
Voronoi Diagrams

and Delaunay

Triangulation
slides by Andy Mirzaian
(a subset of the original slides are used here)

Voronoi Diagram & Delaunay Triangualtion

Algorithms
 Divide-&-Conquer

 Plane Sweep

 Lifting into d+1 dimensions

 Edge-Flip

 Randomized Incremental Construction

Applications
 Proximity space partitioning and the post office problem

 Height Interpolation

 Euclidean: Minimum Spanning Tree, Traveling Salesman Problem,

 Minimum Weight Triangulation, Relative Neighborhood Graph, Gabriel Graph.

Extensions
 Higher Order Voronoi Diagrams

 Generalized metrics - Robot Motion Planning

References:

• [M. de Berge et al] chapters 7, 9, 13

• [Preparata-Shamos’85] chapters 5, 6

• [O’Rourke’98] chapter 5

• [Edelsbrunner’87] chapter 13

Introduction

Voronoi Diagram & Delaunay Triangulation

P = { p1, p2, … , pn} a set of n points in the plane.

Voronoi Diagram & Delaunay Triangulation

Voronoi(P): # regions = n, # edges 3n-6, # vertices 2n-5.

Nearest site proximity partitioning of the plane

Delaunay Triangulation = Dual of the Voronoi Diagram.

Voronoi Diagram & Delaunay Triangulation

DT(P): # vertices = n, # edges 3n-6, # triangles 2n-5.

Delaunay triangles have the “empty circle” property.

Voronoi Diagram & Delaunay Triangulation

Voronoi Diagram & Delaunay Triangulation

Voronoi Diagram
P = { p1, p2, … , pn} a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

PB(pi, pj) perpendicular bisector of pipj.

pi

pj

Voronoi Region of pi:
n

ij
1j

jii)p,p(H)p(V

pi

Voronoi Diagram of P:
n

1i

i)p(V)P(VD

Voronoi Diagram Properties

 Each Voronoi region V(pi) is a convex polygon (possibly unbounded).

 V(pi) is unbounded pi is on the boundary of CH(P).

 Consider a Voronoi vertex v = V(pi) V(pj) V(pk).

Let C(v) = the circle centered at v passing through pi, pj, pk.

 C(v) is circumcircle of Delaunay Triangle (pi, pj, pk).

 C(v) is an empty circle, i.e., its interior contains no other sites of P.

 pj = a nearest neighbor of pi V(pi) V(pj) is a Voronoi edge

 (pi, pj) is a Delaunay edge.

Delaunay Triangulation Properties

 DT(P) is straight-line dual of VD(P).

 DT(P) is a triangulation of P, i.e., each bounded face is a triangle

(if P is in general position).

 (pi, pj) is a Delaunay edge an empty circle passing through pi and pj.

 Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P).

 Each edge of DT(P) corresponds to an edge of VD(P).

 Each node of DT(P), a site, corresponds to a Voronoi region of VD(P).

 Boundary of DT(P) is CH(P).

 Interior of each triangle in DT(P) is empty, i.e., contains no point of P.

ALGORITHMS

A brute-force VD Algorithm
P = { p1, p2, … , pn} a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

Voronoi Region of pi:
n

ij
1j

jii)p,p(H)p(V

Voronoi Diagram of P:
n

1i

i)p(V)P(VD

intersection of

n-1 half-planes

• Voronoi region of each site can be computed in O(n log n) time.

• There are n such Voronoi regions to compute.

• Total time O(n2 log n).

Divide-&-Conquer Algorithm

• M. I. Shamos, D. Hoey [1975],

“Closest Point Problems,” FOCS, 208-215.

• D.T. Lee [1978], “Proximity and reachability in the plane,”

Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.

• D.T. Lee [1980], “Two dimensional Voronoi Diagram in the Lp metric,”

JACM 27, 604-618.

The first O(n log n) time algorithm to construct

the Voronoi Diagram of n point sites in the plane.

ALGORITHM Construct Voronoi Diagram (P)

INPUT: P = { p1, p2, … , pn} sorted on x-axis.

OUTPUT: CH(P) and DCEL of VD(P).

1. [BASIS]: if n1 then return the obvious answer.

2. [DIVIDE]: Let m n/2

Split P on the median x-coordinate into

L = { p1, … , pm} & R = { pm+1, … , pn}.

3. [RECUR]:

(a) Recursively compute CH(L) and VD(L).

(b) Recursively compute CH(R) and VD(R).

4. [MERGE]:

(a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P).

(b) Compute the y-monotone dividing chain C between VD(L) & VD(R).

(c) VD(P) [C] [VD(L) to the left of C] [VD(R) to the right of C].

(d) return CH(P) & VD(P).

END.

