Duality and Line Arrangements slides by Andy Mirzaian (a subset of the original slides are used here)

Super-sampling in Ray Tracing

- A ray through each pixel center.
- Problems: jagged edges, false hit/miss.
- <u>A solution</u>: super-sampling. Shoot many rays per pixel (usually at random) if 100 rays shot at pixel, and 43 hit the same object, we say object visible in roughly 43% pixel area.

Computing the Discrepancy

Pixel U = $[0:1] \times [0:1]$ S = a set of n sample points in U \mathcal{H} = set of all half-planes

For $h \in \mathcal{H}$ define: $\mu(h) = area(h \cap U)$ continuous measure

 $\mu_{S}(h) = |S \cap h| / |S|$ discrete measure

 $\Delta_{s}(h) = | \mu(h) - \mu_{s}(h) |$ discrepancy of h

 $\Delta_{\mathcal{H}}(S) = \sup_{h \in \mathcal{H}} \Delta_{S}(h)$ half-plane discrepancy of S

The bounding line of this worst half-plane h passes through either only 1, or at least 2, sample points.

FACT: $\Delta_{\mathcal{H}}(S)$ can be computed in O(n²) time, using Geometric Duality & Arrangement of lines in the plane.

 $\Delta_{\rm S}({\rm h}) = |1/4 - 3/10| = 0.05$

Geometric Duality

Point -to- hyperplane Transformations

Some Applications:

 \Box Intersection of half-spaces \Leftrightarrow Convex Hull of point sets

□ Whenever the problem becomes intuitively "easier" in the dual space.

1. Hough (or Reciprocal) Transform (1969)

\mathfrak{R}^{d}	<u>Point</u> : (a ₁ , a ₂ , , a _d)	<u>Hyper-plane</u> : $a_1x_1 + a_2x_2 + + a_dx_d + 1 = 0$
	≠ origin	not passing through the origin
\Re^2	<u>Point</u> : (a,b) ≠ (0,0)	<u>Line</u> : $ax + by + 1 = 0$

2. Another Point-Line Transform

Point p: $(a, b) \longrightarrow line p^*: y = ax - b (non-vertical line)$ Line l: $y = ax + b \longrightarrow point l^*: (a, -b)$

*symmetric: p*** = *p*

Duality Transforms Preserve Incidence

- 1. Point p is mapped to line p*.
- 2. Line l is mapped to point l^* .
- *3. Point p and line l are incident* \Leftrightarrow *line p** *and point l** *are incident*

4. Above/Below relation is also preserved (or reversed).

5. Line l passes through points $p \& q \Leftrightarrow Lines p^* \& q^*$ intersect at point l^* .

6. Points p, q, r are collinear \Leftrightarrow Lines p*, q*, r* are concurrent.

Problem Transformation by Duality

Problem 2:[Degeneracy]: are there any 3 collinear points among n given points?Solution:Duality: are there 3 concurrent lines among n given lines?
(Use arrangement of lines)

Problem Transformation by Duality

Problem 3: Find upper (respectively, lower) envelope of n given linesSolution: Compute upper (respectively, lower) convex hull of the n dual points

Problem 4:	Compute intersection of n half-spaces
Solution:	Compute Convex Hull of n dual points
Caution:	What happens if the origin is not in the intersection?

Arrangements

Arrangements of lines and hyper-planes

 $\mathcal{L} = \{ l_1, l_2, \dots, l_n \} \text{ n lines in } \Re^2 \text{ (in general: n hyper-planes in } \Re^d \text{)} \\ \mathcal{A}(\mathcal{L}) = \text{arrangement of } \mathcal{L}, \text{ i.e., subdivision of } \Re^2 \text{ (resp., } \Re^d \text{) induced by } \mathcal{L}.$

<u>Assume</u>: \mathcal{L} is in general position, i.e., no 2 lines in \mathcal{L} are parallel, & no 3 are concurrent.

Combinatorial complexity of $\mathcal{A}(\mathcal{L})$ in \Re^2 :

 $V = \# \text{ vertices } = \binom{n}{2}$ $E = \# \text{ edges } = n^2 \quad (\text{each line is cut into n edges})$ $F = \# \text{ regions } = \Theta (n^2)$ Euler: $(V+1) - E + F = 2 \quad \text{vertex at } \infty$ $\therefore F = (n^2 + n + 2) / 2 \quad = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{d}$

Arrangement Construction

Will take at least $\Omega(n^2)$ time & space, due to combinatorial size of $\mathcal{A}(\mathcal{L})$.

