2D Linear

Programming slides by Andy Mirzaian

(a subset of the original slides are used here)

The LP Problem

$\operatorname{maximize} c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}$
subject to:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 d} x_{d} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 d} x_{d} \leq b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n d} x_{d} \leq b_{n}
\end{gathered}
$$

Applications

- The most widely used Mathematical Optimization Model.
- Management science (Operations Research).
- Engineering, technology, industry, commerce, economics.
- Efficient resource allocation:
- Airline transportation,
- Communication network - opt. transmission routing,
- Factory inventory/production control,
- Fund management, stock portfolio optimization.
- Approximation of hard optimization problems.

Example in 2D

$\max \quad x_{1}+8 x_{2}$
subject to:

optimum
basic
constraints

Example in 3D

History of LP

- 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry \& algebra]

Egypt: polyhedra \& pyramids.
India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]
China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)
[Precursor of Gauss-Jordan elimination method on linear equations]
Greece: Pythagoras, Euclid, Archimedes, ...

- 825 AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):
"Al-Maqhaleh fi Hisab al-jabr w'almoqhabeleh" (An essay on Algebra and equations)
"Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi" (Book on Hindu Arithmetic).
originated the words algebra \& algorithm for solution procedures of algebraic systems.
Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]
- Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930's], Kantorovich [1939], Gale [1960] [LP duality theory \& precursor of Simplex]
\square George Dantzig [1947]: Simplex algorithm.
Exponential time in the worst case, but effective in practice.
Leonid Khachiyan [1979]: Ellipsoid algorithm.
The first weakly polynomial-time LP algorithm: poly(n,d,L).
[Narendra Karmarkar [1984]: Interior Point Method.
Also weakly polynomial-time. IPM variations are very well studied.
\square Megiddo-Dyer [1984]: Prune-\&-Search method.
$O(n)$ time if the dimension is a fixed constant. Super-exponential on dimension.

Fundamental Theorem of LP

For any instance of LP exactly one of the following three possibilities holds:
(a) Infeasible.
(b) Feasible but no bounded optimum.
(c) Bounded optimum.
[Note: Feasible polyhedron could be unbounded even if optimum is bounded. It depends on the direction of the objective vector.]

Moreover, if A has full rank (i.e., \exists basis), then every nonempty face of the feasible polyhedron contains a BFS, and this implies:
(1) \exists feasible solution $\Rightarrow \exists B F S$.
(2) \exists optimum solution $\Rightarrow \exists$ optimum solution that is a BFS.

Proof: If there is a basis, the basic cone contains the feasible region but does not contain any line. So the feasible region does not contain any line, hence it is pointed. So every non-empty face of it (including the optimal face, if non-empty) is pointed, and thus contains a vertex. (For details see exercise 4.)

2D Linear Programming

Objective function $\alpha=c_{1} x+c_{2} y, \quad c^{\top}=\left(c_{1}, c_{2}\right)$
Feasible region F

2D Linear Programming

- Feasible region F is the intersection of n half-planes.
- F is (empty, bounded or unbounded) convex polygon with $\leq n$ vertices.
- F can be computed in $O(n \log n$) time by divide- $\&$-conquer
(See Lecture-Slide 3).
- If F is empty, then LP is infeasible.
- Otherwise, we can check its vertices, and its possibly up to

2 unbounded edges, to determine the optimum.

- The latter step can be done by binary search in $\mathrm{O}(\log n)$ time.
. If objective changes but constraints do not, we can update the optimum
in only $\mathrm{O}(\log \mathrm{n})$ time. (We don't need to start from scratch).
- Improvement Next:

Feasible region need not be computed to find the optimum vertex.
Optimum can be found in $\mathrm{O}(\mathrm{n})$ time both randomized \& deterministic.

2D LP Example: Manufacturing with Molds

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that P can be removed from the mold by translation?

Lemma: P can be removed from its mold with a single translation in direction d $\Leftrightarrow d$ makes an angle $\geq 90^{\circ}$ with the outward normal of all non-top facets of P.

Corollary: Many small translations possible \Leftrightarrow Single translation possible.

