Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian

(a subset of the original slides are used here)

VORONOI DIAGRAM \& DELAUNAYTRIANGUALTION

ALGORITHMS

> Divide-\&-Conquer
> Plane Sweep

- Lifting into d+1 dimensions
> Edge-Flip
> Randomized Incremental Construction

APPLIC\&TIONS

> Proximity space partitioning and the post office problem
> Height Interpolation
> Euclidean: Minimum Spanning Tree, Traveling Salesman Problem,
> Minimum Weight Triangulation, Relative Neighborhood Graph, Gabriel Graph.

EXTENSIONS

> Higher Order Voronoi Diagrams
> Generalized metrics - Robot Motion Planning

References:

- [M. de Berge et al] chapters 7, 9, 13
- [Preparata-Shamos'85] chapters 5, 6
- [O'Rourke'98] chapter 5
- [Edelsbrunner'87] chapter 13

Voronoi Diagram \& Delaunay Triangulation

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \text { a set of } n \text { points in the plane. }
$$

Voronoi Diagram \& Delaunay Triangulation

Voronoi Diagram \& Delaunay Triangulation

Delaunay Triangulation $=$ Dual of the Voronoi Diagram.

Voronoi Diagram \& Delaunay Triangulation

Delaunay triangles have the "empty circle" property.

Voronoi Diagram \& Delaunay Triangulation

Voronoi Diagram

$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ a set of n points in the plane.
Assume: no 3 points collinear, no 4 points cocircular.

Voronoi Region of $p_{i}: \quad \mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)=\bigcap_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq \mathrm{i}}}^{\mathrm{n}} \mathrm{H}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)$

Voronoi Diagram of $\mathrm{P}: \quad \mathrm{VD}(\mathrm{P})=\bigcup_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)\right\}$

Voronoi Diagram Properties

\square Each Voronoi region $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)$ is a convex polygon (possibly unbounded).
$\square V\left(p_{i}\right)$ is unbounded $\Leftrightarrow p_{i}$ is on the boundary of $C H(P)$.
\square Consider a Voronoi vertex $\mathrm{v}=\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right) \cap \mathrm{V}\left(\mathrm{p}_{\mathrm{j}}\right) \cap \mathrm{V}\left(\mathrm{p}_{\mathrm{k}}\right)$.
Let $\mathrm{C}(\mathrm{v})=$ the circle centered at v passing through $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}$.
$\square C(v)$ is circumcircle of Delaunay Triangle (p_{i}, p_{j}, p_{k}).
$\square C(v)$ is an empty circle, i.e., its interior contains no other sites of P.
. $p_{j}=$ a nearest neighbor of $p_{i} \Rightarrow V\left(p_{i}\right) \cap V\left(p_{j}\right)$ is a Voronoi edge
$\Rightarrow\left(p_{i}, p_{j}\right)$ is a Delaunay edge.

Delaunay Triangulation Properties

$\square D T(P)$ is straight-line dual of $\operatorname{VD}(P)$.
$\square \mathrm{DT}(\mathrm{P})$ is a triangulation of P, i.e., each bounded face is a triangle (if P is in general position).
[$\left(p_{i}, p_{j}\right)$ is a Delaunay edge $\Leftrightarrow \exists$ an empty circle passing through p_{i} and p_{j}.
\square Each triangular face of $\mathrm{DT}(\mathrm{P})$ is dual of a Voronoi vertex of $\mathrm{VD}(\mathrm{P})$.
\square Each edge of DT(P) corresponds to an edge of VD(P).
\square Each node of $\mathrm{DT}(\mathrm{P})$, a site, corresponds to a Voronoi region of $\mathrm{VD}(\mathrm{P})$.
Boundary of $\mathrm{DT}(\mathrm{P})$ is $\mathrm{CH}(\mathrm{P})$.
Interior of each triangle in $D T(P)$ is empty, i.e., contains no point of P.

A brute-force VD Algorithm

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \text { a set of } n \text { points in the plane. } \\
& \text { Assume: no } 3 \text { points collinear, no } 4 \text { points cocircular. } \\
& \text { Voronoi Region of } p_{i}: V\left(p_{i}\right)=\bigcap_{\substack{j=1 \\
j \neq i}}^{n} H\left(p_{i}, p_{j}\right) \\
& \text { intersection of } \\
& \text { n-1 half-planes }
\end{aligned}
$$

- Voronoi region of each site can be computed in O(n log n) time.
- There are n such Voronoi regions to compute.
- Total time O($\left.\mathrm{n}^{2} \log \mathrm{n}\right)$.

