
Orthogonal Range

Searching
slides by Andy Mirzaian
(a subset of the original slides are used here)

References:

• [M. de Berge et al] chapter 5

Applications:

• Spatial Databases
• GIS, Graphics: crop-&-zoom, windowing

Orthogonal Range Search: Database Query

salary

date of birth

14,000

13,000

1980,00,00 1989,99,99

2D Query Rectangle [1980,00,00 : 1989,99,99] [13,000 : 14,000]

salary

date of birth

14,000

13,000

1980,00,00 1989,99,99

3D Query Orthogonal Range [1980,00,00 : 1989,99,99] [13,000 : 14,000] [2 : 4]

4

2

Mr. G. O. Meter

born: Nov. 6, 1988

Salary: $13,600.

1D-Tree: 1-Dimensional Range Searching

x axis

x x’

Static: Binary Search in a sorted array.

Dynamic: Store data points in some balanced Binary Search Tree T.

Let the data points be P = { p1, p2 , …, pn } .
T is a balanced BST where the data appear at its leaves sorted left to right.

The internal nodes are used to split left & right subtrees.

Assume x(v) = max x(L), where L is any leaf in the left subtree of internal node v.

2 5 6 9 13 17

136
4131

85

2 23

31 37 41 49 73

85 91

62

49

23

5 17 37

73

62

9

Query Range: [7 : 49]

root[T]

vsplit

Query Range [x : x’]: Call 1DRangeQuery(root[T],x,x’)

ALGORITHM 1DRangeQuery (v, x, x’)

if v is a leaf then if x x(v) x’ then report data stored at v

else do

if x x(v) then 1DRangeQuery (leftchild(v) , x, x’)

if x(v) < x’ then 1DRangeQuery (rightchild(v), x, x’)

od

end

root[T]Complexities:

Query Time O(K + log n) T ,[x,x’] output

Construction Time O(n log n) P T
Space O(n) store T

[These are optimal]

K leaves reported

2D-Tree
Consider dimension d=2:

point p=(x(p) , y(p)) , range R = [x1 : x2] [y1 : y2]

p R x(p) [x1 : x2] and y(p) [y1 : y2] .

x1 x(p) x2

x

y

p

y2

y1

y(p)

L

Pleft
Pright

L

Pleft

Pright

OR

Pleft Pright

L

L = vertical/horizontal median split.

Alternate between vertical & horizontal splitting

at even and odd depths.

(Assume: no 2 points have equal x or y coordinates.)

2D-tree

R

Constructing 2D-Tree

Input: P = { p1, p2 , …, pn } 2 off-line.

Output: 2D-tree storing P.

Step 1: Pre-sort P on x & on y, i.e., 2 sorted lists Û = (Xsorted(P), Ysorted(P)).

Step 2: root[T] Build2DTree (Û , 0)

end

Procedure Build2DTree (Û , depth)

if Û contains one point then return a leaf storing this point

else do

if depth is even
then x-median split Û, i.e., split data points in half by a vertical line L

through x-median of Û and reconfigure Ûleft and Ûright .
else y-median split Û, … by a horizontal line L,

and reconfigure Ûleft and Ûright .
v a newly created node storing line L
leftchild(v) Build2DTree (Ûleft , 1+depth)

rightchild(v) Build2DTree (Ûright , 1+depth)

return v

end

T(n) = 2 T(n/2) + O(n) = O(n log n) time.

2D-Tree Example

p1

p2

p3

p4

p5 p6

p7

p8

p9

p10

L1

L2
L6

L3

L5

L7

L9

p1 p3

p4 p2 p5

p7 p6

p9 p8 p10

L1

L4

L3 L5

L8

L7 L9

L2 L6

L4

L8

Query Point Search in 2D-Tree

p1

p2

p3

p4

p5 p6

p7

p8

p9

p10

L1

L2
L6

L3

L5

L7

L9

p1 p3

p4 p2 p5

p7 p6

p9 p8 p10

L1

L4

L3 L5

L8

L7 L9

L2 L6

L4

L8

q

2D-Tree node regions

region(v) = rectangular region (possibly unbounded) covered by the subtree rooted at v.

region (root[T]) = (- : +) (- : +)

Suppose region(v) = x1 : x2 y1 : y2

what are region(leftchild(v)) and region(rightchild(v))?

