Duality and Line Arrangements slides by Andy Mirzaian

(a subset of the original slides are used here)

Super-sampling in Ray Tracing

- A ray through each pixel center.
- Problems: jagged edges, false hit/miss.

- A solution: super-sampling. Shoot many rays per pixel (usually at random) if 100 rays shot at pixel, and 43 hit the same object, we say object visible in roughly 43\% pixel area.

Computing the Discrepancy

Pixel U = $[0: 1] \times[0: 1]$
$S=$ a set of n sample points in U
$\mathcal{H}=$ set of all half-planes
For $h \in \mathcal{H}$ define:
$\mu(h)=\operatorname{area}(h \cap \mathbf{U})$ continuous measure

$\mu_{\mathbf{s}}(\mathbf{h})=|\mathbf{S} \cap \mathbf{h}| /|\mathbf{S}|$ discrete measure
$\Delta_{\mathbf{S}}(\mathbf{h})=\left|\mu(\mathbf{h})-\mu_{\mathbf{S}}(\mathbf{h})\right|$ discrepancy of h
$\Delta_{\mathcal{H}}(\mathbf{S})=\sup _{\mathrm{h} \in \mathcal{H}} \Delta_{\mathbf{S}}(\mathrm{h})$ half-plane discrepancy of S
The bounding line of this worst half-plane h passes through either only 1 , or at least 2 , sample points.

FACT: $\quad \Delta_{\mathcal{H}}(\mathbf{S})$ can be computed in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time, using Geometric Duality \&
Arrangement of lines in the plane.

Geometric Duality

Point -to- hyperplane Transformations

Some Applications:

- Intersection of half-spaces \Leftrightarrow Convex Hull of point sets

Whenever the problem becomes intuitively "easier" in the dual space.

1. Hough (or Reciprocal) Transform (1969)

\mathfrak{R}^{d}	Point: $\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ \neq origin	Hyper-plane: $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d} x_{d}+1=0$ not passing through the origin
\mathfrak{R}^{2}	Point: $(a, b) \neq(0,0)$	Line: $a x+b y+1=0$

$\mathrm{p}^{*}=$ dual of p
$\mathrm{d}(0, \mathrm{p}) \times \mathrm{d}\left(0, \mathrm{p}^{*}\right)=1$
The origin is "above" the line.

2. Another Point-Line Transform

Point $p:(a, b) \longrightarrow$ line $p^{*}: y=a x-b$ (non-vertical line) Line $l: y=a x+b \longrightarrow$ point $l^{*}:(a,-b)$
symmetric: $p^{* *}=p$

Duality Transforms Preserve Incidence

1. Point p is mapped to line p^{*}.
2. Line l is mapped to point l.
3. Point p and line l are incident \Leftrightarrow line p^{*} and point l^{*} are incident

4. Above/Below relation is also preserved (or reversed).

5. Line l passes through points $p \& q \Leftrightarrow$ Lines $p^{*} \& q^{*}$ intersect at point l^{*}.

6. Points p, q, r are collinear \Leftrightarrow Lines p^{*}, q^{*}, r^{*} are concurrent.

Problem Transformation by Duality

Problem 1: Compute the discrepancy:

PRIMAL PLANE

DUAL PLANE
Now compute levels in arrangement of lines in the dual plane

Problem 2: [Degeneracy]: are there any 3 collinear points among n given points? Solution: Duality: are there 3 concurrent lines among n given lines? (Use arrangement of lines)

Problem Transformation by Duality

Problem 3: Find upper (respectively, lower) envelope of n given lines Solution: Compute upper (respectively, lower) convex hull of the n dual points

DUAL PLANE

Problem 4: Compute intersection of n half-spaces
Solution: Compute Convex Hull of n dual points Caution: What happens if the origin is not in the intersection?

Arrangements

Arrangements of lines and hyper-planes

$\mathcal{L}=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\} \mathrm{n}$ lines in \mathfrak{R}^{2} (in general: n hyper-planes in $\mathfrak{R}^{\mathrm{d}}$) $\mathcal{A}(\mathcal{L})=$ arrangement of \mathcal{L}, i.e., subdivision of \mathfrak{R}^{2} (resp., $\mathfrak{R}^{\mathrm{d}}$) induced by \mathcal{L}.

