
Duality and

Line Arrangements
slides by Andy Mirzaian
(a subset of the original slides are used here)



Super-sampling in Ray Tracing

• A ray through each pixel center.

• Problems: jagged edges, false hit/miss.

• A solution: super-sampling. Shoot many rays per pixel

(usually at random)

if 100 rays shot at pixel, and 43 hit the 

same object, we say object visible in 

roughly 43% pixel area.

Determining visible objects by ray tracing.



Computing the Discrepancy

DS(h) =  |1/4 – 3/10 | = 0.05

Pixel U  =  [0 : 1]  [0 : 1]

S  =  a set of n sample points in U
H =  set of all half-planes 

For h H define:

m(h) = area(h  U) continuous measure

mS(h) = |S  h| / |S| discrete measure

DS(h) = | m(h) - mS(h) | discrepancy of h

DH (S) = sup hH DS(h) half-plane discrepancy of S

The bounding line of this worst half-plane h passes

through either only 1, or at least 2, sample points.

FACT: DH (S) can be computed in O(n2) time, using 

Geometric Duality &

Arrangement of lines in the plane.



Geometric Duality

Point -to- hyperplane Transformations

Some Applications:

 Intersection of half-spaces    Convex Hull of point sets

 Whenever the problem becomes intuitively “easier” in the dual space.



1. Hough (or Reciprocal) Transform (1969)

d
Point:   (a1, a2, … , ad ) 

 origin

Hyper-plane:  a1x1+a2x2+… +adxd +1 = 0

not passing through the origin

2 Point:  (a,b)  (0,0) Line:  ax + by + 1 = 0

p* = dual of p

d(0,p)  d(0,p*) = 1

The origin is “above” the line.

(a,b)

slope = -a/b

x

y



2. Another Point-Line Transform

(a,b)

x

y

Point   p:  (a, b)          line  p*:  y = ax - b   (non-vertical line)

Line    l:  y = ax + b   point l*:  (a, -b)

symmetric: p** = p



Duality Transforms Preserve Incidence

1. Point p is mapped to line  p*.

2. Line l is mapped to point  l*.

3. Point p and line l are incident    line p* and point l* are incident 

4. Above/Below relation is also preserved (or reversed). 

5. Line l passes through points p & q    Lines p* & q* intersect at point l*.

6. Points p, q, r are collinear    Lines p*, q*, r* are concurrent.

l
p l*

p*

l

p

p*

l*

l
p

l*

p*

q

q*

l
p

l*
p*

q

q*
r*

r



Problem Transformation by Duality

Problem 1: Compute the discrepancy:

p

q

p*q*

L*

PRIMAL PLANE DUAL PLANE

L

Now compute levels in arrangement

of lines in the dual plane

Problem 2: [Degeneracy]: are there any 3 collinear points among n given points?

Solution: Duality: are there 3 concurrent lines among n given lines? 

(Use arrangement of lines)



Problem Transformation by Duality

Problem 3: Find upper (respectively, lower) envelope of n given lines

Solution: Compute upper (respectively, lower) convex hull of the n dual points

l1

PRIMAL PLANE
DUAL PLANE

l2
l3

l4

l1*

l2*
l3*

l4*

Problem 4: Compute intersection of n half-spaces

Solution: Compute Convex Hull of n dual points

Caution:        What happens if the origin is not in the intersection?



Arrangements



Arrangements of lines and hyper-planes

L = { l1 , l2 , … , ln } n lines in 2 (in general: n hyper-planes in d )

A(L ) = arrangement of L , i.e., subdivision of 2 (resp., d ) induced by L .

Assume: L is in general position, i.e., no 2 lines in L are parallel,

& no 3 are concurrent.






































d

nnnn

210










2

n

Combinatorial complexity of A(L ) in 2 :

V = # vertices  = 

E = # edges     = n2 (each line is cut into n edges)

F = # regions   = Q (n2)

Euler:  (V+1) – E + F = 2 vertex at 

 F = (n2 + n + 2) / 2



Arrangement Construction

Will take at least W(n2) time & space, due to combinatorial size of A(L ).

1. Plane Sweep:

At least W(n2 log n) time, since it will “sort” the arrangement vertices.

2. Naïve Incremental Algorithm

A ({ l1 , l2 , … , lk-1 })  A ({ l1 , l2 , … , lk }),  for k=2..n
 Binary Search to find vi1 , vi+1,1 .

 O(log k) for each of l1 , l2 , … , lk-1.

 O(k log k) to insert lk.