With x-split:
region(lc(v)) = x1 : x(L)] y1 : y2

region(rc(v)) = (x(L) : x2 y1 : y2

With y-split:
region(lc(v)) = x1 : x2 y1 : y(L)]

region(rc(v)) = x1 : x2 (y(L) : y2

lc(v) rc(v)

L

lc(v)

rc(v)
L

2D-Tree Range Search
For range R = [x1 : x2] [y1 : y2] call Search2DTree (root[T] , R)

ALGORITHM Search2DTree (v , R)

1. if v is a leaf then if p(v) R then report p(v)

2. else if region(lc(v)) R

3. then ReportSubtree (lc(v))

4. else if region(lc(v)) R

5. then Search2DTree (lc(v) , R)

6. if region(rc(v)) R

7. then ReportSubtree (rc(v))

8. else if region(rc(v)) R

9. then Search2DTree (rc(v) , R)

end

 region(v) can either be passed as input parameter, or explicitly stored at node v, vT.

 ReportSubtree(v) is a simple linear-time in-order traversal that reports every

leaf descendent of node v.

Running Time of Search2DTree
 K = # of points reported.

 Lines 3 & 7 take O(K) time over all recursive calls.

 Total # nodes visited (reported or not) is proportional to # times conditions of

lines 4 & 8 are true.

 region(v)R & region(v) R a bounding edge e of R intersects region(v).

 R has 4 bounding edges. Let e (assume vertical) be one of them.

 Define H(n) (resp. V(n)) = worst-case number of nodes v that intersect e for a

2D-tree of n leaves, assuming root corresponds to an x-split (resp. y-split).

.)nO(K Time Running

3n4)n(V

2n3)n(H

3)4/n(V2)n(V

2)4/n(H2)n(H

)1)1(V)1(H(

1)2/n(H2)n(V

1)2/n(V)n(H

e
e

L LH(n) V(n)

dD-Tree Complexities

2D-Tree

 Query Time : O(K + n) worst-case, O(K + log n) average

 Construction Time : O(n log n)

 Storage Space: O(n)

dD-Tree d-dimensions

Use round-robin splitting at successive levels on the d dimensions x1 , x2 , … , xd .

 Query Time: O(dK + d n1–1/d)

 Construction Time: O(d n log n)

 Space: O(dn)

How can we improve the query time?

Range Trees

2D Range Tree

 Query Time: O(K + log2 n)

O(K + log n) by Fractional Cascading

 Construction Time: O(n log n)

 Space: O(n log n)

Range R = [x : x’] [y : y’]

1D Range Tree on x-coordinates:

x x’
O(log n) canonical sub-trees

O(log n)

x x’

Each x-range [x : x’] can be expressed as the disjoint union of O(log n) canonical x-ranges.

y

Range Trees

2-level data structure:

P(v)

v

P(v)

Tassoc(v)

root[T]

Primary Level:

BST on

x-coordinates

Secondary level:

BST on y-coord.

min(v) max(v)

Range Tree Construction

ALGORITHM Build 2D Range Tree (P)

Input: P = { p1, p2 , …, pn } 2, P = (Px , Py)

represented by pre-sorted list on x (named Px) and on y (named Py).

Output: pointer to the root of 2D range tree for P.

Construct Tassoc , bottom up, based on Py ,

but store in each leaf the points, not just their y-coordinates.

if |P| > 1

then do

Pleft { pP | px xmed of P } (* both lists Px and Py should split *)

Pright { pP | px > xmed of P }

lc(v) Build 2D Range Tree (Pleft)

rc(v) Build 2D Range Tree (Pright)

od

min(v) min (Px); max(v) max(Px)
Tassoc(v) Tassoc

return v

end

T(n) = 2 T(n/2) + O(n) = O(n log n) time.