Assume: \mathcal{L} is in general position, i.e., no 2 lines in \mathcal{L} are parallel, \& no 3 are concurrent.

Combinatorial complexity of $\mathcal{A}(\mathcal{L})$ in \mathfrak{R}^{2} :

$$
\begin{aligned}
& \mathrm{V}=\# \text { vertices }=\binom{n}{2} \\
& \mathrm{E}=\# \text { edges }=n^{2} \quad \text { (each line is cut into } n \text { edges) } \\
& \mathrm{F}=\# \text { regions }=\Theta\left(n^{2}\right) \\
& \text { Euler: }(\mathrm{V}+1)-\mathrm{E}+\mathrm{F}=2 \quad \text { vertex at } \infty \\
& \therefore \mathrm{F}=\left(n^{2}+n+2\right) / 2=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{d}
\end{aligned}
$$

Arrangement Construction

Will take at least $\Omega\left(\mathrm{n}^{2}\right)$ time \& space, due to combinatorial size of $\mathcal{A}(\mathcal{L})$.

1. Plane Sweep:

At least $\Omega\left(n^{2} \log n\right)$ time, since it will "sort" the arrangement vertices.
2. Naïve Incremental Algorithm

$$
\mathcal{A}\left(\left\{l_{1}, l_{2}, \ldots, l_{k-1}\right\}\right) \rightarrow \mathcal{A}\left(\left\{l_{l}, l_{2}, \ldots, l_{k}\right\}\right) \text {, for } k=2 . . n
$$

- Binary Search to find $v_{i 1}, v_{i+1,1}$.
- $\mathrm{O}(\log \mathrm{k})$ for each of $l_{1}, l_{2}, \ldots, l_{k-1}$.
- $\mathrm{O}(\mathrm{k} \log \mathrm{k})$ to insert l_{k}.
- Total $\mathrm{O}\left(\sum_{\mathrm{k}} \mathrm{k} \log \mathrm{k}\right)=\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ time, and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space.

Refined Incremental Algorithm

How to insert l_{k} in $\mathcal{A}\left(\left\{l_{1}, l_{2}, \ldots, l_{k-1}\right\}\right)$?

Refined Incremental Algorithm

How to insert l_{k} in $\mathcal{A}\left(\left\{l_{1}, l_{2}, \ldots, l_{k-1}\right\}\right)$:

1. Find $\mathrm{u}_{0}=l_{l} \cap l_{k}$ and rightmost vertex v_{0} on l_{l} to the left of u_{0}, in $\mathrm{O}(\mathrm{k})$ time. Let $v_{0} v_{1}$ be CCW from $v_{0} u_{0}$ on vertex v_{0}.
2. If segment $\mathrm{v}_{0} \mathrm{v}_{1}$ intersects l_{k}, then we have closed a polygonal line that starts from a previous intersection point, namely u_{0}, and ends in another intersection point, namely u_{1}. Therefore, we can insert u_{1} properly in the adjacency list. We now go to u_{1} and repeat steps $1,2,3$ with u_{1} as the new u_{0} and l_{m} as the new l_{1}.
3. If $v_{0} v_{1}$ does not intersect l_{k}, then we take the next vertex v_{2} CCW on v_{1} from $v_{1} v_{0}$ and repeat the same procedure.
4. When we encounter a vertex that has a leftmost edge which is a ray diverging from l_{k}, we have finished the "upward" movement.
5. We do a similar "downward" movement, starting from v_{0}, on the other side of l_{l}.

ZONE of a line in the arrangement

Zone of l_{k}
$=$ collection of the polygonal regions of the arrangement that have an edge on l_{k}.

Combinatorial complexity of a zone
= total number of vertices of the polygonal regions in the zone (counting multiplicities).