Divide-\&-Conquer Algorithm

- M. I. Shamos, D. Hoey [1975], "Closest Point Problems," FOCS, 208-215.
-D.T. Lee [1978], "Proximity and reachability in the plane,"
Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.
- D.T. Lee [1980], "Two dimensional Voronoi Diagram in the L_{p} metric," JACM 27, 604-618.

The first O(n $\log \mathrm{n})$ time algorithm to construct the Voronoi Diagram of n point sites in the plane.

ALGORITHM Construct Voronoi Diagram (P)
INPUT: $\quad P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ sorted on x-axis.
OUTPUT: $\mathrm{CH}(\mathrm{P})$ and DCEL of $\mathrm{VD}(\mathrm{P})$.

1. [BASIS]: if $n \leq 1$ then return the obvious answer.
2. [DIVIDE]: Let $m \leftarrow\lfloor n / 2\rfloor$

Split P on the median x -coordinate into

$$
L=\left\{p_{1}, \ldots, p_{m}\right\} \& R=\left\{p_{m+1}, \ldots, p_{n}\right\} .
$$

3. [RECUR]:
(a) Recursively compute $\mathrm{CH}(\mathrm{L})$ and $\mathrm{VD}(\mathrm{L})$.
(b) Recursively compute $\mathrm{CH}(\mathrm{R})$ and $\mathrm{VD}(\mathrm{R})$.
4. [MERGE]:
(a) Compute Upper \& Lower Bridges of $\mathrm{CH}(\mathrm{L})$ and $\mathrm{CH}(\mathrm{R})$ \& obtain $\mathrm{CH}(\mathrm{P})$.
(b) Compute the y-monotone dividing chain C between $\operatorname{VD}(\mathrm{L}) \& \operatorname{VD}(\mathrm{R})$.
(c) $\operatorname{VD}(P) \leftarrow[C] \cup[\mathrm{VD}(\mathrm{L})$ to the left of C$] \cup[\mathrm{VD}(\mathrm{R})$ to the right of C$]$.
(d) return $\mathrm{CH}(\mathrm{P}) \& \mathrm{VD}(\mathrm{P})$.

END.
$T(n)=2 T(n / 2)+O(n)=O(n \log n)$.
$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ a set of n points in the plane.

$\mathrm{VD}(\mathrm{P})=[\mathrm{C}] \cup[\mathrm{VD}(\mathrm{L})$ to the left of C$] \cup[\mathrm{VD}(\mathrm{R})$ to the right of C$]$.

$\mathrm{VD}(\mathrm{R})$ and $\mathrm{CH}(\mathrm{R})$

Upper \& Lower bridges between $\mathrm{CH}(\mathrm{L})$ and $\mathrm{CH}(\mathrm{R})$ \& two end-rays of chain C .

Fortune's Algorithm

- Steve Fortune [1987], "A Sweepline algorithm for Voronoi Diagrams," Algorithmica, 153-174.
- Guibas, Stolfi [1987],
"Ruler, Compass and computer: The design and analysis of geometric algorithms,"
Proc. of the NATO Advanced Science Institute, series F, vol. 40:
Theoretical Foundations of Computer Graphics and CAD, 111-165.
- O(n log n) time algorithm by plane-sweep.
- See AAW animation.
- http://www.cse.yorku.ca/~aaw/GregoryFine/applet.html
- Generalization: VD of line-segments and circles.

The parabolic front

- Sweep plane opaque. So we don't see future events.
- Any part of a parabola inside another one is invisible, since a point (x, y) is inside a parabola iff at that point the cone of the parabola is below the sweep plane.
- Parabolic Front = visible portions of parabola; those that are on the boundary of the union of the cones past the sweep.
- Parabolic Front is a y-monotone piecewise-parabolic chain.
(Any horizontal line intersects the Front in exactly one point.)
- Each parabolic arc of the Front is in some Voronoi region.
- Each "break" between 2 consecutive parabolic arcs lies on a Voronoi edge.

Evolution of the parabolic front

- The breakpoints of the parabolic front trace out every Voronoi edge as the sweep line moves from $x=-\infty$ to $x=+\infty$.
- Every point of every Voronoi edge is a breakpoint of the parabolic front at some time during the sweep.

Proof:

(a) Fig 1: Event w:
C_{u} is an empty circle.
(b) Fig 2: At event w point u must be a breakpoint of the par. front. Otherwise:
Some parabola Z covers u at v \Rightarrow
Focus of Z is on C_{v} and C_{v} is inside C_{u}
\Rightarrow
Focus of Z is inside C_{u}
\vec{C}_{u} is not an empty circle
\Rightarrow
a contradiction.
Fig 1.

