Orthogonal Range Searching slides by Andy Mirzaian

(a subset of the original slides are used here)

References:

- [M. de Berge et al] chapter 5

Applications:

- Spatial Databases
- GIS, Graphics: crop-\&-zoom, windowing

Orthogonal Range Search: Database Query

$$
\text { 2D Query Rectangle [1980,00,00 : 1989,99,99] } \times[13,000: 14,000]
$$

1D-Tree: 1-Dimensional Range Searching

Static: Binary Search in a sorted array.
Dynamic: Store data points in some balanced Binary Search Tree \mathcal{T}.

Let the data points be $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathfrak{R}$.
\mathcal{T} is a balanced BST where the data appear at its leaves sorted left to right.
The internal nodes are used to split left \& right subtrees.
Assume $x(v)=\max x(L)$, where L is any leaf in the left subtree of internal node v.

Query Range [x : x']: Call 1DRangeQuery(root[$\left.\mathcal{T}], x, x^{\prime}\right)$

```
ALGORITHM 1DRangeQuery (v, x, x')
if v}\mathrm{ is a leaf then if }x\leqx(v)\leqx' then report data stored at v
else do
    if }x\leqx(v)\mathrm{ then 1DRangeQuery (leftchild(v), x, x')
    if }x(v)<x' then 1DRangeQuery (rightchild(v), x, x'
od
end
```


Complexities:

Query Time $\quad \mathrm{O}(\mathrm{K}+\log \mathrm{n}) \quad \mathcal{T},\left[\mathrm{x}, \mathrm{x}^{\prime}\right] \rightarrow$ output
Construction Time $\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad \mathrm{P} \rightarrow \mathcal{T}$
Space
$\mathrm{O}(\mathrm{n}) \quad$ store \mathcal{T}
[These are optimal]

2D-Tree

Consider dimension d=2:
point $p=(x(p), y(p))$, range $R=\left[x_{1}: x_{2}\right] \times\left[y_{1}: y_{2}\right]$ $p \in R \Leftrightarrow x(p) \in\left[x_{1}: x_{2}\right]$ and $y(p) \in\left[y_{1}: y_{2}\right]$.

$\mathcal{L}=$ vertical/horizontal median split. Alternate between vertical \& horizontal splitting at even and odd depths.
(Assume: no 2 points have equal x or y coordinates.)

Constructing 2D-Tree

```
Input: }P={\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{}}\subseteq\mp@subsup{\mathfrak{R}}{}{2}\mathrm{ off-line.
Output: 2D-tree storing P.
Step 1: Pre-sort P on x & on y, i.e., 2 sorted lists Û = (Xsorted(P), Ysorted(P)).
Step 2: }\operatorname{root[\mathcal{T}]}\leftarrow\mathrm{ Build2DTree ( U ,0)
end
```

```
Procedure Build2DTree ( Û , depth )
    if \(\hat{U}\) contains one point then return a leaf storing this point
        else do
            if depth is even
                then \(x\)-median split \(\hat{U}\), i.e., split data points in half by vertical line \(\mathcal{L}\)
                        through x-median of \(\hat{U}\) and reconfigure \(\hat{U}_{\text {left }}\) and \(\hat{U}_{\text {right }}\).
            else \(y\)-median split \(\hat{U}, \ldots\) by a horizontal line \(\mathcal{L}\),
                and reconfigure \(\hat{U}_{\text {left }}\) and \(\hat{\mathrm{U}}_{\text {right }}\).
            \(\mathrm{v} \leftarrow\) a newly created node storing line \(\mathcal{L}\)
            leftchild(v) \(\leftarrow\) Build2DTree ( \(\hat{U}_{\text {left }}, 1+\) depth)
            rightchild \((v) \leftarrow\) Build2DTree ( \(\hat{U}_{\text {right }}, 1+\) depth)
            return v
end
```

$T(n)=2 T(n / 2)+O(n)=O(n \log n)$ time.

2D-Tree Example

Query Point Search in 2D-Tree

2D-Tree node regions

region $(v)=$ rectangular region (possibly unbounded) covered by the subtree rooted at v.
region $(\operatorname{root}[\mathcal{T}])=(-\infty:+\infty) \times(-\infty:+\infty)$
Suppose region(v) $=\left\langle\mathrm{x}_{1}: \mathrm{x}_{2}\right\rangle \times\left\langle\mathrm{y}_{1}: \mathrm{y}_{2}\right\rangle$ what are region(leftchild(v)) and region(rightchild(v))?

