Point Location slides by Andy Mirzaian

(a subset of the original slides are used here)

Planar Point Location: Knowing where you are on the map

References:

- [M. de Berge et al] chapter 6
- [O'Rourke'98] chapter 7.6
- [Edelsbrunner '87] chapter 11
- [Preparata-Shamos'85] chapter 2.2

Applications:

- GIS: Geographic Information Systems
- Computer Graphics
- Mobile Telecommunication
- Mobile Robotics

Point Location in a Planar Subdivision

PSLG = Planar Straight-Line Graph

Locate a query point q in the PSLG: find which face of the PSLG contains q.

Complexity Measures:

- S - space to store the point location data structure
- T - preprocessing time to construct the data structure
- Q - query time to locate the PSLG face that contains the query point.

Point Location in a Planar Subdivision

- 1D Optimal method: sorted array, $S=O(n), T=O(n \log n), Q=O(\log n)$.
- 2D: Shamos [1975]: Slab Method: $S=O\left(n^{2}\right), T=O\left(n^{2}\right), Q=O(\log n)$.
- 2D Optimal Method: $S=O(n), T=O(n \log n), Q=O(\log n)$.
> Mulmuly [1990], Seidel [1991]: Randomized Incremental Method.
> Kirkpatrick [1983]: Triangulation Refinement Method.
(Edelsbrunner-Guibas-Stolfi [1986] SIAM J. Computing, pp:317-340.
> Sarnak-Tarjan [1986], "Planar point location using persistent search trees," Communications of ACM 29, pp: 669-679.
> Lipton-Tarjan [1977-79]: Planar Separator Method.
- 2D Line Segments intersections:

Randomized Incremental Method in $\mathrm{O}(\mathrm{K}+\mathrm{n} \log \mathrm{n})$ expected time.

The Slab Method

O$O\left(n^{2}\right)$	space
$O\left(n^{2}\right)$	preprocessing time
$\square O(\log n)$	query time.

A given PSLG with n vertices (\# edges $\leq 3 n-6$). We may add a large bounding box.

The Slab Method

$\square O\left(n^{2}\right)$	space
$\square O\left(n^{2}\right)$	preprocessing time
$\square O(\log n)$	query time.

A given PSLG with n vertices (\# edges $\leq 3 n-6$). We may add a large bounding box.

Query Answering:

- do binary search among slabs (in x-sorted order).
- do binary search vertically within the located slab.
- each binary search takes $Q=O(\log n)$ time .

Preprocessing for the Slab Method

The Plane Sweep Method:

\square Event schedule: x-coordinate of PSLG vertices in increasing order.
Maintain these in a priority queue Q.
\square Event Status: vertical sorted ordering of sub-regions within the current slab. Maintain this in a dictionary D.

- Create a sorted array of slabs. Every time a slab is completed, dump a copy of the current D in the next entry of the sorted array of slabs.
[This will be the final data structure.]
\square Analysis:
$>$ Event processing takes $O(\log n)$ time on $Q, O\left(e_{v} \log n\right)$ time on D, and $O(n)$ time to dump a copy of D into the permanent D.S. Here e_{v} is the number of edges incident to the current event vertex v .
$>$ Total Preprocessing Time $T=O\left(n \log n+\sum_{v} e_{v} \log n+n \cdot n\right)$ $=O\left(n \log n+n \log n+n^{2}\right)=O\left(n^{2}\right)$.
$>$ Space $=O\left(n^{2}\right)$.

Randomized Incremental Method

Construct the Trapezoidal decomposition not by the sweep method but by a randomized incremental method. This at the same time constructs the query search structures and also has optimal expected performance.

Randomized Incremental Method

Defining features of a trapezoid Δ :

Δ is defined by up to 4 line segments left((Δ), right (Δ), top (Δ), bottom (Δ).
(These are some edges of the PSLG, possibly not all distinct.)

$\operatorname{right}(\Delta)$ is defined symmetrically.

Randomized Incremental Method

CLAIM: If PSLG has n line segments, then \# trapezoids $\leq 3 n+1$.
Proof: Assume $2 n$ end-points are in general position.
Each end-point defines left/right wall of at most 3 trapezoids. Except the leftmost \& rightmost trapezoids, each trapezoid is defined by 2 vertical walls (incident to 2 end-points).

$\therefore 2$ (\# trapezoids) - $2=3$ (\# end-points) $=6 n$.
\therefore \# trapezoids $=3 n+1$.
If end-points are not in general position (i.e., some have equal x-coordinates, or coincide), then the count is even less. [Could use Euler's formula too.]

