
Point Location
slides by Andy Mirzaian
(a subset of the original slides are used here)

Planar Point Location:
Knowing where you are on the map

http://www.sciencedirect.com/science/article/pii/

S1476927116300378

http://www.sciencedirect.com/science/article/pii/

S1476927116300378

References:
• [M. de Berge et al] chapter 6
• [O’Rourke’98] chapter 7.6
• [Edelsbrunner ’87] chapter 11
• [Preparata-Shamos’85] chapter 2.2

Applications:

• GIS: Geographic Information Systems
• Computer Graphics
• Mobile Telecommunication
• Mobile Robotics
• …

Point Location in a Planar Subdivision

PSLG = Planar Straight-Line Graph

PSLG
q

Locate a query point q in the PSLG: find which face of the PSLG contains q.

Complexity Measures:

• S - space to store the point location data structure

• T - preprocessing time to construct the data structure

• Q - query time to locate the PSLG face that contains the query point.

Point Location in a Planar Subdivision

 1D Optimal method: sorted array, S = O(n), T = O(n log n), Q = O(log n).

 2D: Shamos [1975]: Slab Method: S = O(n2), T = O(n2), Q = O(log n).

 2D Optimal Method: S = O(n), T = O(n log n), Q = O(log n).

 Mulmuly [1990], Seidel [1991]: Randomized Incremental Method.

 Kirkpatrick [1983]: Triangulation Refinement Method.

 Edelsbrunner-Guibas-Stolfi [1986] SIAM J. Computing, pp:317-340.

 Sarnak-Tarjan [1986], “Planar point location using persistent search trees,”

Communications of ACM 29, pp: 669-679.

 Lipton-Tarjan [1977-79]: Planar Separator Method.

 2D Line Segments intersections:

Randomized Incremental Method in O(K + n log n) expected time.

The Slab Method

 O(n2) space

 O(n2) preprocessing time

 O(log n) query time.

A given PSLG with n vertices (# edges 3n-6). We may add a large bounding box.

x

y

The Slab Method

 O(n2) space

 O(n2) preprocessing time

 O(log n) query time.

A given PSLG with n vertices (# edges 3n-6). We may add a large bounding box.

x

y q

Query Answering:

• do binary search among slabs (in x-sorted order).

• do binary search vertically within the located slab.

• each binary search takes Q = O(log n) time.

a vertical slab

Preprocessing for the Slab Method

The Plane Sweep Method:

 Event schedule: x-coordinate of PSLG vertices in increasing order.

Maintain these in a priority queue Q.

 Event Status: vertical sorted ordering of sub-regions within the current slab.

Maintain this in a dictionary D.

 Create a sorted array of slabs. Every time a slab is completed, dump a copy of

the current D in the next entry of the sorted array of slabs.

[This will be the final data structure.]

 Analysis:

 Event processing takes O(log n) time on Q, O(ev log n) time on D, and

O(n) time to dump a copy of D into the permanent D.S. Here ev is the

number of edges incident to the current event vertex v.

 Total Preprocessing Time T = O(n log n +v ev log n + nn)

= O(n log n + n log n + n2) = O(n2).

 Space = O(n2).

Randomized Incremental Method

Construct the Trapezoidal decomposition not by the sweep method but by a

randomized incremental method. This at the same time constructs the

query search structures and also has optimal expected performance.

x

y

Randomized Incremental Method

Defining features of a trapezoid :

 is defined by up to 4 line segments left(), right(), top(), bottom().

(These are some edges of the PSLG, possibly not all distinct.)

sides

right() is defined symmetrically.

Randomized Incremental Method

CLAIM: If PSLG has n line segments, then # trapezoids 3n + 1.

Proof: Assume 2n end-points are in general position.

Each end-point defines left/right wall of at most 3 trapezoids.

Except the leftmost & rightmost trapezoids, each trapezoid is

defined by 2 vertical walls (incident to 2 end-points).

 2(# trapezoids) – 2 = 3 (# end-points) = 6n.

 # trapezoids = 3n+1.

If end-points are not in general position (i.e., some have equal x-coordinates,

or coincide), then the count is even less. [Could use Euler’s formula too.]

1

2

3

Trapezoidal Map T (S) O(n) space

of a set S of n non-crossing line segments can be represented by the

adjacency structure of its trapezoids.

Adjacency: 1 and 2 are adjacent iff they share (portion of) a vertical wall.

A has at most 2 left neighbors and at most 2 right neighbors.

1

2

3

4

D(S): The Query Search Structure

 It’s a rooted DAG, each node has out-degree at most 2.

 Leaves (i.e., nodes of out-degree 0) store trapezoids with 2-way cross-pointers
with their counter-parts in T (S).

 Internal nodes are either endpoints with x-value as key (left/right comparison),

or a line-segment of S (below/above comparison).

T S = { s1 , s2 } D

R

A

C

E

F

G

H

Is1

p1

q1

s2
p2 q2

R

A

C

B

D

s1

p1

q1

R bounding box

p2

s2

A

G F

q2

s2

H

I

s1

p1

q1

E

C

in
s
e

rt
 s

1
in

s
e

rt
 s

2

A
Ds1

p1

q1

CB

R

Randomized Incremental Construction of T (S) &D(S)

Input: a set S of n non-crossing line-segments in the plane.
Output: T (S) & D(S).

1. Get a bounding box and initialize T () & D().

2. Randomly permute S into (s1 , s2, … , sn).

3. for k 1..n do
(* insert sk & update T (Sk) & D(Sk). Sk = {s1 , s2, … , sk} *)

Let pk & qk be left & right ends of sk, respectively
0 Search (pk , D) ; j 0

while qk is to the right of right(j) do

if sk is below right(j)

then j+1 lower-right-neighbor of j

else j+1 upper-right-neighbor of j

j j+1

end-while

0 , 1, … , j are trapezoids intersected by sk.
Update T (Sk) & D(Sk) accordingly (see next slide).

end

sk

0 1 2
3

sk
pk

qk

Example of step 3

sk

pk
qk

T (Sk-1)
T (Sk)

A

C

B

D

D(Sk-1)

D(Sk-1)

D(Sk)

pk

qk

sk

A

B C

D

Example of step 3

sk

0
1

2 3

pk

qk

T (Sk-1)

sk
pk qk

T (Sk)

A

B

C

D

E F G

D(Sk-1)

D(Sk)

pk

sk
A

B C

0 1 2 3

D(Sk-1)

qk

sk

F

G

D

E

sksk

Complexities

THEOREM: Randomized Incremental algorithm constructs trapezoidal map T (S) &

search structure D(S) for a set S of n non-crossing line-segments with complexities:

1) O(log n) expected query time for any query point q.

2) O(n) expected size of the search structure.

3) O(n log n) expected construction time.

[All these expectations are on the random ordering of the segments in S.]

Dealing with Degeneracy

What if more than one end-point in S has the same x-coordinate?

How about vertical line-segments in S? …

Properties:

1. No two end-points p & q of S have the same (transformed) x-coordinate.

2. Preserves left/right relationships: p left of q p left of q.

3. Preserves point-line incidence (it is affine transformation):

point p above segment s p above segment s.

[Also holds with above replaced by on or below.]

y

yεx

y

x
:φ

0

0

1

1

0

0

1

1
e

x

y

Shear Transform:

Conceptually assume e > 0 is sufficiently small.

For a point p = (x,y) assume (x,y) is representing p = (x+ey , y).