This includes time for pre-sorting.

2D Range Query

ALGORITHM 2DRangeQuery (v, [x : x’] [y : y’])

1. if x min(v) & max(v) x’
2. then 1DRangeQuery (Tassoc(v) , [y : y’])

3. else if v is not a leaf do

4. if x max(lc(v))

5. then 2DRangeQuery (lc(v), [x : x’] [y : y’])

6. if min(rc(v)) x’

7. then 2DRangeQuery (rc(v), [x : x’] [y : y’])

8. od

end

x x’

T

• Line 2 called at roots of red canonical sub-trees, a total of O(log n) times.

Each call takes O(Kv + log | Tassoc(v) |) = O(Kv + log n) time.

• Lines 5 & 7 called at blue shoulder paths. Total cost O(log n).

• Total Query Time = O(log n + v(Kv + log n)) = O(vKv + log2 n) = O(K + log2 n).

Query Time: O(K + log2 n) will be improved to O(K + log n) by Fractional Cascading

Construction Time: O(n log n)

Space: O(n log n)

Higher Dimensional Range Trees

P(v)

v

P(v)

Tassoc(v)

root[T]

Primary Level:

BST on the 1st

coordinate

(d-1)-dimensional

Range Tree

on coord’s 2..d.

P = { p1, p2 , …, pn } d, pi = (xi1 , xi2 , … , xid) , i=1..n.

Higher Dimensional Range Trees

d-level data structure

Higher Dimensional Range Trees

Query Time: Qd(n) = O(K + logd n) improved to O(K + logd-1 n) by Frac. Casc.

Construction Time: Td(n) = O(n logd-1 n)

Space: Sd(n) = O(n logd-1 n)

)log()(

)(log)(ˆ

)(log)(ˆ

)(ˆ)(log)(log)(ˆ

)(ˆ)()(

)log()(
)log()(

)1()(2)(

)log()(
)log()(

)()(2)(

2

2

1

1

2

1

1

2

1

2

2

nKOnQ

nOnQ

nOnQ

nQnOnOnQ

nQKOnQ

nnOnS
nnOnS

OnSSnS

nnOnT
nnOnT

nOnTTnT

d

d

d

d
dd

dd

d

d

ddd

d

d

ddd

n

n

Fractional Cascading

IDEA: Save repeated cost of binary search in many sorted lists for the same

range [y : y’] if the list contents for one are a subset of the other.

 A2 A1

 Binary search for y in A1 to get to A1[i].

 Follow pointer to A2 to get to A2[j].

 Now walk to the right in each list.

3 5 7 9 13 151 19 23 26 31 36 45

5 13 26 36 45

A1

A2

63 92

nil nil

Fractional Cascading

3 5 7 9 13 151 19 23 26 31 36A1

A2

nil3 5 7 9 13 15 1 19 23 26 31 36

A3

 A2 A1 , A3 A1 .

 No binary search in A2 and A3 is needed.

 Do binary search in A1.

 Follow blue and red pointers from there to A2 and A3.

 Now we have the starting point in each sorted list. Walk to the right & report.

Layered 2D Range Tree

v

lc(v)
rc(v)

P(lc(v)) P(rc(v))

P(v)

T

Tassoc(v)

Tassoc(lc(v)) Tassoc(rc(v))

P(lc(v)) P(v)

P(rc(v)) P(v)

Layered 2D Range Tree

T

Associated Structures at

the secondary level by

Fractional Cascading

Layered 2D Range Tree (by Fractional Cascading)

Query Time:

Q2(n) = O(log n + v (Kv + log n)) = O(v Kv + log2 n) = O(K + log2 n)

improves to:

Q2(n) = O(log n + v (Kv + 1)) = O(v Kv + log n) = O(K + log n).

For d-dimensional range tree query time improves to:

)nlogK(O)n(Q

)n(logO)n(Q̂

)n(Q̂)n(logO)n(logO)n(Q̂

)n(Q̂)K(O)n(Q
1d

d

2

1dd

dd