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that P can be removed from the mold by translation?

$$
\begin{aligned}
& \eta(\mathrm{f})=\left(\eta_{x}(\mathrm{f}), \eta_{y}(\mathrm{f}), \eta_{z}(\mathrm{f})\right) \text { outward normal to facet } \mathrm{f} \text { of } \mathrm{P} \text {. } \\
& \mathrm{d}^{\top} \cdot \eta(\mathrm{f}) \leq 0 \quad \forall \text { non-top facet } \mathrm{f} \text { of } \mathrm{P} \Leftrightarrow
\end{aligned}
$$

$$
\eta_{x}(f) \cdot x+\eta_{y}(f) \cdot y+\eta_{z}(f) \leq 0 \quad \forall f \quad n-1 \text { constraints }
$$

THEOREM: The mold casting problem can be solved in $O(n$ log n) time. (This will be improved to $\mathrm{O}(\mathrm{n})$ time on the next slides.)

Randomization

Random(k): Returns an integer $i \in 1 . . k$, each with equal probability $1 / k$. [Use a random number generator.]

```
Algorithm RandomPermute (A) O(n) time
Input: Array A[1..n]
Output: A random permutation of A[1..n] with each
                of n! possible permutations equally likely.
for k \leftarrown downto 2 do Swap A[k] with A[Random(k)]
end.
```

This is a basic "initial" part of many randomized incremental algorithms.

2D LP: Incremental Algorithm

Method: Add constraints one-by-one, while maintaining the current optimum vertex.

Infeasible

Unbounded

Non-unique optimum

Unique optimum

Input: $\quad(H, c), \quad H=\{H(1), H(2), \ldots, H(n)\} n$ half-planes, $c=o b j e c t i v e$ vector
Output: Infeasible: (i,j,k), or
Unbounded: ρ, or
Optimum: $v=\operatorname{argmax}_{x}\left\{c^{\top} x \mid x \in H(1) \cap H(2) \cap \ldots \cap H(n)\right\}$.
Define: $C(i)=H(1) \cap H(2) \cap \ldots \cap H(i)$, for $i=1 . . n$
$v(i)=$ optimum vertex of C (i), for $i=2 . . n . \quad c^{\top} v(i)=\max \left\{c^{\top} x \mid x \in C(i)\right\}$ Note: $\mathrm{C}(1) \supseteq \mathrm{C}(2) \supseteq \ldots \supseteq \mathrm{C}(\mathrm{n})$.

2D LP: Incremental Algorithm

LEMMA: (1) $\mathrm{v}(\mathrm{i}-1) \in \mathrm{H}(\mathrm{i}) \Rightarrow \mathrm{v}(\mathrm{i}-1) \in \mathrm{C}(\mathrm{i}) \Rightarrow \mathrm{v}(\mathrm{i}) \leftarrow \mathrm{v}(\mathrm{i}-1)$.
(2) $\mathrm{v}(\mathrm{i}-1) \notin \mathrm{H}(\mathrm{i}) \Rightarrow$
(2a) $C(i)=\varnothing$, or
(2b) $v(i) \in L(i) \cap C(i-1), \quad L(i)=$ bounding-line of $H(i)$.

(1)

(2a)

(2b)

2D LP: Incremental Algorithm

Algorithm PreProcess (H,c) O(n) time

1. $\varphi \leftarrow \min \{$ angle between c and outward normal of $H(i) \mid i=1 . . n\}$
$H(i)=$ most restrictive constraint with angle φ
Swap $H(i)$ with $H(1)$ ($\mathrm{L}(1)$ is bounding-line of $\mathrm{H}(1)$).
2. If $\exists($ parallel $) H(j)$ with angle $\pi-\varphi$ and $H(1) \cap H(j)=\varnothing$ then return "infeasible".
3. If $\mathrm{L}(1) \cap \mathrm{H}(\mathrm{j})$ is unbounded for all $\mathrm{H}(\mathrm{j}) \in \mathrm{H}$, then $\rho \leftarrow$ most restrictive $\mathrm{L}(1) \cap \mathrm{H}(\mathrm{j})$ over all $\mathrm{H}(\mathrm{j}) \in \mathrm{H}$ return ("unbounded", ρ)
4. If $L(1) \cap H(j)$ is bounded for some $H(j) \in H$, then Swap $H(j)$ with $H(2)$ and return "bounded".