 Total O( Sk k log k)  = O(n2 log n) time, and O(n2) space.

lk

l1

vi1
vi+1,1



Refined Incremental Algorithm

How to insert  lk in  A({ l1 , l2 , … , lk-1 }) ?

lk

l1

u0

u1

u2

u3

v0

v1

v2

lm

“upward”

movement

on one

side of

l1

“downward”

movement

on the

other side 

of l1



Refined Incremental Algorithm

How to insert  lk in  A({ l1 , l2 , … , lk-1 }) :

1. Find u0 = l1  lk and rightmost vertex v0 on l1 to the left of u0, in O(k) time.

Let v0v1 be CCW from v0u0 on vertex v0 .

2. If segment v0v1 intersects lk , then we have closed a polygonal line that starts 

from a previous intersection point, namely u0, and ends in another intersection 

point, namely u1. Therefore, we can insert u1 properly in the adjacency list. 

We now go to u1 and repeat steps 1,2,3 with u1 as the new u0 and lm as the new l1.

3. If v0v1 does not intersect lk , then we take the next vertex v2 CCW on v1 from v1v0

and repeat the same procedure.

4. When we encounter a vertex that has a leftmost edge which is a ray diverging from

lk, we have finished the “upward” movement.

5. We do a similar “downward” movement, starting from v0, on the other side of l1.



ZONE of a line in the arrangement

Zone of  lk

=  collection of the polygonal regions of the arrangement 

that have an edge on lk.

Combinatorial complexity of a zone 

= total number of vertices of the polygonal regions in the zone 

(counting multiplicities).

lk

upper zone

lower zone



ZONE Complexity

THEOREM: Combinatorial complexity of zone of  lk in  A({ l1 , l2 , … , lk-1 }) is 

 5k-6 on each side   ( 10k–12 on both sides).

lk

floor

vtop

left

walls

right

walls

ceiling

lk

lj e1

e2

e3

Proof  1: k convex polygonal regions incident to in the 

“upper” zone of lk (similarly in the “lower” zone).

Define: ceiling, left/right wall, & floor edges for each 

polygon as the figure on the right.

Claim:   1 left wall &  1 right wall on each line lj , j =1..k-1.

Proof: e1  ceiling  e3’s extension cuts Pm  a contradiction.

Corollary:   2(k-1) -2 = 2k-4 wall edges.  

(First poly has no left wall, last poly has no right wall.)

Total count:

k        floors

2k-4   walls

2k-2   ceilings (1s & last have only one ceiling edge)

5k-6   total

Pi

Pm



ZONE Complexity

THEOREM: Combinatorial complexity of zone of  lk in  A({ l1 , l2 , … , lk-1 }) is 

 5k-6 on each side   ( 10k–12 on both sides).

lk

lk

Proof  2: By Davenport-Schinzel sequences.

Consider the sequence of only left wall/ceiling edges in

the traversal of upper-zone of lk (similarly for right … ).

Claim: This is a (k-1, 2) DS sequence. 

That is, …a…b…a…b…

is a forbidden sub-sequence.

a b c d

d b d c a c d

a b

..b..b..b..a..a..b..b..
Total count:

k               floors

2(k-1) -1   left walls / ceilings

2(k-1) -1   right walls / ceilings 

5k-6          total
lk

a
b

..a..a..a..b..b..b..



Arrangement Complexity

THEOREM: The arrangement A(L) of n lines L = { l1 , l2 , … , ln } in 2

can be constructed in optimal time & space O(n2).

THEOREM: Let  H = { h1 , h2 , … , hn } be a set of n hyper-planes in d.

(a) The combinatorial size of the zone of any hyper-plane in the
arrangement A(H) is O(nd-1).

(b) A(H) can be constructed in optimal time & space O(nd).



Levels and Discrepancy

U = [0 : 1]  [0 : 1],    S = a set of n points in U.
Dualize:      S   S*   A(S*).

For each vertex v in A(S*) we need to compute how many lines of S* are

a) strictly above it   [let’s call this level(v)],

b) pass through it,

c) strictly below it.

We essentially need to compute the levels of all vertices of the arrangement A(S*).

Take a walk along each line, and compute the level of each vertex on it.
0

1
1

2
3 2

2

3
4

3
3

l 

level=1 

2

-1

0

+1

1
-1

1

+1 +1

3

Compute level of leftmost vertex of l in O(n) time, then compute each of its

subsequent vertices in order of degree of the vertex. 

Total time, over all lines in S*, is O( sum of vertex degrees + n2) = O(n2).


