
2D Linear

Programming
slides by Andy Mirzaian
(a subset of the original slides are used here)

The LP Problem

subject to:

dd xcxcxc 2211

ndndnn

dd

dd

bxaxaxa

bxaxaxa

bxaxaxa

2211

22222121

11212111

maximize

Applications

• The most widely used Mathematical Optimization Model.

• Management science (Operations Research).

• Engineering, technology, industry, commerce, economics.

• Efficient resource allocation:

– Airline transportation,

– Communication network – opt. transmission routing,

– Factory inventory/production control,

– Fund management, stock portfolio optimization.

• Approximation of hard optimization problems.

• . . .

Feasible

Region

Example in 2D

optimum

basic

constraints

max x1 + 8x2

subject to:

(1) x1 3

(2) x2 2

(3) –3x1 + 4x2 14

(4) 4x1 – 3x2 25

(5) x1 + x2 15

x2

x1

(1)

(2)

(4)

(5)

(3)

(5)

(3)

x1 = 46/7

x2 = 59/7

Example in 3D

subject to:

maximize z

Optimum

(x,y,z)=(0,0,3)

x

y

z

0

0

0

2

3

z

y

x

y

zyx

History of LP
 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry & algebra]

Egypt: polyhedra & pyramids.

India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]

China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)

[Precursor of Gauss-Jordan elimination method on linear equations]

Greece: Pythagoras, Euclid, Archimedes, …

 825 AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):

“Al-Maqhaleh fi Hisab al-jabr w’almoqhabeleh” (An essay on Algebra and equations)

“Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi” (Book on Hindu Arithmetic).

originated the words algebra & algorithm for solution procedures of algebraic systems.

 Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]

 Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930’s],

Kantorovich [1939], Gale [1960] [LP duality theory & precursor of Simplex]

 George Dantzig [1947]: Simplex algorithm.

Exponential time in the worst case, but effective in practice.

 Leonid Khachiyan [1979]: Ellipsoid algorithm.

The first weakly polynomial-time LP algorithm: poly(n,d,L).

 Narendra Karmarkar [1984]: Interior Point Method.

Also weakly polynomial-time. IPM variations are very well studied.

 Megiddo-Dyer [1984]: Prune-&-Search method.

O(n) time if the dimension is a fixed constant. Super-exponential on dimension.

http://www.tlca.com/adults/origin-math.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Nine_chapters.html
http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Archimedes
http://en.wikipedia.org/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB
http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Leonid_Khachiyan
http://en.wikipedia.org/wiki/Narendra_Karmarkar

LP: Fundamental Facts

Fundamental Theorem of LP
For any instance of LP exactly one of the following three possibilities holds:

(a) Infeasible.

(b) Feasible but no bounded optimum.

(c) Bounded optimum.

[Note: Feasible polyhedron could be unbounded even if optimum is bounded.

It depends on the direction of the objective vector.]

Moreover, if A has full rank (i.e., basis), then every nonempty face of

the feasible polyhedron contains a BFS, and this implies:

(1) feasible solution BFS.

(2) optimum solution optimum solution that is a BFS.

c

Proof: If there is a basis, the basic cone

contains the feasible region but does not

contain any line. So the feasible region does

not contain any line, hence it is pointed. So every

non-empty face of it (including the optimal face,

if non-empty) is pointed, and thus contains a vertex.

(For details see exercise 4.)

2D Linear Programming

F

y

x

Objective function = c1 x + c2 y, c
T =(c1 , c2)

Feasible region F
c

optimum

2D Linear Programming

 Feasible region F is the intersection of n half-planes.

 F is (empty, bounded or unbounded) convex polygon with n vertices.

 F can be computed in O(n log n) time by divide-&-conquer

(See Lecture-Slide 3).

 If F is empty, then LP is infeasible.

 Otherwise, we can check its vertices, and its possibly up to

2 unbounded edges, to determine the optimum.

 The latter step can be done by binary search in O(log n) time.

 If objective changes but constraints do not, we can update the optimum

in only O(log n) time. (We don’t need to start from scratch).

 Improvement Next:

Feasible region need not be computed to find the optimum vertex.

Optimum can be found in O(n) time both randomized & deterministic.

2D LP Example: Manufacturing with Molds

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that

P can be removed from the mold by translation?