With x-split:
region($\operatorname{lc}(\mathrm{v}))=\left\langle\mathrm{x}_{1}: \mathrm{x}(\mathcal{L})\right] \times\left\langle\mathrm{y}_{1}: \mathrm{y}_{2}\right\rangle$
region(rc(v)) $=\left(x(\mathcal{L}): x_{2}\right\rangle \times\left\langle y_{1}: y_{2}\right\rangle$

With y-split:
region(Ic(v)) $=\left\langle x_{1}: x_{2}\right\rangle \times\left\langle y_{1}: y(\mathcal{L})\right]$
region $(\mathrm{rc}(\mathrm{v}))=\left\langle\mathrm{x}_{1}: \mathrm{x}_{2}\right\rangle \times\left(\mathrm{y}(\mathcal{L}): \mathrm{y}_{2}\right\rangle$

2D-Tree Range Search

```
For range R = [x : : x 2 ] [ [y 
```


ALGORITHM Search2DTree (v, R)

1. if v is a leaf then if $p(v) \in R$ then report $p(v)$
2. else if region $(\operatorname{lc}(\mathrm{v})) \subseteq \mathrm{R}$
3. then ReportSubtree (Ic(v))
4. else if region(lc(v)) $\cap \mathrm{R} \neq \varnothing$
5. then Search2DTree (Ic(v), R)
6. if region $(\mathrm{rc}(\mathrm{v})) \subseteq \mathrm{R}$
7. then ReportSubtree (rc(v))
8. \quad else if region $(r c(v)) \cap R \neq \varnothing$
9. then Search2DTree (rc(v), R)
end
\square region(v) can either be passed as input parameter, or explicitly stored at node $\mathrm{v}, \forall \mathrm{v} \in \mathcal{T}$.
ReportSubtree(v) is a simple linear-time in-order traversal that reports every leaf descendent of node v.

Running Time of Search2DTree

- $\mathrm{K}=\#$ of points reported.
- Lines 3 \& 7 take $\mathrm{O}(\mathrm{K})$ time over all recursive calls.
- Total \# nodes visited (reported or not) is proportional to \# times conditions of lines $4 \& 8$ are true.
- region(v) $\cap \mathrm{R} \neq \varnothing$ \& region $(v) \not \subset R \Leftrightarrow$ a bounding edge e of R intersects region(v).
- $\quad R$ has ≤ 4 bounding edges. Let e (assume vertical) be one of them.
- Define $\mathrm{H}(\mathrm{n})($ resp. $\mathrm{V}(\mathrm{n}))=$ worst-case number of nodes v that intersect e for a 2D-tree of n leaves, assuming root corresponds to an x-split (resp. y-split).

$\left\{\begin{array}{l}\mathrm{H}(\mathrm{n})=\mathrm{V}(\mathrm{n} / 2)+1 \\ \mathrm{~V}(\mathrm{n})=2 \mathrm{H}(\mathrm{n} / 2)+1 \\ (\mathrm{H}(1)=\mathrm{V}(1)=1)\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\mathrm{H}(\mathrm{n})=2 \mathrm{H}(\mathrm{n} / 4)+2 \\ \mathrm{~V}(\mathrm{n})=2 \mathrm{~V}(\mathrm{n} / 4)+3\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\mathrm{H}(\mathrm{n})=3 \sqrt{\mathrm{n}}-2 \\ \mathrm{~V}(\mathrm{n})=4 \sqrt{\mathrm{n}}-3\end{array}\right.$
\Rightarrow Running Time $=\mathrm{O}(\mathrm{K}+\sqrt{\mathrm{n}})$.

dD-Tree Complexities

2D-Tree

- Query Time : $\quad O(K+\sqrt{n})$ worst-case, $\quad O(K+\log n)$ average
- Construction Time: O($\mathrm{n} \log \mathrm{n}$)
- Storage Space: O(n)

dD-Tree d-dimensions

Use round-robin splitting at successive levels on the dimensions $x_{1}, x_{2}, \ldots, x_{d}$.
\square Query Time: $\quad O\left(d K+d n^{1-1 / d}\right)$
\square Construction Time: $\mathrm{O}(\mathrm{d} \mathrm{n} \log \mathrm{n})$
\square Space: \quad O(dn)

How can we improve the query time?

