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Voronoi Diagram   &   Delaunay Triangualtion

Algorithms 
 Divide-&-Conquer

 Plane Sweep

 Lifting into d+1 dimensions

 Edge-Flip

 Randomized Incremental Construction

Applications  
 Proximity space partitioning and the post office problem

 Height Interpolation

 Euclidean: Minimum Spanning Tree, Traveling Salesman Problem,

 Minimum Weight Triangulation, Relative Neighborhood Graph, Gabriel Graph.

Extensions 
 Higher Order Voronoi Diagrams

 Generalized metrics - Robot Motion Planning
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• [M. de Berge et al] chapters 7, 9, 13

• [Preparata-Shamos’85] chapters 5, 6

• [O’Rourke’98] chapter 5

• [Edelsbrunner’87] chapter 13



Introduction



Voronoi Diagram & Delaunay Triangulation

P = { p1, p2, … , pn} a set of n points in the plane.



Voronoi Diagram & Delaunay Triangulation

Voronoi(P):   # regions = n,  # edges  3n-6,  # vertices  2n-5.

Nearest site proximity    partitioning of the plane



Delaunay Triangulation = Dual of the Voronoi Diagram.

Voronoi Diagram & Delaunay Triangulation

DT(P):   # vertices = n,  # edges  3n-6,  # triangles  2n-5.



Delaunay triangles have the “empty circle” property.

Voronoi Diagram & Delaunay Triangulation



Voronoi Diagram & Delaunay Triangulation



Voronoi Diagram
P = { p1, p2, … , pn} a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

PB(pi, pj) perpendicular bisector of  pipj. 
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Voronoi Diagram Properties

 Each Voronoi region V(pi) is a convex polygon (possibly unbounded).

 V(pi) is unbounded     pi is on the boundary of CH(P).

 Consider a Voronoi vertex v = V(pi)  V(pj)  V(pk).

Let C(v) = the circle centered at v passing through pi, pj, pk.

 C(v) is circumcircle of Delaunay Triangle (pi, pj, pk).

 C(v) is an empty circle, i.e., its interior contains no other sites of P.

 pj = a nearest neighbor of pi  V(pi)  V(pj) is a Voronoi edge

 (pi, pj) is a Delaunay edge.



Delaunay Triangulation Properties

 DT(P) is straight-line dual of VD(P).

 DT(P) is a triangulation of P, i.e., each bounded face is a triangle

(if P is in general position).

 (pi, pj) is a Delaunay edge   an empty circle passing through pi and pj.

 Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P).

 Each edge of DT(P) corresponds to an edge of VD(P).

 Each node of DT(P), a site, corresponds to a Voronoi region of VD(P).

 Boundary of DT(P) is CH(P).

 Interior of each triangle in DT(P) is empty, i.e., contains no point of P.



ALGORITHMS



A brute-force VD Algorithm
P = { p1, p2, … , pn} a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.
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Voronoi Diagram of P:  
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intersection of 

n-1 half-planes

• Voronoi region of each site can be computed in O(n log n) time.

• There are n such Voronoi regions to compute.

• Total time O(n2 log n).



Divide-&-Conquer Algorithm

• M. I. Shamos, D. Hoey [1975],  

“Closest Point Problems,” FOCS, 208-215.

• D.T. Lee [1978],  “Proximity and reachability in the plane,”

Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.

• D.T. Lee [1980], “Two dimensional Voronoi Diagram in the Lp metric,”

JACM 27, 604-618. 

The first O(n log n) time algorithm to construct 

the Voronoi Diagram of n point sites in the plane.



ALGORITHM Construct Voronoi Diagram (P)

INPUT: P = { p1, p2, … , pn} sorted on x-axis.

OUTPUT: CH(P) and DCEL of VD(P).

1. [BASIS]: if n1  then return the obvious answer.

2. [DIVIDE]: Let m  n/2

Split P on the median x-coordinate into 

L = { p1, … , pm} & R = { pm+1, … , pn}.

3. [RECUR]:

(a) Recursively compute CH(L) and VD(L).

(b) Recursively compute CH(R) and VD(R).

4. [MERGE]:

(a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P).

(b) Compute the y-monotone dividing chain C between VD(L) & VD(R).

(c) VD(P)  [C]   [VD(L) to the left of C]   [VD(R) to the right of C].

(d) return CH(P) & VD(P).

END.

O(1)

O(n)

T(n/2)

T(n/2)

O(n)

T(n) = 2 T(n/2) + O(n) = O( n log n).



P = { p1, p2, … , pn} a set of n points in the plane.



VD(P) = [C]  [VD(L) to the left of C]   [VD(R) to the right of C] .