The Discrete Events

- SITE EVENT: Insert into the Parabolic Front.
- CIRCLE EVENT: Delete from the Parabolic Front.

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

(2)
(3)

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

A parabola cannot appear on the front by breaking through from behind. The following are impossible:

CIRCLE EVENT

- Circle event w causes parabolic arc β to disappear.
- α and γ cannot belong to the same parabola.

DATA STRUCTURES (T \& Q)

T: [SWEEP STATUS: a balanced search tree] maintains a description of the current parabolic front.

Leaves: arcs of the parabolic front in y -monotone order. Internal nodes: the break points.

Operations:
(a) insert/delete an arc.
(b) locate an arc intersecting a given horizontal line (for site event).
(c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.

- Each leaf points to the corresponding site.
- Each internal node points to the corresponding Voronoi edge.

DATA STRUCTURES (T \& Q)

Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:
> all future site-events \&
> some circle-events, i.e.,

- those corresponding to 3 consecutive arcs of the current parabolic front as represented by T.
- The others will be discovered \& added to the sweep schedule before the sweep lines advances past them.
- Conversely, not every 3 consecutive arcs of the current front specify a circle-event. Some arcs may drop out too early.

Event Processing \& Scheduling

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q \& simulate the effect of the sweep-line advancing past that event point.

Event Processing \& Scheduling

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q \& simulate the effect of the sweep-line advancing past that event point.
death (α) : pointing to a circle-event in Q as the meeting point of the Voronoi edges. (If the edges are diverging, then death $(\alpha)=$ nil.)

Remove circle-event death (α) if:
(a) α is split in two by a site-event, or
(b) whenever one of the two arcs adjacent to α is deleted by a circle-event.

Event Processing \& Scheduling

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from $Q \&$ simulate the effect of the sweep-line advancing past that event point.

A circle-event update: each parabolic arc β (leaf of T) points to the earliest circle-event, death(β), in Q that would cause deletion of β at the corresponding Voronoi vertex.

Event Processing \& Scheduling

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from $Q \&$ simulate the effect of the sweep-line advancing past that event point.
(α, γ, δ) do not define a circle-event:
($\mathrm{a}, \mathrm{c}, \mathrm{d}$) is not a circle-event now, it is past the current sweep position.

ANALYSIS

> $|T|=O(n)$: the front always has $O(n)$ parabolic arcs, since splits occur at most n times by site events. Also by Davenport-Schinzel:
> $\ldots \alpha \ldots \beta \ldots \alpha \ldots \beta \ldots$ is impossible. [At most $2 \mathrm{n}-1$ parabolic arcs in T.]

$|Q|=O(n)$: there are at most n site-events and $O(n)$ triples of consecutive arcs on the parabolic front to define circle-events.

Total \# events $=O(n), \quad$ Time per event processing $=O(\log n)$.

THEOREM: Fortune's algorithm computes Voronoi Diagram of n sites in the plane using optimal $O(n \log n)$ time and $O(n)$ space.

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain: A 2D surface in 3D such that each vertical line intersects it in at most one point. $f: A \subseteq \mathfrak{R}^{2} \longrightarrow \Re$. $f(p)=$ height of point p in the domain A of the terrain.

Method: Take a finite sample set $P \subseteq A$. Compute $f(P)$, and interpolate on A.

Triangulations of Planar Point Sets

$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathfrak{R}^{2}$.
A triangulation of P is a maximal planar straight-line subdivision with vertex set P.

$$
\begin{aligned}
& \text { THEOREM: Let } P \text { be a set of } n \text { points, not all collinear, in the plane. } \\
& \text { Suppose } h \text { points of } P \text { are on its convex-hull boundary. } \\
& \text { Then any triangulation of } P \text { has } 3 n-h-3 \text { edges and } 2 n-h-2 \text { triangles. } \\
& \text { Proof: } \quad m=\# \text { triangles } \\
& \\
& 3 m+h=2 E \quad \text { (each triangle has } 3 \text { edges; each edge incident to } 2 \text { faces) } \\
& \\
& \text { Euler: } n-E+(m+1)=2 \\
& \therefore m=2 n-h-2, \quad E=3 n-h-3 .
\end{aligned}
$$

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as dual of Voronoi Diagram VD(P).

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as strainght-line dual of Voronoi Diagram VD(P).

Delaunay Graph is a Triangulation

Alternative Definition of Delaunay Graph:

- A triangle $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ is a Delaunay triangle iff the circumscribing circle $\mathrm{C}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}\right)$ is empty.
- Line segment $\left(p_{i}, p_{\mathrm{j}}\right)$ is a Delaunay edge iff there is an empty circle passing through p_{i} and p_{i}, and no other point in P.