Trapezoidal Map $\mathcal{T}(\mathrm{S}) \quad \mathrm{O}(\mathrm{n})$ space
of a set S of n non-crossing line segments can be represented by the adjacency structure of its trapezoids.
Adjacency: Δ_{1} and Δ_{2} are adjacent iff they share (portion of) a vertical wall.
A Δ has at most 2 left neighbors and at most 2 right neighbors.

$\mathcal{D}(\mathrm{S})$: The Query Search Structure

- It's a rooted DAG, each node has out-degree at most 2.
- Leaves (i.e., nodes of out-degree 0) store trapezoids with 2-way cross-pointers with their counter-parts in \mathcal{T} (S).
- Internal nodes are either endpoints with x-value as key (left/right comparison), or a line-segment of S (below/above comparison).

Randomized Incremental Construction of $\mathcal{T}(\mathrm{S}) \& \mathcal{D}(\mathrm{~S})$

```
Input: a set S of n non-crossing line-segments in the plane.
Output: \mathcal{T (S) & \mathcal{D}(S).}
1. Get a bounding box and initialize }\mathcal{T}(\varnothing)&\mathcal{D}(\varnothing)\mathrm{ .
2. Randomly permute S into ( }\mp@subsup{\textrm{s}}{1}{},\mp@subsup{\textrm{s}}{2}{},\ldots,\mp@subsup{\textrm{s}}{\textrm{n}}{})\mathrm{ .
3. for k\leftarrow1..n do
    (* insert }\mp@subsup{\textrm{s}}{\textrm{k}}{&}\mathrm{ & update }\mathcal{T}(\mp@subsup{\textrm{S}}{\textrm{k}}{})&\mathcal{D}(\mp@subsup{\textrm{S}}{\textrm{k}}{}).\mp@subsup{\textrm{S}}{\textrm{k}}{}={\mp@subsup{\textrm{s}}{1}{},\mp@subsup{\textrm{s}}{2}{},\ldots,\mp@subsup{\textrm{s}}{\textrm{k}}{}}\mp@subsup{}{}{*}
    Let }\mp@subsup{p}{k}{}&\mp@subsup{q}{k}{}\mathrm{ be left & right ends of }\mp@subsup{s}{k}{}\mathrm{ , respectively
    \Delta
    while }\mp@subsup{q}{k}{}\mathrm{ is to the right of right( }\mp@subsup{\Delta}{j}{})\mathrm{ do
            if }\mp@subsup{s}{k}{}\mathrm{ is below right(}(\mp@subsup{\Delta}{j}{}
                then }\mp@subsup{\Delta}{j+1}{}\leftarrow\mathrm{ lower-right-neighbor of }\mp@subsup{\Delta}{\textrm{j}}{
                else }\mp@subsup{\Delta}{j+1}{}\leftarrow\mathrm{ upper-right-neighbor of }\mp@subsup{\Delta}{\textrm{j}}{
            j}\leftarrow\textrm{j}+
            end-while
            \Delta
            Update \mathcal{T}(\mp@subsup{\textrm{S}}{\textrm{k}}{})&\mathcal{D}(\mp@subsup{\textrm{S}}{\textrm{k}}{})\mathrm{ accordingly (see next slide).}
end
```


Example of step 3

Example of step 3

Complexities

THEOREM: Randomized Incremental algorithm constructs trapezoidal map $\mathcal{T}(\mathrm{S})$ \& search structure $\mathcal{D}(\mathrm{S})$ for a set S of n non-crossing line-segments with complexities:

1) $O(\log n)$ expected query time for any query point q.
2) $O(n)$ expected size of the search structure.
3) $O(n \log n)$ expected construction time.
[All these expectations are on the random ordering of the segments in S.]

Dealing with Degeneracy

What if more than one end-point in S has the same x-coordinate? How about vertical line-segments in S? ...

Shear Transform:

$$
\varphi:\binom{\mathrm{x}}{\mathrm{y}} \mapsto\binom{\mathrm{x}+\varepsilon \mathrm{y}}{\mathrm{y}}
$$

Conceptually assume $\varepsilon>0$ is sufficiently small.
For a point $p=(x, y)$ assume (x, y) is representing $\varphi p=(x+\varepsilon y, y)$.

Properties:

1. No two end-points $\varphi p \& \varphi q$ of φS have the same (transformed) x-coordinate.
2. Preserves left/right relationships: p left of $q \Leftrightarrow \varphi p$ left of φq.
3. Preserves point-line incidence (it is affine transformation): point p above segment $s \Leftrightarrow \varphi p$ above segment φs.
[Also holds with above replaced by on or below.]