ZONE Complexity

THEOREM: Combinatorial complexity of zone of l_{k} in $\mathcal{A}\left(\left\{l_{1}, l_{2}, \ldots, l_{k-l}\right\}\right)$ is $\leq 5 k-6$ on each side ($\leq 10 k-12$ on both sides).

Proof 1: $\exists \mathrm{k}$ convex polygonal regions incident to in the "upper" zone of l_{k} (similarly in the "lower" zone).

Define: ceiling, left/right wall, \& floor edges for each polygon as the figure on the right.

Claim: $\exists \leq 1$ left wall $\& \leq 1$ right wall on each line $l_{j}, j=1 . . k-1$.
Proof: $\mathrm{e}_{1} \neq$ ceiling $\Rightarrow \mathrm{e}_{3}$'s extension cuts $\mathrm{P}_{\mathrm{m}} \Rightarrow$ a contradiction.
Claim: $\exists \leq 1$ left wall $\& \leq 1$ right wall on each line $l_{j}, j=1$.. $k-1$.
Proof: $\mathrm{e}_{1} \neq$ ceiling $\Rightarrow \mathrm{e}_{3}$'s extension cuts $\mathrm{P}_{\mathrm{m}} \Rightarrow$ a contradiction.
Corollary: $\exists \leq 2(k-1)-2=2 k-4$ wall edges.
(First poly has no left wall, last poly has no right wall.)
Total count:

$$
\begin{array}{ll}
\mathrm{k} & \text { floors } \\
2 \mathrm{k}-4 & \text { walls } \\
2 \mathrm{k}-2 & \text { ceilings } \\
\hline 5 \mathrm{k}-6 & \text { total }
\end{array}
$$

ZONE Complexity

THEOREM: Combinatorial complexity of zone of l_{k} in $\mathcal{A}\left(\left\{l_{1}, l_{2}, \ldots, l_{k-l}\right\}\right)$ is $\leq 5 k-6$ on each side ($\leq 10 k-12$ on both sides).

Proof 2: By Davenport-Schinzel sequences.
Consider the sequence of only left wall/ceiling edges in the traversal of upper-zone of l_{k} (similarly for right \ldots).

Claim: This is a $(k-1,2)$ DS sequence. That is, ...a...b...a...b... is a forbidden sub-sequence.

Total count:
k floors
2(k-1) - 1 left walls / ceilings
$\begin{array}{ll}2(\mathrm{k}-1)-1 & \text { right walls / ceilings } \\ 5 \mathrm{k}-6 & \text { total }\end{array}$

..a..a..a..b..b..b..

Arrangement Complexity

THEOREM: The arrangement $\mathcal{A}(\mathcal{L})$ of n lines $\mathcal{L}=\left\{l_{l}, l_{2}, \ldots, l_{n}\right\}$ in \mathfrak{R}^{2} can be constructed in optimal time \& space $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

THEOREM: Let $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n hyper-planes in $\mathfrak{R}^{\mathrm{d}}$.
(a) The combinatorial size of the zone of any hyper-plane in the arrangement $\mathcal{A}(\mathcal{H})$ is $\mathrm{O}\left(\mathrm{n}^{d-1}\right)$.
(b) $\mathcal{A}(\mathcal{H})$ can be constructed in optimal time \& space $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$.

Levels and Discrepancy

$U=[0: 1] \times[0: 1], \quad S=$ a set of n points in U.
Dualize: $S \longrightarrow S^{*} \longrightarrow \mathcal{A}\left(S^{*}\right)$.
For each vertex vin $\mathcal{A}\left(S^{*}\right)$ we need to compute how many lines of S^{*} are
a) strictly above it [let's call this level(v)],
b) pass through it,
c) strictly below it.

We essentially need to compute the levels of all vertices of the arrangement $\mathcal{A}\left(S^{*}\right)$.
Take a walk along each line, and compute the level of each vertex on it.

Compute level of leftmost vertex of l in $\mathrm{O}(\mathrm{n})$ time, then compute each of its subsequent vertices in order of degree of the vertex.
Total time, over all lines in S^{*}, is O (sum of vertex degrees $\left.+\mathrm{n}^{2}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)$.