THEOREM: Delaunay Graph of P is

- a straight-line plane graph, \&
- a triangulation of P.

Proof: Follows from the following Lemmas.

Delaunay Graph is a Triangulation

LEMMA 1: Every edge of $\mathrm{CH}(\mathrm{P})$ is a Delaunay edge.
Proof: Consider a sufficiently large circle that passes through the 2 ends of CH edge e, and whose center is separated from $\mathrm{CH}(\mathrm{P})$ by the line aff(e).

Delaunay Graph is a Triangulation

LEMMA 2: No two Delaunay triangles overlap.
Proof: Consider circumscribing circles of two such triangles. Line L separates the two triangles.

Delaunay Graph is a Triangulation

LEMMA 3: $p_{i} \& p_{j}$ are Voronoi neighbors $\Rightarrow\left(p_{i}, p_{j}\right)$ is a Delaunay edge.
Proof: Consider the circle that passes through $p_{i} \& p_{i}$ and whose center is in the relative interior of the common Voronoi edge between $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right) \& \mathrm{~V}\left(\mathrm{p}_{\mathrm{j}}\right)$.

Delaunay Graph is a Triangulation

LEMMA 4: If p_{j} and p_{k} are two (rotationally) successive Voronoi neighbors of $p_{i} \& \angle p_{j} p_{i} p_{k}<180^{\circ}$, then $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ is a Delaunay triangle.

Proof: $p_{j} \& p_{k}$ must also be Voronoi neighbors. Now apply Lemma 3 to $\left(p_{i}, p_{j}\right),\left(p_{i}, p_{k}\right),\left(p_{j}, p_{k}\right)$.

Delaunay Graph is a Triangulation

LEMMA 4: If p_{j} and p_{k} are two (rotationally) successive Voronoi neighbors of $p_{i} \& \angle p_{j} p_{i} p_{k}<180^{\circ}$, then $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ is a Delaunay triangle.

Proof: $p_{j} \& p_{k}$ must also be Voronoi neighbors.
Now apply Lemma 3 to $\left(p_{i}, p_{j}\right),\left(p_{i}, p_{k}\right),\left(p_{j}, p_{k}\right)$.
COROLLARY 5: For each $p_{i} \in P$, the Delaunay triangles incident to p_{i} completely cover a small open neighborhood of p_{i} inside $\mathrm{CH}(\mathrm{P})$.

Delaunay Graph is a Triangulation

LEMMA 6: Every point inside $\mathrm{CH}(\mathrm{P})$ is covered by some Delaunay triangle in $\mathrm{DG}(\mathrm{P})$.

Proof: Let q be an arbitrary point in $\mathrm{CH}(\mathrm{P})$. Let $\left(p_{i}, p_{j}\right)$ be the Delaunay edge immediately below q. ($\left.p_{i}, p_{\mathrm{j}}\right)$ exists because all convex-hull edges are Delaunay by Lemma 1.) From Corollary 5 let $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ be the next Delaunay triangle incident to p_{i} as in the Figure below. Then, either $q \in \Delta\left(p_{i}, p_{j}, p_{k}\right)$, or the choice of $\left(p_{i}, p_{j}\right)$ is contradicted.

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote the Delaunay triangulation of P.

Angles in Delaunay Triangulation

DEFINITION:

$\mathcal{T}=$ an arbitrary triangulation (with m triangles) of point set P. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}=$ the angles of triangles in \mathcal{T}, sorted in increasing order. $\mathrm{A}(\mathcal{T})=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}\right)$ is called the angle-vector of \mathcal{T}.

THEOREM: $D T(P)$ is the unique triangulation of P that lexicographically maximizes $A(\mathcal{T})$.

Proof: Later.

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation \& linear interpolation. Small angles (long skinny triangles) cause large approximation errors.

A simple $O\left(n^{2}\right)$ time DT Algorithm

Step 1: Let T be an arbitrary triangulation of $\mathrm{P} \subseteq \mathfrak{R}^{2}$.
Step 2: while T has a quadrangle of the form below with $\angle A+\angle B>180^{\circ}$
do flip diagonal $C D$ (i.e., replace it with diagonal $A B$). $\left[O\left(n^{2}\right)\right.$ iterations]

A snapshot of the Algorithm

A snapshot of the Algorithm

FLIP e1

A snapshot of the Algorithm

A snapshot of the Algorithm

FLIP e2

A snapshot of the Algorithm

A snapshot of the Algorithm

FLIP e3

A snapshot of the Algorithm

A snapshot of the Algorithm