- 1. <u>Plane Sweep</u>: At least $\Omega(n^2 \log n)$ time, since it will "sort" the arrangement vertices.
- 2. <u>Naïve Incremental Algorithm</u> $\mathcal{A}(\{l_1, l_2, ..., l_{k-1}\}) \rightarrow \mathcal{A}(\{l_1, l_2, ..., l_k\}), \text{ for } k=2..n$
 - Binary Search to find v_{i1}, v_{i+1,1}.
 - O(log k) for each of l_1 , l_2 , ..., l_{k-1} .
 - O(k log k) to insert l_k .
 - Total O($\Sigma_k k \log k$) = O(n² log n) time, and O(n²) space.

Refined Incremental Algorithm

Refined Incremental Algorithm

How to insert l_k in $\mathcal{A}(\{l_1, l_2, \dots, l_{k-1}\})$:

- 1. Find $u_0 = l_1 \cap l_k$ and rightmost vertex v_0 on l_1 to the left of u_0 , in O(k) time. Let v_0v_1 be CCW from v_0u_0 on vertex v_0 .
- 2. If segment v_0v_1 intersects l_k , then we have closed a polygonal line that starts from a previous intersection point, namely u_0 , and ends in another intersection point, namely u_1 . Therefore, we can insert u_1 properly in the adjacency list. We now go to u_1 and repeat steps 1,2,3 with u_1 as the new u_0 and l_m as the new l_1 .
- 3. If v_0v_1 does not intersect l_k , then we take the next vertex v_2 CCW on v_1 from v_1v_0 and repeat the same procedure.
- 4. When we encounter a vertex that has a leftmost edge which is a ray diverging from l_k , we have finished the "upward" movement.
- 5. We do a similar "downward" movement, starting from v_0 , on the other side of l_1 .

ZONE of a line in the arrangement

Zone of l_k

= collection of the polygonal regions of the arrangement that have an edge on l_k .

Combinatorial complexity of a zone

= total number of vertices of the polygonal regions in the zone (counting multiplicities).

ZONE Complexity

THEOREM: Combinatorial complexity of zone of l_k in $\mathcal{A}(\{l_1, l_2, ..., l_{k-1}\})$ is \leq **5k-6** on each side (\leq **10k–12** on both sides).

<u>Proof</u> 1: $\exists k \text{ convex polygonal regions incident to in the "upper" zone of <math>l_k$ (similarly in the "lower" zone).

<u>Define</u>: ceiling, left/right wall, & floor edges for each polygon as the figure on the right.

<u>Claim</u>: $\exists \le 1$ left wall $\& \le 1$ right wall on each line l_j , j = 1..k-1. <u>Proof</u>: $e_1 \ne$ ceiling $\Rightarrow e_3$'s extension cuts $P_m \Rightarrow$ a contradiction.

<u>Corollary</u>: $\exists \leq 2(k-1) - 2 = 2k-4$ wall edges. (First poly has no left wall, last poly has no right wall.)

Total count:

kfloors2k-4walls2k-2ceilings5k-6total

ZONE Complexity

THEOREM: Combinatorial complexity of zone of l_k in $\mathcal{A}(\{l_1, l_2, ..., l_{k-1}\})$ is \leq **5k-6** on each side (\leq **10k–12** on both sides).

<u>Proof</u> 2: By Davenport-Schinzel sequences. Consider the sequence of only <u>left</u> wall/ceiling edges in the traversal of upper-zone of l_k (similarly for <u>right</u> ...).

<u>Claim</u>: This is a (k-1, 2) DS sequence. That is, ...a...b...a...b... is a forbidden sub-sequence.

Total count:

k	floors
2(k-1) -1	left walls / ceilings

2(k-1) -1	right walls / ceilings
5k-6	total

Arrangement Complexity

THEOREM: The arrangement $\mathcal{A}(\mathcal{L})$ of n lines $\mathcal{L} = \{ l_1, l_2, ..., l_n \}$ in \Re^2 can be constructed in optimal time & space O(n²).

THEOREM: Let $\mathcal{H} = \{h_1, h_2, \dots, h_n\}$ be a set of n hyper-planes in \mathfrak{R}^d .

(a) The combinatorial size of the zone of any hyper-plane in the arrangement $\mathcal{A}(\mathcal{H})$ is O(n^{d-1}).

(b) $\mathcal{A}(\mathcal{H})$ can be constructed in optimal time & space O(n^d).

Levels and Discrepancy

For each vertex v in $\mathcal{A}(S^*)$ we need to compute how many lines of S* are

- a) strictly above it [let's call this level(v)],
- b) pass through it,
- c) strictly below it.

We essentially need to compute the levels of all vertices of the arrangement $\mathcal{A}(S^*)$. Take a walk along each line, and compute the level of each vertex on it.

Compute level of leftmost vertex of l in O(n) time, then compute each of its subsequent vertices in order of degree of the vertex. Total time, over all lines in S*, is O(sum of vertex degrees + n²) = O(n²).