Range Trees

Range $R=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$
1D Range Tree on x-coordinates:

$\mathrm{O}(\log \mathrm{n})$ canonical sub-trees

Each x-range $\left[\mathrm{x}: \mathrm{x}^{\prime}\right]$ can be expressed as the disjoint union of $\mathrm{O}(\log n)$ canonical x-ranges.

Range Trees

2-level data structure:

Range Tree Construction

```
ALGORITHM Build 2D Range Tree ( P )
Input: \(P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \Re^{2}, P=\left(P_{x}, P_{y}\right)\)
    represented by pre-sorted list on \(x\) (named \(P_{x}\) ) and on \(y\) (named \(P_{y}\) ).
Output: pointer to the root of 2 D range tree for P .
Construct \(\mathcal{T}_{\text {assoc }}\), bottom up, based on \(\mathrm{P}_{\mathrm{y}}\), but store in each leaf the points, not just their y-coordinates.
    if \(|P|>1\)
    then do
    \(P_{\text {left }} \leftarrow\left\{p \in P \mid p_{x} \leq x_{\text {med }}\right.\) of \(\left.P\right\} \quad\) (* both lists \(P_{x}\) and \(P_{y}\) should split *)
    \(P_{\text {right }} \leftarrow\left\{p \in P \mid p_{x}>x_{\text {med }}\right.\) of \(\left.P\right\}\)
    \(\mathrm{Ic}(\mathrm{v}) \leftarrow\) Build 2D Range Tree ( \(\mathrm{P}_{\text {left }}\) )
    \(r c(v) \leftarrow\) Build 2D Range Tree ( \(\mathrm{P}_{\text {right }}\) )
    od
    \(\min (\mathrm{v}) \leftarrow \min \left(\mathrm{P}_{\mathrm{x}}\right) ; \max (\mathrm{v}) \leftarrow \max \left(\mathrm{P}_{\mathrm{x}}\right)\)
    \(\mathcal{T}_{\text {assoc }}(\mathrm{v}) \leftarrow \mathcal{T}_{\text {assoc }}\)
    return v
end
```

$$
\begin{aligned}
T(n)= & 2 T(n / 2)+O(n)=O(n \log n) \text { time. } \\
& \text { This includes time for pre-sorting. }
\end{aligned}
$$

2D Range Query

```
ALGORITHM 2DRangeQuery ( \(\mathrm{v},\left[\mathrm{x}: \mathrm{x}^{\prime}\right] \times\left[\mathrm{y}: \mathrm{y}^{\prime}\right]\) )
1. if \(x \leq \min (v) \& \max (v) \leq x^{\prime}\)
2. then 1DRangeQuery \(\left(\mathcal{T}_{\text {assoc }}(v),\left[y: y^{\prime}\right]\right)\)
3. else if \(v\) is not a leaf do
4. if \(x \leq \max (\operatorname{lc}(\mathrm{v}))\)
5. then 2DRangeQuery (Ic(v), \(\left.[x: x ’] \times\left[y: y^{\prime}\right]\right)\)
6. if \(\min (r c(v)) \leq x^{\prime}\)
7.
8. od
end
```

- Line 2 called at roots of red canonical sub-trees, a total of $O(\log n)$ times.

Each call takes $\mathrm{O}\left(\mathrm{K}_{\mathrm{v}}+\log \left|\mathcal{T}_{\text {assoc }}(\mathrm{v})\right|\right)=\mathrm{O}\left(\mathrm{K}_{\mathrm{v}}+\log \mathrm{n}\right)$ time.

- Lines 5 \& 7 called at blue shoulder paths. Total cost $O(\log n)$.
- Total Query Time $=\mathrm{O}\left(\log \mathrm{n}+\sum_{\mathrm{v}}\left(\mathrm{K}_{\mathrm{v}}+\log \mathrm{n}\right)\right)=\mathrm{O}\left(\sum_{\mathrm{v}} \mathrm{K}_{\mathrm{v}}+\log ^{2} \mathrm{n}\right)=\mathrm{O}\left(\mathrm{K}+\log ^{2} \mathrm{n}\right)$.

