Duality and

Line Arrangements
slides by Andy Mirzaian

(a subset of the original slides are used here)




Super-sampling in Ray Tracing
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Determining visible objects by ray tracing.

[ [ [ ] ]/

///7/

[ [ [ ] ]/
[ [ ]

[ S S

[ LSS NS

* A ray through each pixel center.

» Problems: jagged edges, false hit/miss.

» A solution: super-sampling. Shoot many rays per pixel /
(usually at random)
if 100 rays shot at pixel, and 43 hit the /

same object, we say object visible in

VAVY N\

roughly 43% pixel area. A



Computing the Discrepancy

PixelU = [0: 1] x[0: 1]

S = aset of n sample points in U

H = set of all half-planes

For h e H define: —

u(h) =area(h N U) continuous measure

ns(h) =S h|/|S| discrete measure
Ag(h) = | u(h) - ps(h) | discrepancy of h

A3r(S) =sup ,cgr Ag(h) half-plane discrepancy of S

The bounding line of this worst half-plane h passes
through either only 1, or at least 2, sample points.

FACT:  A4.(S) can be computed in O(n?) time, using
Geometric Duality &
Arrangement of lines in the plane.

Ag(h) = |1/4 —3/10 | = 0.05



Geometric Duality

Point -to- hyperplane Transformations

Some Applications:

O Intersection of half-spaces <> Convex Hull of point sets

O Whenever the problem becomes intuitively “easier” in the dual space.




1. Hough (or Reciprocal) Transform (1969)

Point: (a;, a,, ..., ay)

# 0rigin

Hyper-plane: a,;x;+a,X,+... taxy+1=0

not passing through the origin

R2 | Point: (a,b) = (0,0)

Line: ax+by+1=0

p* = dual of p
d(0,p) x d(0,p*) =1

The origin is “above” the line.
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2. Another Point-Line Transform

Point p: (a, b) ——> line p*: y=ax-b (non-vertical line)
Line |I: y=ax+b —— pointl*: (a, -b)

symmetric: p** =p

* (a,b)
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Duality Transforms Preserve Incidence

N

Point p is mapped to line p*.
Line | is mapped to point I*.
Point p and line | are incident < line p* and point I* are incident

I/p./<:>p*\-'*\

Above/Below relation is also preserved (or reversed).
pe

Line I passes through points p & g < Lines p* & g* intersect at point I*.

I*
/E/(E/
| q* p*

Points p, g, r are collinear < Lines p*, g*, r* are concurrent.

ql’
I/E/'//
q*
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Problem Transformation by Duality

Problem 1. Compute the discrepancy:

PRIMAL PLANE DUAL PLANE

Now compute levels in arrangement
of lines in the dual plane

Problem 2: [Degeneracy]: are there any 3 collinear points among n given points?
Solution: Duality: are there 3 concurrent lines among n given lines?
(Use arrangement of lines)




Problem Transformation by Duality

Problem 3: Find upper (respectively, lower) envelope of n given lines
Solution: Compute upper (respectively, lower) convex hull of the n dual points

DUAL PLANE

PRIMAL PLANE

Problem 4. Compute intersection of n half-spaces
Solution: Compute Convex Hull of n dual points
Caution: What happens if the origin is not in the intersection?







Arrangements of lines and hyper-planes

L={1,,1,, ..., 1.} nlinesin R2 (in general: n hyper-planes in K?)
A(L) = arrangement of £, i.e., subdivision of $R? (resp., ‘RY) induced by £.

Assume: £ is in general position, i.e., no 2 lines in £ are parallel,
& no 3 are concurrent.

Combinatorial complexity of A(L) in K2 :

_ n
V = # vertices = ( j

2
E=#edges =nmn? (each line is cut into n edges)
F=#regions =0 (n?
' |

Euler: (V+1)-E+F=2 vertex at oo

CF=(mtn+2))2 =(2j+(2J+(2J++(3J



Arrangement Construction

Will take at least Q(n?) time & space, due to combinatorial size of 4(L).

1.

Plane Sweep:
At least Q(n? log n) time, since it will “sort” the arrangement vertices.

