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Planar Point Location:
Knowing where you are on the map

http://www.sciencedirect.com/science/article/pii/

S1476927116300378

http://www.sciencedirect.com/science/article/pii/

S1476927116300378



References:
• [M. de Berge et al] chapter 6
• [O’Rourke’98] chapter 7.6
• [Edelsbrunner ’87]  chapter 11
• [Preparata-Shamos’85] chapter 2.2

Applications:

• GIS: Geographic Information Systems
• Computer Graphics
• Mobile Telecommunication
• Mobile Robotics
• …



Point Location in a Planar Subdivision

PSLG = Planar Straight-Line Graph

PSLG
q

Locate a query point q in the PSLG: find which face of the PSLG contains q.

Complexity Measures:

• S  - space to store the point location data structure

• T   - preprocessing time to construct the data structure

• Q  - query time to locate the PSLG face that contains the query point.



Point Location in a Planar Subdivision

 1D Optimal method: sorted array, S = O(n), T = O(n log n), Q = O(log n).

 2D: Shamos [1975]: Slab Method:   S = O(n2), T = O(n2), Q = O(log n).

 2D Optimal Method:   S = O(n), T = O(n log n), Q = O(log n). 

 Mulmuly [1990], Seidel [1991]: Randomized Incremental Method.

 Kirkpatrick [1983]: Triangulation Refinement Method.

 Edelsbrunner-Guibas-Stolfi [1986] SIAM J. Computing, pp:317-340.

 Sarnak-Tarjan [1986], “Planar point location using persistent search trees,”

Communications of ACM 29, pp: 669-679.

 Lipton-Tarjan [1977-79]: Planar Separator Method.

 2D Line Segments intersections: 

Randomized Incremental Method in O( K + n log n)  expected time.



The Slab Method

 O(n2) space

 O(n2) preprocessing time

 O(log n) query time.

A given PSLG with n vertices  ( # edges  3n-6). We may add a large bounding box.
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The Slab Method

 O(n2) space

 O(n2) preprocessing time

 O(log n) query time.

A given PSLG with n vertices  ( # edges  3n-6). We may add a large bounding box.
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Query Answering:

• do binary search among slabs (in x-sorted order).

• do binary search vertically within the located slab.

• each binary search takes Q = O(log n) time.

a vertical slab



Preprocessing for the Slab Method

The Plane Sweep Method:

 Event schedule:  x-coordinate of PSLG vertices in increasing order.

Maintain these in a priority queue Q.

 Event Status:  vertical sorted ordering of sub-regions within the current slab.

Maintain this in a dictionary D.

 Create a sorted array of slabs. Every time a slab is completed, dump a copy of 

the current D in the next entry of the sorted array of slabs.

[This will be the final data structure.]

 Analysis:

 Event processing takes O(log n) time on Q, O(ev log n) time on D, and

O(n) time to dump a copy of D into the permanent D.S. Here ev is the

number of edges incident to the current event vertex v.

 Total Preprocessing Time T = O(n log n +v ev log n + nn) 

= O(n log n + n log n + n2) = O(n2).

 Space = O(n2).



Randomized Incremental Method

Construct the Trapezoidal decomposition not by the sweep method but by a 

randomized incremental method. This at the same time constructs the 

query search structures and also has optimal expected performance.
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Randomized Incremental Method

Defining features of a trapezoid :

 is defined by up to 4 line segments left(), right(), top(), bottom(). 

(These are some edges of the PSLG, possibly not all distinct.)

sides 






right() is defined symmetrically.



Randomized Incremental Method

CLAIM: If PSLG has n line segments, then # trapezoids  3n + 1.

Proof: Assume 2n end-points are in general position.

Each end-point defines left/right wall of at most 3 trapezoids. 

Except the leftmost & rightmost trapezoids, each trapezoid is

defined by 2 vertical walls (incident to 2 end-points).

 2(# trapezoids) – 2 = 3 (# end-points) = 6n.

 # trapezoids = 3n+1.

If end-points are not in general position (i.e., some have equal x-coordinates,

or coincide), then the count is even less. [Could use Euler’s formula too.]
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Trapezoidal Map T (S)        O(n) space

of a set S of n non-crossing line segments can be represented by the 

adjacency structure of its trapezoids. 

Adjacency:  1 and 2 are adjacent iff they share (portion of) a vertical wall.

A   has at most 2 left neighbors and at most 2 right neighbors.  
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D(S): The Query Search Structure

 It’s a rooted DAG, each node has out-degree at most 2.

 Leaves (i.e., nodes of out-degree 0) store trapezoids with 2-way cross-pointers   
with their counter-parts in T (S).

 Internal nodes are either endpoints with x-value as key (left/right comparison),

or a line-segment of S (below/above comparison).

T S = { s1 , s2 } D                           
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Randomized Incremental Construction of T (S) &D(S)

Input: a set S of n non-crossing line-segments in the plane.
Output: T (S) & D(S).

1. Get a bounding box and initialize T () & D().

2. Randomly permute S into (s1 , s2, … , sn).

3. for k  1..n  do
(*  insert sk & update T (Sk) & D(Sk).  Sk = {s1 , s2, … , sk}  *)

Let pk & qk be left & right ends of sk, respectively
0  Search (pk , D) ; j  0

while qk is to the right of right(j)  do

if sk is  below  right(j)

then j+1  lower-right-neighbor of j

else j+1  upper-right-neighbor of j

j  j+1

end-while

0 , 1, … , j are trapezoids intersected by sk.
Update T (Sk) & D(Sk) accordingly  (see next slide).

end 
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Example of step 3
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Example of step 3
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Complexities

THEOREM: Randomized Incremental algorithm constructs trapezoidal map T (S) &

search structure D(S) for a set S of n non-crossing line-segments with complexities:

1) O(log n)  expected query time for any query point q.

2) O(n) expected size of the search structure.

3) O(n log n) expected construction time.  

[All these expectations are on the random ordering of the segments in S.]



Dealing with Degeneracy

What if more than one end-point in S has the same x-coordinate?

How about vertical line-segments in S? …

Properties:

1. No two end-points p & q of S have the same (transformed) x-coordinate.

2. Preserves left/right relationships:   p left of q    p  left of q.

3. Preserves point-line incidence (it is affine transformation):

point p above segment  s    p above segment s.

[Also holds with above replaced by on or below.]
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Shear Transform:

Conceptually assume e > 0 is sufficiently small.

For a point p = (x,y) assume (x,y) is representing p = (x+ey , y).