(1)

(2)

(3)

(4)

Randomized Incremental 2D LP Algorithm

Input: $\quad(H, c), \quad H=\{H(1), H(2), \ldots, H(n)\} n$ half-planes, $c=o b j e c t i v e ~ v e c t o r$ Output: Solution to $\max \left\{c^{\top} x \mid x \in H(1) \cap H(2) \cap \ldots \cap H(n)\right\}$

1. if PreProcess(H,c) returns ("unbounded", ρ) or "infeasible" then return the same answer (* else bounded or infeasible *)
2. $\mathrm{v}(2) \leftarrow$ vertex of $\mathrm{H}(1) \cap \mathrm{H}(2)$
3. RandomPermute (H[3..n])
4. for $i \leftarrow 3$..n do
5. if $v(i-1) \in H(i)$ then $v(i) \leftarrow v(i-1)$
6. else $v(i) \leftarrow$ optimum vertex p of $L(i) \cap(H(1) \cap \ldots \cap H(i-1))$
7. if p does not exist then return "infeasible"
8. end-for
9. return ("optimum", $\mathrm{v}(\mathrm{n})$)
end.

Randomized Incremental 2D LP Algorithm

THEOREM: 2D LP Randomized Incremental algorithm has the following complexity: Space complexity = O(n)
Time Complexity: (a) O(n²) worst-case
(b) $\mathrm{O}(\mathrm{n})$ expected-case.

Proof of (a):
Line 6 is a 1D LP with $\mathrm{i}-1$ constraints and takes O (i) time.
Total time over for-loop of lines 4-8: $\quad \sum_{i=3}^{n} O(i)=O\left(n^{2}\right)$.

Randomized Incremental 2D LP Algorithm

Proof of (b): Define $0 / 1$ random variables $X(i)=\left\{\begin{array}{cc}1 & \text { if } v(i-1) \notin H(i) \\ 0 & \text { otherwise }\end{array}\right.$ for $i=3 . . n$.
Lines 5-7 take $\mathrm{O}\left(\mathrm{i}^{*} \mathrm{X}(\mathrm{i})+1\right)$ time. Total time is $\mathrm{T}=\mathrm{O}(\mathrm{n})+\sum_{\mathrm{i}=3}^{\mathrm{n}} \mathrm{O}(\mathrm{i}) * \mathrm{X}(\mathrm{i})$

Expected time:

$$
\begin{aligned}
\mathrm{E}[\mathrm{~T}] & =\mathrm{O}(\mathrm{n})+\mathrm{E}\left[\sum_{\mathrm{i}=3}^{\mathrm{n}} \mathrm{O}(\mathrm{i}) * \mathrm{X}(\mathrm{i})\right] \\
& =\mathrm{O}(\mathrm{n})+\sum_{\mathrm{i}=3}^{\mathrm{i}=\mathrm{O}(\mathrm{i}) * \mathrm{E}[\mathrm{X}(\mathrm{i})]} \\
\mathrm{E}[\mathrm{X}(\mathrm{i})] & =\operatorname{Pr}[\mathrm{v}(\mathrm{i}-1) \notin \mathrm{H}(\mathrm{i})] \leq 2 /(\mathrm{i}-2)
\end{aligned}
$$

"Fix" $C(i)=\{H(1), H(2)\} \cup\{H(3), \ldots, H(i)\}$
Random: $\mathrm{C}(\mathrm{i}-1)=\mathrm{C}(\mathrm{i})-\{\mathrm{H}(\mathrm{i})\}$ random
$v(i)$ is defined by $2 H(j)$'s. The probability that one of them is $\mathrm{H}(\mathrm{i})$ is $\leq 2 /(\mathrm{i}-2)$.
This does not depend on $\mathrm{C}(\mathrm{i})$. Hence, remove the "Fix" assumption.
Therefore : $E[T] \leq O(n)+\sum_{i=3}^{n} O(i) * \frac{2}{i-2}=O(n)$.

Smallest Enclosing Disk

Input: A set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of n points in the plane.
Output: Smallest enclosing disk D of P.

Lemma: Output is unique.

Incremental Construction:

$$
\begin{aligned}
& P[1 . . i]=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\} \\
& D(i)=\text { smallest enclosing disk of } P[1 . . i] .
\end{aligned}
$$

Lemma: (1) $p_{i} \in D(i-1) \Rightarrow D(i)=D(i-1)$
(2) $p_{i} \notin D(i-1) \Rightarrow p_{i}$ lies on the boundary of $D(i)$.