Lemma: P can be removed from its mold with a single translation in direction d

 d makes an angle 90 with the outward normal of all non-top facets of P.

mold

P

f

f ’

(f ‘) = - (f)

d

Corollary: Many small translations possible Single translation possible.

2D LP Example: Manufacturing with Molds

The Geometry of Casting: Is there a mold for an n-faceted 3D polytope P such that

P can be removed from the mold by translation?

mold

P

f

f ’

(f ‘) = - (f)

d

(f) = (x(f) , y(f) , z(f)) outward normal to facet f of P.

dT.(f) ≤ 0 non-top facet f of P

x(f) . x + y(f) . y + z(f) ≤ 0 f n-1 constraints

x

y

z

z=1
d=(x,y,1)

THEOREM: The mold casting problem can be solved in O(n log n) time.
(This will be improved to O(n) time on the next slides.)

Randomized Incremental

Algorithm

Randomization

Random(k): Returns an integer i 1..k, each with equal probability 1/k.

[Use a random number generator.]

Algorithm RandomPermute (A) O(n) time

Input: Array A[1..n]

Output: A random permutation of A[1..n] with each

of n! possible permutations equally likely.

for k n downto 2 do Swap A[k] with A[Random(k)]

end.

This is a basic “initial” part of many randomized incremental algorithms.

2D LP: Incremental Algorithm

Method: Add constraints one-by-one, while maintaining the current optimum vertex.

Input: (H, c), H = { H(1), H(2), … , H(n)} n half-planes, c = objective vector

Output: Infeasible: (i,j,k), or

Unbounded: , or

Optimum: v = argmaxx { cTx | x H(1)H(2)…H(n) }.

Define: C(i) = H(1)H(2)…H(i) , for i = 1..n

v(i) = optimum vertex of C(i) , for i=2..n. cTv(i) = max { cTx | x C(i) }

Note: C(1) C(2) … C(n).

e

v

Infeasible Unbounded Non-unique optimum Unique optimum

cPossible Outcomes:

H(i)
H(j)

H(k)

2D LP: Incremental Algorithm

LEMMA: (1) v(i-1) H(i) v(i-1) C(i) v(i) v(i-1).

(2) v(i-1) H(i)

(2a) C(i) = , or

(2b) v(i) L(i) C(i-1), L(i) =bounding-line of H(i).

H(i) v(i)=v(i-1)

(1)

C(i-1)

H(i)

(2a)

C(i-1)

v(i-1)

H(j)

H(k)

H(i)

(2b)

C(i-1)

v(i-1)

v(i)

L(i)L(i)

c

2D LP: Incremental Algorithm

Algorithm PreProcess (H,c) O(n) time
1. min { angle between c and outward normal of H(i) | i=1..n }

H(i) = most restrictive constraint with angle

Swap H(i) with H(1) (L(1) is bounding-line of H(1)).

2. If (parallel) H(j) with angle and H(1)H(j)= then return “infeasible”.

3. If L(1) H(j) is unbounded for all H(j) H, then

 most restrictive L(1) H(j) over all H(j) H

return (“unbounded”,)

4. If L(1) H(j) is bounded for some H(j)H, then

Swap H(j) with H(2) and return “bounded”.

c L(1)

H(1)

L(1)
H(j)

H(2)H(1)

(1) (3) (4)

L(1)

H(1)

(2)

H(j)

v(2)

Input: (H, c), H = { H(1), H(2), … , H(n)} n half-planes, c = objective vector

Output: Solution to max { cTx | x H(1)H(2)…H(n) }

1. if PreProcess(H,c) returns (“unbounded”,) or “infeasible”

then return the same answer

(* else bounded or infeasible *)

2. v(2) vertex of H(1) H(2)

3. RandomPermute (H[3..n])

4. for i 3..n do

5. if v(i-1) H(i) then v(i) v(i-1)

6. else v(i) optimum vertex p of L(i)(H(1)…H(i-1)) (* 1D LP *)

7. if p does not exist then return “infeasible”

8. end-for

9. return (“optimum”, v(n))

end.

Randomized Incremental 2D LP Algorithm

THEOREM: 2D LP Randomized Incremental algorithm has the following complexity:

Space complexity = O(n)

Time Complexity: (a) O(n2) worst-case

(b) O(n) expected-case.

Randomized Incremental 2D LP Algorithm

.)()(
3

2

n

i

nOiO

Proof of (a):

Line 6 is a 1D LP with i-1constraints and takes O(i) time.

