
Polygon Triangulation
slides by Andy Mirzaian

(a subset of the original slides are used here)

Guarding an Art Gallery

Art Gallery Problem [Victor Klee 1973]

How many camera guards do we need to guard a given gallery and

how do we decide where to place them?

• It’s NP-hard to determine the MINIMUM number of camera guards for

an arbitrary given simple polygon [Aggarwal 1984].

• Let P be an n-vertex simple polygon.

• If P is convex, then a single guard anywhere inside P is sufficient.

• n guards for P are always sufficient; one guard at each vertex.

[This does not work for 3D polytopes!]

• Can we use less than n guards? Yes. Use Triangulation of P.

A simple polygon P

A triangulation of P

Dual Tree of the Triangulation

Diagonal of a simple polygon P: Any line-segment between two

non-adjacent vertices of P that is completely inside P.

yes
no

Proof: Let x be any convex vertex of the polygon

(e.g., an extreme vertex, say, the lowest-leftmost).

(case a) yz is a diagonal (case b) xw is a diagonal

x

y

z

x

y

z

w

[Shaded triangle does not contain any vertex of the polygon]

LEMMA 1 Any simple n-gon with n>3 admits at least one diagonal.

Such a diagonal can be found in O(n) time.

Proof: By induction on n.

Basis (n=3): Obvious.

Ind. Step (n>3): By previous Lemma, a diagonal d of P exists and can be found in

O(n) time, and divides P into simple polygons P1 & P2 with, say, n1 & n2 vertices,

where d is an edge of both. Note, n = n1+n2 -2.

Triangulations T1 & T2 of P1 & P2 can be obtained recursively.

Now set T = T1T2 with d as an extra diagonal.

Total computation time: Time(n) = Time(n1) + Time(n2) + O(n) = O(n2).

By induction hypothesis:

T1 has n1–3 diagonals and n1–2 triangles,

T2 has n2–3 diagonals and n2–2 triangles,

These imply:

T has n–3 diagonals and n–2 triangles.

P1

P2

P

d

THEOREM 2 Any simple n-gon P admits at least one Triangulation.

Such a triangulation T can be computed in O(n2) time.

Any such triangulation has n-3 diagonals, and n-2 triangles.

Sufficiency:

1. T = a triangulation of the n-gon.

2. 3-colour vertices of T (so that the vertices of each triangle get 3 different colours).
This can be done (implicitly) by a DFS traversal on the dual tree of T.

3. Choose a colour least often used (break ties arbitrarily).

4. Place a guard at the vertices of the chosen colour. (Each triangle has a guard.)

G

R=4

B=3

G=4

R

R

R

RB

B

B

G

G

G

THEOREM 3 [Chvătal 1975, Fisk 1978]
n/3 guards are always sufficient and sometimes necessary to

guard any simple n-gon.

Proof: Necessity:

Simple Polygon Triangulation Algorithms

• O(n2) time See Theorem 2. Also by “ear removal”, Lennes 1911.

• O(n log n) Garey-Johnson-Preparata-Tarjan (plane sweep) 1978.

• O(n log log n) Tarjan-van Wyk (balanced-cut & Jordan-sort) 1986-88.

• O(n log* n) randomized Clarkson-Tarjan-van Wyk 1989.

• O(n) Chazelle 1991. [Complicated. Can it be simplified?]

• O(n) randomized Amato-Goodrich-Ramos 2000. [See LN15]

A possible generic candidate for simpler & efficient polygon triangulation algorithm:

• via pseudo-triangulations Mirzaian 1988 [See LN14]

http://www.cse.yorku.ca/~andy/courses/6114/lecture-notes/PolyTriangulation2001.pdf
http://www.cse.yorku.ca/~andy/courses/6114/lecture-notes/PolyTriangulate.pdf

Garey-Johnson-Preparata-Tarjan

• FACT: P is y-monotone if and only if it does not have any cusps.

• A monotone polygon can easily be triangulated in linear time.

• Subdivide the simple polygon into monotone sub-polygons by adding diagonals to cusps.

x

y

3 y-monotone sub-polygons.

x

y

Cusp: concave local y-min or y-max vertex.

x

y

y-monotone

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

1. Trapzoidize using plane sweep in O(n log n) time.

2. Remove visibility chords outside polygon.

3. Add one supporting diagonal (if any) per trapezoid.

These diagonals eliminate cusps and subdivide

polygon into y-monotone sub-polygons.

4. Ignore visibility chords.

Garey-Johnson-Preparata-Tarjan

How to partition the polygon into monotone sub-polygons by adding suitable diagonals

1. Trapzoidize using plane sweep in O(n log n) time.

2. Remove visibility chords outside polygon.

3. Add one supporting diagonal (if any) per trapezoid.

These diagonals eliminate cusps and subdivide

polygon into y-monotone sub-polygons.

4. Ignore visibility chords.

5. Triangulate each y-monotone sub-polygon in

total O(n) time. [See next slides.]

Triangulating a y-monotone polygon

x

y

• Merge y-sorted left & right boundary chains of

the polygon to obtain the y-sorted vertex list.

• Advance along y-sorted vertex-list:

 An “uncapped” chord (edge or diagonal) is one

that is considered but doesn’t yet have an

incident triangle above. These chords form a

concave chain.

 For each vertex v in y-sorted order, add

downward visible chords and triangles from v to

uncapped visible diagonals, starting from most

recent & backwards. (Use a stack. See next

slide.)

1

2
3

4
5

6

7

8

9
10

11

1213

14

15

16

17

Algorithm Triangulate y-monotone polygon P

• merge the vertices of the left and right chains of P into y-sorted order, say, u1, u2, … , un.

• push u1 and u2 into an initially empty stack S.

• for j 3 .. n-1 do

if uj & top(S) are on different chains

then pop all vertices from S and add a diagonal between uj and each popped

vertex except the last.

push uj-1 and uj onto S.

else pop(S)

pop the other vertices from S while they are visible from uj, and add

a diagonal between uj and each popped vertex.

push last popped vertex back onto S.

push uj onto S.

• add diagonals from the last vertex un to all stack vertices except first and last.

end

A straight-line planar subdivision with n vertices can be triangulated in O(n log n)

time and O(n) space.

Use the same approach: plane-sweep; trapzoidize; monotonize; and triangulate the

resulting monotone polygons.

This approach can also triangulate a polygon with polygonal obstacles inside,

in O(n log n) time (applications in robotics).