$D(i)=D(i-1)$

Smallest Enclosing Disk

LEMMA: Let P and R be disjoint point sets in the plane. $p \in P, R$ possibly empty.
Define $M D(P, R)=$ minimum disk D such that $P \subseteq D \& R \subseteq \partial D(\partial D=$ boundary of $D)$.
(1) If $\mathrm{MD}(\mathrm{P}, \mathrm{R})$ exists, then it's unique,
(2) $p \in M D(P-\{p\}, R) \Rightarrow M D(P, R)=M D(P-\{p\}, R)$,
(3) $p \notin M D(P-\{p\}, R) \Rightarrow M D(P, R)=M D(P-\{p\}, R \cup\{p\})$.

Proof: (1) If non-unique $\Rightarrow \exists$ smaller such disk:
(2) is obvious.
(3) $\mathrm{D}(0) \leftarrow \mathrm{MD}(\mathrm{P}-\{\mathrm{p}\}, \mathrm{R})$
 $\mathrm{D}(1) \leftarrow \mathrm{MD}(\mathrm{P}, \mathrm{R})$ $D(\lambda) \leftarrow(1-\lambda) D(0)+\lambda D(1) \quad 0 \leq \lambda \leq 1$

As λ goes from 0 to $1, D(\lambda)$ continuously deforms from $D(0)$ to $D(1)$ s.t.
$\partial D(0) \cap \partial D(1) \subseteq \partial D(\lambda)$.
$p \in D(1)-D(0) \Rightarrow$ by continuity \exists smallest $\lambda^{*}, 0<\lambda^{*} \leq 1$ s.t.
$p \in D\left(\lambda^{*}\right) \quad \Rightarrow \quad p \in \partial D\left(\lambda^{*}\right)$.
$\Rightarrow P \subseteq D\left(\lambda^{*}\right) \& R \subseteq \partial D\left(\lambda^{*}\right) \quad \Rightarrow \quad \lambda^{*}=1$ by uniqueness.
Therefore, p is on the boundary of $D(1)$.

Smallest Enclosing Disk

Algorithm MinDisk (P[1..n])

1. RandomPermute(P[1..n])
2. $\mathrm{D}(2) \leftarrow$ smallest enclosing disk of $\mathrm{P}[1 . .2$]
3. for $i \leftarrow 3 . . n$ do
4. if $p_{i} \in D(i-1)$ then $D(i) \leftarrow D(i-1)$
5. else $D(i) \leftarrow$ MinDiskWithPoint $\left(P[1 . . i-1], p_{i}\right)$
6. return $D(n)$
```
Procedure MinDiskWithPoint (P[1..j],q)
1. RandomPermute(P[1..j])
2. \(\mathrm{D}(1) \leftarrow\) smallest enclosing disk of \(\mathrm{p}_{1}\) and q
3. for \(i \leftarrow 2 . . j\) do
4. if \(p_{i} \in D(i-1)\) then \(D(i) \leftarrow D(i-1)\)
5. else \(D(i) \leftarrow\) MinDiskWith2Points ( \(\left.P[1 . . i-1], q, p_{i}\right)\)
6. return \(\mathrm{D}(\mathrm{j})\)
```

Procedure MinDiskWith2Points ($\mathrm{P}[1 . . \mathrm{j}], \mathrm{q}_{1}, \mathrm{q}_{2}$)

1. $\quad \mathrm{D}(0) \leftarrow$ smallest enclosing disk of q_{1} and q_{2}
2. for $i \leftarrow 1$..j do
3. if $p_{i} \in D(i-1)$ then $D(i) \leftarrow D(i-1)$
4. else $D(i) \leftarrow \operatorname{Disk}\left(q_{1}, q_{2}, p_{i}\right)$
5. return $\mathrm{D}(\mathrm{j})$

Smallest Enclosing Disk

THEOREM: The smallest enclosing disk of n points in the plane can be computed in randomized $O(n)$ expected time and $O(n)$ space.

Proof: Space $O(n)$ is obvious.
MinDiskWith2Points ($\mathrm{P}, \mathrm{q}_{1}, \mathrm{q}_{2}$) takes $\mathrm{O}(\mathrm{n})$ time.
MinDiskWithPoint (P,q) takes time:

Apply this idea once more: expected running time of MinDisk is also $\mathrm{O}(\mathrm{n})$.