Total time over for-loop of lines 4-8:

Proof of (b): Define 0/1 random variables

Lines 5-7 take O(i*X(i) +1) time. Total time is

Randomized Incremental 2D LP Algorithm

.n..3ifor
otherwise0

H(i)1)v(iif1
)i(X

n

3i

)i(X*)i(O)n(OT

])i(X*)i(O[E)n(O]T[E
n

3i

v(i) is defined by 2 H(j)’s. The probability that one of them is H(i) is 2/(i-2).

This does not depend on C(i). Hence, remove the “Fix” assumption.

n

i

nO
i

iOnOTE

3

).(
2

2*)()(][:Theref ore

Expected time:

)2/(i-2]H(i))1v(i-[Pr]X(i)[E

])i(X[E*)i(O)n(O
n

3i

Backwards

Analysis

linearity of

expectation

“Fix” C(i) = { H(1), H(2)} {H(3), …, H(i)}

Random : C(i-1) = C(i) – {H(i)}
random

Randomized Incremental

Algorithm for

Smallest Enclosing Disk

Smallest Enclosing Disk

pi+1

Lemma: (1) pi D(i-1) D(i) = D(i-1)

(2) pi D(i-1) pi lies on the boundary of D(i).

pi

D(i+1)

D(i)=D(i-1)

Input: A set P={p1, p2, … , pn } of n points in the plane.

Output: Smallest enclosing disk D of P.

Lemma: Output is unique.

Incremental Construction:
P[1..i] = {p1, p2, … , pi }

D(i)= smallest enclosing disk of P[1..i] .

Smallest Enclosing Disk

LEMMA: Let P and R be disjoint point sets in the plane. pP, R possibly empty.

Define MD(P, R) = minimum disk D such that P D & R D (D = boundary of D).

(1) If MD(P, R) exists, then it’s unique,

(2) p MD(P-{p}, R) MD(P,R) = MD(P-{p}, R),

(3) p MD(P-{p}, R) MD(P, R) = MD(P-{p}, R {p}).

D(0)

D(1)
R

p

D()

(3) D(0) MD(P-{p}, R)

D(1) MD(P, R)

D() (1-) D(0) + D(1) 0 1

As goes from 0 to 1, D() continuously deforms from D(0) to D(1) s.t.

 D(0) D(1) D().

p D(1) – D(0) by continuity smallest *, 0 < * 1 s.t.

p D(*) p D(*).

 P D(*) & R D(*) *=1 by uniqueness.

Therefore, p is on the boundary of D(1).

Proof: (1) If non-unique smaller such disk:

(2) is obvious.

Smallest Enclosing Disk

Algorithm MinDisk (P[1..n])

1. RandomPermute(P[1..n])

2. D(2) smallest enclosing disk of P[1..2]

3. for i 3..n do

4. if pi D(i-1) then D(i) D(i-1)

5. else D(i) MinDiskWithPoint (P[1..i-1] , pi)

6. return D(n)

Procedure MinDiskWithPoint (P[1..j],q)

1. RandomPermute(P[1..j])

2. D(1) smallest enclosing disk of p1 and q

3. for i 2..j do

4. if pi D(i-1) then D(i) D(i-1)

5. else D(i) MinDiskWith2Points (P[1..i-1] , q, pi)

6. return D(j)

Procedure MinDiskWith2Points (P[1..j],q1,q2)

1. D(0) smallest enclosing disk of q1 and q2

2. for i 1..j do

3. if pi D(i-1) then D(i) D(i-1)

4. else D(i) Disk (q1, q2, pi)

5. return D(j)

Smallest Enclosing Disk

Proof: Space O(n) is obvious.

MinDiskWith2Points (P,q1,q2) takes O(n) time.

MinDiskWithPoint (P,q) takes time:

n

2i

)i(X*)i(O)n(OT where
otherwise0

)1i(D(i)Dpif1
)i(X

i

n

2i

).n(O
i

2
*)i(O)n(O]T[E

analysis) backwards(by i/2)]i(X[E

Apply this idea once more: expected running time of MinDisk is also O(n).

P[1..i]

q

“Fix” P[1..i] = {p1, … , pi} backwards

P[1..i-1] = {p1, … , pi} - {pi}

one of these is pi with prob. 2/i

THEOREM: The smallest enclosing disk of n points in the plane can be computed in

randomized O(n) expected time and O(n) space.