VD(L) and CH(L)



VD(R) and CH(R)



Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C.
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Construct chain C.
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Crop VD(L) & VD(R) at C.
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Fortune’s Algorithm

• Steve Fortune [1987], “A Sweepline algorithm for Voronoi Diagrams,”

Algorithmica, 153-174.

• Guibas, Stolfi [1987], 

“Ruler, Compass and computer: The design and analysis of geometric algorithms,”

Proc. of the NATO Advanced Science Institute, series F, vol. 40: 

Theoretical Foundations of Computer Graphics and CAD, 111-165.

 O(n log n) time algorithm by plane-sweep.

 See AAW animation.
 http://www.cse.yorku.ca/~aaw/GregoryFine/applet.html

 Generalization: VD of line-segments and circles.



 Each parabolic arc of the Front is in some

Voronoi region.

 Each “break” between 2 consecutive parabolic

arcs lies on a Voronoi edge.

The parabolic front

 Sweep plane opaque. So we don’t see future events.

 Any part of a parabola inside another one is invisible, since a point (x,y) is inside a

parabola iff at that point the cone of the parabola is below the sweep plane.

 Parabolic Front = visible portions of parabola; those that are on the boundary of 

the union of the cones past the sweep.

 Parabolic Front is a y-monotone piecewise-parabolic chain. 

(Any horizontal line intersects the Front in exactly one point.)



 The breakpoints of the parabolic front trace out every Voronoi edge as the sweep

line moves from x = -  to x = +  .

 Every point of every Voronoi edge is 
a breakpoint of the parabolic front at 
some time during the sweep.

Proof: 
(a)  Fig 1:    Event w: 

Cu is an empty circle.

(b)  Fig 2: At event w point u must 
be a breakpoint of the par. front.
Otherwise:
Some parabola Z covers u at v 

Focus of Z is on Cv and Cv

is inside Cu


Focus of Z is inside Cu


Cu is not an empty circle 

a contradiction.

Evolution of the parabolic front
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 SITE EVENT: Insert into the Parabolic Front.

 CIRCLE EVENT: Delete from the Parabolic Front.

The Discrete Events



SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.
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SITE EVENT
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A parabola cannot appear on the front by breaking through from behind.

The following are impossible:
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A new parabolic arc is inserted into the front when sweep line hits a new site.



 Circle event w causes parabolic arc b to disappear.

 a and g cannot belong to the same parabola.

CIRCLE EVENT
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T:  [SWEEP STATUS: a balanced search tree]  

maintains a description of the current parabolic front.

Leaves: arcs of the parabolic front in y-monotone order.

Internal nodes: the break points.

DATA STRUCTURES (T & Q)

Operations:

(a) insert/delete an arc.

(b) locate an arc intersecting a given horizontal line (for site event).

(c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.

- Each leaf points to the corresponding site.

- Each internal node points to the corresponding Voronoi edge. 

x

y

sweep

direc.

Par(A) Par(B)
Par(C) Par(D)

A B C D

T:



Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:

 all future site-events & 

 some circle-events, i.e.,

 those corresponding to 3 consecutive arcs of the current

parabolic front as represented by T. 

 The others will be discovered & added to the sweep schedule before

the sweep lines advances past them.

 Conversely, not every 3 consecutive arcs of the current front specify

a circle-event. Some arcs may drop out too early.

DATA STRUCTURES (T & Q)



Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling



Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

death(a) :  pointing to a circle-event in Q as the meeting point of the

Voronoi edges. (If the edges are diverging, then death(a) = nil.)

Remove circle-event death(a) if:

(a) a is split in two by a site-event, or

(b) whenever one of the two arcs adjacent to a is deleted

by a circle-event. 

a



Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

A circle-event update:

each parabolic arc b (leaf of T) points to the earliest circle-event, death(b), 

in Q that would cause deletion of b at the corresponding Voronoi vertex. 

death(b)
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Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

(a,g,d) do not define a circle-event: 

(a,c,d) is not a circle-event now, it is past the current sweep position. 

a

b

a

g

b

cd

d



|T| = O(n) :  the front always has O(n) parabolic arcs, since splits occur at

most n times by site events.

Also by Davenport-Schinzel:   

… a … b … a … b … is impossible.

[At most 2n-1 parabolic arcs in T.]

ANALYSIS

|Q| = O(n) :  there are at most n site-events and O(n) triples of consecutive

arcs on the parabolic front to define circle-events.

Total # events = O(n),     Time per event processing = O(log n).

THEOREM: Fortune’s algorithm computes Voronoi Diagram of n sites

in the plane using optimal O(n log n) time and O(n) space.



Delaunay Triangulation



Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.



Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.

Terrain:  A 2D surface in 3D such that each vertical line intersects it in at most one point.

f :   2  . f(p) = height of point p in the domain A of the terrain.