Naive Incremental Algorithm

%I({ L, L, ... 0 ) = A1, L, ..., [ }), fork=2..n

Binary Search to find vjy, Viyq14 -
= O(log k) foreachof I, I,, ..., [, ;.
= O(klog k) to insert |,.

= Total O( Zkk log k) = O(n? log n) time, and O(n?) space.




Refined Incremental Algorithm

How to insert Ik in ﬂ({ |1, |2, vee s lk-l }) ?

“‘upward”
. movement
on one
side of

13

. “downward”
- movement
on the

. other side

of I,




Refined Incremental Algorithm

How to insert I, in A{Il,1,, ..., L }):

Find uy = |, ™ |, and rightmost vertex v, on |, to the left of ug, in O(k) time.
Let vov, be CCW from v,yu, on vertex v, .

If segment v,v; intersects Ik , then we have closed a polygonal line that starts
from a previous intersection point, namely u,, and ends in another intersection
point, namely u,. Therefore, we can insert u, properly in the adjacency list.

We now go to u,; and repeat steps 1,2,3 with u, as the new u, and |rn as the new |1-

If vov, does not intersect Ik , then we take the next vertex v, CCW on v, from v,v,
and repeat the same procedure.

When we encounter a vertex that has a leftmost edge which is a ray diverging from
l,, we have finished the “upward” movement.

We do a similar “downward” movement, starting from v, on the other side of |1.



ZONE of a line in the arrangement

Zone of |,
= collection of the polygonal regions of the arrangement

that have an edge on |,.

Combinatorial complexity of a zone
= total number of vertices of the polygonal regions in the zone
(counting multiplicities).

upper zone

1

lower zone




ZONE Complexity

THEOREM: Combinatorial complexity of zone of |, in A{1,1,, ..., 44 }) is
< 5k-6 on each side (< 10k-12 on both sides).

Viop

Proof 1: 3k convex polygonal regions incident to in the

113 th H H H 113 th \/\/\/
upper” zone of |, (similarly in the “lower” zone). ceiling
left rlght
Define: ceiling, left/right wall, & floor edges for each el walls |,

polygon as the figure on the right. / floor

Claim: 3 <1 left wall & < 1 right wall on each line |j , ] =1..k-1.
Proof: e, # ceiling = e;'s extension cuts P, = a contradiction.

Corollary: 3 < 2(k-1) -2 = 2k-4 wall edges.
(First poly has no left wall, last poly has no right wall.)

Total count: I
k floors

2k-4 walls

2k-2 ceilings (1s & last have only one ceiling edge)

5k-6 total




ZONE Complexity

THEOREM: Combinatorial complexity of zone of |, in A{1,1,, ..., 44 }) is
< 5k-6 on each side (<10k-12 on both sides).

Proof 2: By Davenport-Schinzel sequences.
Consider the sequence of only left wall/ceiling edges in

the traversal of upper-zone of |, (similarly for right ... ).

Claim: This is a (k-1, 2) DS sequence.
That is, ...a...b...a...b...
Is a forbidden sub-sequence.

—
" bbb.aab.b. >
Total count:

k floors

2(k-1) -1 right walls / ceilings

. b .
2(k-1) -1 left walls / ceilings \ /
> I

5k-6 total .a..a..a.b.b.b.



Arrangement Complexity

THEOREM: The arrangement A(L) ofnlines £L={l,,1,, ..., [, }in K2
can be constructed in optimal time & space O(n?).

THEOREM: Let H ={h,, h,, ..., h,}be a set of n hyper-planes in Rq.

(a) The combinatorial size of the zone of any hyper-plane in the
arrangement A(H) is O(nd1).

(b) A(F{) can be constructed in optimal time & space O(nY).




Levels and Discrepancy

U=[0:1]x[0:1], S =asetofnpointsin U.
Dualize: S — S* — A(SY).

For each vertex v in “A(S*) we need to compute how many lines of S* are
a) strictly above it [let’s call this level(v)],
b) pass through it,
c) strictly below it.

We essentially need to compute the levels of all vertices of the arrangement “A(S*).
Take a walk along each line, and compute the level of each vertex on it.

level=1

Compute level of leftmost vertex of | in O(n) time, then compute each of its
subsequent vertices in order of degree of the vertex.
Total time, over all lines in S*, is O( sum of vertex degrees + n?) = O(n?).




