Polygon Triangulation slides by Andy Mirzaian
 (a subset of the original slides are used here)

Guarding an Art Gallery

Art Gallery Problem [Victor Klee 1973]

How many camera guards do we need to guard a given gallery and how do we decide where to place them?

- It's NP-hard to determine the MINIMUM number of camera guards for an arbitrary given simple polygon [Aggarwal 1984].
- Let P be an n -vertex simple polygon.
- If P is convex, then a single guard anywhere inside P is sufficient.
- n guards for P are always sufficient; one guard at each vertex. [This does not work for 3D polytopes!]
- Can we use less than n guards? Yes. Use Triangulation of P.

A simple polygon P

A triangulation of P

Dual Tree of the Triangulation

Diagonal of a simple polygon P: Any line-segment between two non-adjacent vertices of P that is completely inside P.

LEMMA 1 Any simple n -gon with $\mathrm{n}>3$ admits at least one diagonal. Such a diagonal can be found in $\mathrm{O}(\mathrm{n})$ time.

Proof: Let x be any convex vertex of the polygon (e.g., an extreme vertex, say, the lowest-leftmost).
(case a) $\overline{y z}$ is a diagonal

[Shaded triangle does not contain any vertex of the polygon]

THEOREM 2 Any simple n -gon P admits at least one Triangulation. Such a triangulation T can be computed in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time. Any such triangulation has $\mathrm{n}-3$ diagonals, and $\mathrm{n}-2$ triangles.

Proof: By induction on n .

Basis ($n=3$): Obvious.
Ind. Step ($n>3$): By previous Lemma, a diagonal d of P exists and can be found in $O(n)$ time, and divides P into simple polygons $P_{1} \& P_{2}$ with, say, $n_{1} \& n_{2}$ vertices, where d is an edge of both. Note, $n=n_{1}+n_{2}-2$.

Triangulations $T_{1} \& T_{2}$ of $P_{1} \& P_{2}$ can be obtained recursively. Now set $T=T_{1} \cup T_{2}$ with d as an extra diagonal.

Total computation time: $\operatorname{Time}(\mathrm{n})=\operatorname{Time}\left(\mathrm{n}_{1}\right)+\operatorname{Time}\left(\mathrm{n}_{2}\right)+\mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
By induction hypothesis:
T_{1} has $n_{1}-3$ diagonals and $n_{1}-2$ triangles,
T_{2} has $\mathrm{n}_{2}-3$ diagonals and $\mathrm{n}_{2}-2$ triangles,
These imply:
Thas $\mathrm{n}-3$ diagonals and $\mathrm{n}-2$ triangles.

THEOREM 3 [Chvătal 1975, Fisk 1978]

n/3」 guards are always sufficient and sometimes necessary to guard any simple n-gon.

Proof: Necessity:
Sufficiency:

1. $\mathrm{T}=\mathrm{a}$ triangulation of the n -gon.
2. 3 -colour vertices of T (so that the vertices of each triangle get 3 different colours). This can be done (implicitly) by a DFS traversal on the dual tree of T.
3. Choose a colour least often used (break ties arbitrarily).
4. Place a guard at the vertices of the chosen colour. (Each triangle has a guard.)

Simple Polygon Triangulation Algorithms

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $O(\mathrm{n} \log \log \mathrm{n})$
- $\mathrm{O}\left(\mathrm{n} \log ^{*} \mathrm{n}\right)$ randomized
- O(n)
- $\mathrm{O}(\mathrm{n})$ randomized

See Theorem 2. Also by "ear removal", Lennes 1911.
Garey-Johnson-Preparata-Tarjan (plane sweep) 1978.
Tarjan-van Wyk (balanced-cut \& Jordan-sort) 1986-88.
Clarkson-Tarjan-van Wyk 1989.
Chazelle 1991. [Complicated. Can it be simplified?]
Amato-Goodrich-Ramos 2000. [See LN15]

A possible generic candidate for simpler \& efficient polygon triangulation algorithm:

- via pseudo-triangulations

Mirzaian 1988 [See LN14]

Garey-Johnson-Preparata-Tarjan

- FACT: P is y-monotone if and only if it does not have any cusps.
- A monotone polygon can easily be triangulated in linear time.
- Subdivide the simple polygon into monotone sub-polygons by adding diagonals to cusps.

y-monotone

Cusp: concave local y-min or y-max vertex.

$3 y$-monotone sub-polygons.

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

1. Trapzoidize using plane sweep in $O(n \log n)$ time.
2. Remove visibility chords outside polygon.
3. Add one supporting diagonal (if any) per trapezoid. These diagonals eliminate cusps and subdivide polygon into y-monotone sub-polygons.
4. Ignore visibility chords.

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

1. Trapzoidize using plane sweep in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time.
2. Remove visibility chords outside polygon.
3. Add one supporting diagonal (if any) per trapezoid. These diagonals eliminate cusps and subdivide polygon into y-monotone sub-polygons.
4. Ignore visibility chords.
5. Triangulate each y-monotone sub-polygon in total $\mathrm{O}(\mathrm{n})$ time. [See next slides.]

Triangulating a y-monotone polygon

- Merge y-sorted left \& right boundary chains of the polygon to obtain the y-sorted vertex list.
- Advance along y-sorted vertex-list:
> An "uncapped" chord (edge or diagonal) is one that is considered but doesn't yet have an incident triangle above. These chords form a concave chain.
> For each vertex v in y-sorted order, add downward visible chords and triangles from v to uncapped visible diagonals, starting from most recent \& backwards. (Use a stack. See next slide.)

Algorithm Triangulate y-monotone polygon P

- merge the vertices of the left and right chains of P into y-sorted order, say, $u_{1}, u_{2}, \ldots, u_{n}$.
- push u_{1} and u_{2} into an initially empty stack S.
- for $\mathrm{j} \leftarrow 3$.. $\mathrm{n}-1$ do
if $\quad u_{j} \& \operatorname{top}(S)$ are on different chains
then pop all vertices from S and add a diagonal between u_{j} and each popped vertex except the last. push u_{j-1} and u_{j} onto S.
else pop(S)
pop the other vertices from S while they are visible from u_{j}, and add a diagonal between u_{j} and each popped vertex. push last popped vertex back onto S. push u_{j} onto S .
- add diagonals from the last vertex u_{n} to all stack vertices except first and last.
end

A straight-line planar subdivision with n vertices can be triangulated in $O(n \log n)$ time and $\mathrm{O}(\mathrm{n})$ space.

Use the same approach: plane-sweep; trapzoidize; monotonize; and triangulate the resulting monotone polygons.

This approach can also triangulate a polygon with polygonal obstacles inside, in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time (applications in robotics).