Query Time: $\quad \mathrm{O}\left(\mathrm{K}+\log ^{2} \mathrm{n}\right)$ will be improved to $\mathrm{O}(\mathrm{K}+\log \mathrm{n})$ by Fractional Cascading
Construction Time: O(n logn)
Space: $\quad O(n \log n)$

Higher Dimensional Range Trees

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathfrak{R}^{d}, \quad p_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i d}\right), i=1 . . n .
$$

Higher Dimensional Range Trees

Higher Dimensional Range Trees

Query Time: $\quad Q_{d}(n)=O\left(K+\log ^{d} n\right)$ improved to $O\left(K+\log ^{d-1} n\right)$ by Frac. Casc.
Construction Time: $T_{d}(n)=O\left(n \log ^{d-1} n\right)$ Space:
$S_{d}(n)=O\left(n \log ^{d-1} n\right)$

$$
\begin{gathered}
\left\{\begin{array}{c}
T_{d}(n)=2 T_{d}\left(\frac{n}{2}\right)+T_{d-1}(n)+O(n) \\
T_{2}(n)=O(n \log n)
\end{array}\right\} \Rightarrow T_{d}(n)=O\left(n \log ^{d-1} n\right) \\
\left\{\begin{array}{c}
S_{d}(n)=2 S_{d}\left(\frac{n}{2}\right)+S_{d-1}(n)+O(1) \\
S_{2}(n)=O(n \log n)
\end{array}\right\} \Rightarrow S_{d}(n)=O\left(n \log ^{d-1} n\right) \\
\left\{\begin{array}{c}
\hat{Q}_{d}(n)=O(\log n)+O(\log n) \cdot \hat{Q}_{d-1}(n) \\
\hat{Q}_{2}(n)=O\left(\log ^{2} n\right)
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\hat{Q}_{d}(n)=O\left(\log ^{d} n\right) \\
Q_{d}(n)=O\left(K+\log ^{d} n\right)
\end{array}\right.
\end{gathered}
$$

Fractional Cascading

IDEA: Save repeated cost of binary search in many sorted lists for the same range [$\left.y: y^{\prime}\right]$ if the list contents for one are a subset of the other.
$\square A_{2} \subseteq A_{1}$
Binary search for y in A_{1} to get to $A_{1}[i]$.
\square Follow pointer to A_{2} to get to $A_{2}[j]$.
Now walk to the right in each list.

Fractional Cascading

- $A_{2} \subseteq A_{1}, A_{3} \subseteq A_{1}$.

No binary search in A_{2} and A_{3} is needed.
\square Do binary search in A_{1}.
\square Follow blue and red pointers from there to A_{2} and A_{3}.
Now we have the starting point in each sorted list. Walk to the right \& report.

Layered 2D Range Tree

Layered 2D Range Tree

Layered 2D Range Tree (by Fractional Cascading)

Query Time:
$\mathrm{Q}_{2}(\mathrm{n})=\mathrm{O}\left(\log \mathrm{n}+\sum_{\mathrm{v}}\left(\mathrm{K}_{\mathrm{v}}+\log \mathrm{n}\right)\right)=\mathrm{O}\left(\sum_{\mathrm{v}} \mathrm{K}_{\mathrm{v}}+\log ^{2} \mathrm{n}\right)=\mathrm{O}\left(\mathrm{K}+\log ^{2} \mathrm{n}\right)$
improves to:
$\mathrm{Q}_{2}(\mathrm{n})=\mathrm{O}\left(\log \mathrm{n}+\sum_{\mathrm{v}}\left(K_{\mathrm{v}}+1\right)\right)=\mathrm{O}\left(\sum_{\mathrm{v}} K_{\mathrm{v}}+\log n\right)=\mathrm{O}(K+\log n)$.

For d-dimensional range tree query time improves to:

$$
\left\{\begin{array}{c}
\mathrm{Q}_{\mathrm{d}}(\mathrm{n})=\mathrm{O}(\mathrm{~K})+\hat{\mathrm{Q}}_{\mathrm{d}}(\mathrm{n}) \\
\hat{\mathrm{Q}}_{\mathrm{d}}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})+\mathrm{O}(\log \mathrm{n}) \cdot \hat{Q}_{\mathrm{d}-1}(\mathrm{n}) \\
\hat{Q}_{2}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})
\end{array}\right\} \Rightarrow \mathrm{Q}_{\mathrm{d}}(\mathrm{n})=\mathrm{O}\left(\mathrm{~K}+\log ^{\mathrm{d}-1} \mathrm{n}\right)
$$

