time bottom-up. (How?)

Priority Search Trees can replace the secondary structures (range trees)
in Interval Trees.

» simpler (no fractional cascading)

* linear space for secondary structure.

How to use PST to search for a query range R = (-o0: q,]

x[qy:d’y] ?

ALGORITHM QueryPST (v, R)

if v=nil or Prmin x(V) > Q Or ymin(V) = q,y or ymax(V) = CIy
then return

if Pmin x (V) = Ox and qy = ymin(V) =< ymax(v) = q,y
then Report.In.Subtree (v, q,) —_
else do
if Pming (V) € R then report pi, (V)
QueryPST (Ic(v), R)
QueryPST (rc(v), R)
end else
end

ymax

s DA A

ymin

PROCEDURE Report.In.Subtree (v, gq,) | Truncated Pre-Order on
if v=nil then return the Heap: O(1 + K) time.

If piny (V) <0, thendo
report P x(V)
Report.In.Subtree (Ic(v), q,)
Report.In.Subtree (rc(v), q,)

end if

end

Vv

PST

LEMMA: Report.In.Subtree(v, q,) takes O(1 + K,) time to report all points in the
subtree rooted at v whose x-cooridnate is < q, , where K, is the number
of reported points.

THEOREM: Priority Search Tree for a set P of n points in the plane has complexities:

* O(n) Storage space
* O(n log n) Construction time
* O(K +log n) Query time

[report all K points of P in a query range
R = (-0 q,] x[ay : qy]]

PST

>0

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 1. Bounding box method. Bad worst-case.
Many false hits.

\\\

SEGMENT TREES

Back to Problem 1: Arbitrarily oriented line segments.

Solution 2: Use Segment Trees.
a) Segments with end-points in W can be reported
using range trees (as before).
b) Segments that intersect the boundary of W can
be reported by Segment Trees.

SUB-PROBLEM 1.1: Preprocess a set S of n non-crossing line-segments
in the plane into a data structure to report those segments in
S that intersect a given vertical query segment

q=a,x[a,:q,] efficiently.

SEGMENT TREES

Elementary x-intervals of S P1 P2 Ps Pm

1 >
>

A

(-0: P1), [P1 : Pal, (P12 P2)s [P2 2 P2l -+ 5 (Pt = Pr)s [P = Pl (Pry - +00).

Build a balanced search tree with each leaf corresponding (left-to-right)
to an elementary interval (in increasing x-order).

Leaf v:
Int(v) = set of intervals (in S) that contain the elementary interval
corresponding to v.

IDEA 1: Store Int(v) with each leaf v.

Storage O(n?), because intervals in S that span many elementary intervals will be
stored in many leaves.

SEGMENT TREES

IDEA 2:

V internal node v:
Int(v) = union of elementary intervals corresponding to the leaf-descendents of v.

Store an interval [x:x’] of S at a node v iff Int(v) c [x:X"] but Int(parent(v)) & [x:X].
Each interval of S is stored in at most 2 nodes per level (i.e., O(log n) nodes).

Thus, storage space reduces to O(n log n).

What should the A
associated structure be?
o ()
S2,S5
() Sg ()
S S S,
O ol ! O —
S S35,
| 1 O S3 |]
n 82’85 n n n n n S4 n
L L L L L L | M|
P = ° 32 = - S5 s 1.
C
1 [2 o S4

SEGMENT TREES

@ S(v,) ={s;, Sy} @S(Vs) ={s5, S7}

S3
/36.
S2 04 ..
\ _ S .
\. 4

SEGMENT TREES

Associated structure
IS a balanced search tree based on the vertical ordering
of segments S(v) that cross the slab Int(v) x (-co : +0).

S5 9 9
— (s

SEGMENT TREES

THEOREM:
Segment Tree for a set S of n non-crossing line-segments in the plane:

* O(n log n) Storage space

* O(n log n) Construction time

* O(K+1log?n) Querytime
[report all K segments of S that intersect a
vertical query line-segment.

COROLLARY:
Segment Trees can be used to solve Problem 1 with the above

complexities. That is, the above complexities applies if the query is
with respect to an axis-parallel rectangular window.