Method: Take a finite sample set P  A. Compute f(P), and interpolate on A.

P  A

f



Triangulations of Planar Point Sets

P = {p1, p2, … , pn }  2.

A triangulation of P is a maximal planar 

straight-line subdivision with vertex set P.

THEOREM: Let P be a set of n points, not all collinear, in the plane. 

Suppose h points of P are on its convex-hull boundary.

Then any triangulation of P has 3n-h-3 edges and 2n-h-2 triangles.

Proof:      m = # triangles

3m + h = 2E    (each triangle has 3 edges; each edge incident to 2 faces)

Euler:  n – E + (m+1) = 2

 m = 2n - h - 2,    E = 3n – h – 3.



Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P)   as   dual of Voronoi Diagram VD(P).



Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P)  as  strainght-line dual of Voronoi Diagram VD(P).



Delaunay Graph is a Triangulation

THEOREM: Delaunay Graph of P is

 a straight-line plane graph, &

 a triangulation of P.

Proof:  Follows from the following Lemmas.

Alternative Definition of Delaunay Graph:  

• A triangle D(pi , pj , pk) is a Delaunay triangle iff the circumscribing circle 

C(pi , pj , pk)  is empty.

• Line segment (pi, pj) is a Delaunay edge iff there is an empty circle  

passing through pi and pj, and no other point in P.



Delaunay Graph is a Triangulation

LEMMA 1: Every edge of CH(P) is a Delaunay edge. 

Proof:  Consider a sufficiently large circle that passes through the 2 ends 

of CH edge e, and whose center is separated from CH(P) by the line aff(e). 

e



Delaunay Graph is a Triangulation

LEMMA 2: No two Delaunay triangles overlap.

Proof:  Consider circumscribing circles of two such triangles. 

Line L separates the two triangles.

L

empty area



Delaunay Graph is a Triangulation

LEMMA 3: pi & pj are Voronoi neighbors    (pi , pj) is a Delaunay edge.

Proof:  Consider the circle that passes through pi & pj and whose center is 

in the relative interior of the common Voronoi edge between V(pi) & V(pj).

V(pi)

V(pj)

pi

pj



Delaunay Graph is a Triangulation

LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors  

of pi & pjpipk < 180, then D(pi , pj , pk) is a Delaunay triangle.

Proof:  pj & pk must also be Voronoi neighbors. 

Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).



Delaunay Graph is a Triangulation

LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors  

of pi & pjpipk < 180, then D(pi , pj , pk) is a Delaunay triangle.

Proof:  pj & pk must also be Voronoi neighbors. 

Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).

COROLLARY 5: For each pi P, the Delaunay triangles incident to pi 

completely cover a small open neighborhood of pi inside CH(P).

pi

pi

CH(P)



Delaunay Graph is a Triangulation

LEMMA 6: Every point inside CH(P) is covered by some Delaunay 

triangle in DG(P).

Proof:  Let q be an arbitrary point in CH(P). Let (pi , pj) be the Delaunay

edge immediately below q. ((pi , pj) exists because all convex-hull 

edges are Delaunay by Lemma 1.) From Corollary 5 let D(pi,pj,pk) 

be the next Delaunay triangle incident to pi as in the Figure below. 

Then, either q  D(pi,pj,pk), or the choice of (pi , pj) is contradicted.

pi pj

pk

q

pi pj

pk q

pi pj

pk
q

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote

the Delaunay triangulation of P.



Angles in Delaunay Triangulation

THEOREM: DT(P) is the unique triangulation of P that lexicographically
maximizes A(T ).

Proof:  Later.

DEFINITION:
T = an arbitrary triangulation (with m triangles) of point set P.

a1, a2, …, a3m = the angles of triangles in T, sorted in increasing order.

A(T ) = (a1 , a2 , … , a3m) is called the angle-vector of T. 

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation & linear interpolation. 

Small angles (long skinny triangles) cause large approximation errors.



A simple O(n2) time DT Algorithm

D

C

A
B

Step 1:   Let T be an arbitrary triangulation of P 2.

[e.g., use sweep in O(n log n) time]

Step 2: while T has a quadrangle of the form below with A + B  > 180

do flip diagonal CD (i.e., replace it with diagonal AB). [O(n2) iterations]

D

C

A
B

flip CD

don’t flip CD

C

A
B

D

Fact 1: 6 sorted angles are 

lexicographically increased



A snapshot of the Algorithm



A snapshot of the Algorithm

e1

FLIP e1



A snapshot of the Algorithm



A snapshot of the Algorithm

e2

FLIP e2



A snapshot of the Algorithm



A snapshot of the Algorithm

FLIP e3

e3



A snapshot of the Algorithm



A snapshot of the Algorithm