O(1)

O(n)

T(n/2)

T(n/2)

O(n)

T(n) = 2 T(n/2) + O(n) = O(n log n).

P = { p1, p2, … , pn} a set of n points in the plane.

VD(P) = [C] [VD(L) to the left of C] [VD(R) to the right of C] .

VD(L) and CH(L)

VD(R) and CH(R)

Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C.

1

2

3

4

5

6

7

8

9

(1,5)

(3,5)

(3,6)

(4,6)

(4,7)

(2,7)

Construct chain C.

1

2

3

4

5

6

7

8

9

Construct chain C.

1

2

3

4

5

6

7

8

9

Crop VD(L) & VD(R) at C.

1

2

3

4

5

6

7

8

9

VD(P) and CH(P)

Fortune’s Algorithm

• Steve Fortune [1987], “A Sweepline algorithm for Voronoi Diagrams,”

Algorithmica, 153-174.

• Guibas, Stolfi [1987],

“Ruler, Compass and computer: The design and analysis of geometric algorithms,”

Proc. of the NATO Advanced Science Institute, series F, vol. 40:

Theoretical Foundations of Computer Graphics and CAD, 111-165.

 O(n log n) time algorithm by plane-sweep.

 See AAW animation.
 http://www.cse.yorku.ca/~aaw/GregoryFine/applet.html

 Generalization: VD of line-segments and circles.

 Each parabolic arc of the Front is in some

Voronoi region.

 Each “break” between 2 consecutive parabolic

arcs lies on a Voronoi edge.

The parabolic front

 Sweep plane opaque. So we don’t see future events.

 Any part of a parabola inside another one is invisible, since a point (x,y) is inside a

parabola iff at that point the cone of the parabola is below the sweep plane.

 Parabolic Front = visible portions of parabola; those that are on the boundary of

the union of the cones past the sweep.

 Parabolic Front is a y-monotone piecewise-parabolic chain.

(Any horizontal line intersects the Front in exactly one point.)

 The breakpoints of the parabolic front trace out every Voronoi edge as the sweep

line moves from x = - to x = + .

 Every point of every Voronoi edge is
a breakpoint of the parabolic front at
some time during the sweep.

Proof:
(a) Fig 1: Event w:

Cu is an empty circle.

(b) Fig 2: At event w point u must
be a breakpoint of the par. front.
Otherwise:
Some parabola Z covers u at v

Focus of Z is on Cv and Cv

is inside Cu

Focus of Z is inside Cu

Cu is not an empty circle

a contradiction.

Evolution of the parabolic front

p

q

u
w

Cu

Fig 1.

Fig 2.

wu
v

Cu
Cv

p

q

Z

sweep

line

sweep

line

 SITE EVENT: Insert into the Parabolic Front.

 CIRCLE EVENT: Delete from the Parabolic Front.

The Discrete Events

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

p

q

s

p

q

s

p

q

s

1 2 3

SITE EVENT

p

q

s

p

q

s

p

q

s

A parabola cannot appear on the front by breaking through from behind.

The following are impossible:

a

b
a

b

t t+Dt

a

b

t
t+Dtg

a

b

g

A new parabolic arc is inserted into the front when sweep line hits a new site.

 Circle event w causes parabolic arc b to disappear.

 a and g cannot belong to the same parabola.

CIRCLE EVENT

w

p

q

s

a

g

b

u
w

p

q

s

a

g

b w

p

q

s

a

g

u

T: [SWEEP STATUS: a balanced search tree]

maintains a description of the current parabolic front.

Leaves: arcs of the parabolic front in y-monotone order.

Internal nodes: the break points.

DATA STRUCTURES (T & Q)

Operations:

(a) insert/delete an arc.

(b) locate an arc intersecting a given horizontal line (for site event).

(c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.

- Each leaf points to the corresponding site.

- Each internal node points to the corresponding Voronoi edge.

x

y

sweep

direc.

Par(A) Par(B)
Par(C) Par(D)

A B C D

T:

Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:

 all future site-events &

 some circle-events, i.e.,

 those corresponding to 3 consecutive arcs of the current

parabolic front as represented by T.

 The others will be discovered & added to the sweep schedule before

the sweep lines advances past them.

 Conversely, not every 3 consecutive arcs of the current front specify

a circle-event. Some arcs may drop out too early.

DATA STRUCTURES (T & Q)

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

death(a) : pointing to a circle-event in Q as the meeting point of the

Voronoi edges. (If the edges are diverging, then death(a) = nil.)

Remove circle-event death(a) if:

(a) a is split in two by a site-event, or

(b) whenever one of the two arcs adjacent to a is deleted

by a circle-event.

a

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

A circle-event update:

each parabolic arc b (leaf of T) points to the earliest circle-event, death(b),

in Q that would cause deletion of b at the corresponding Voronoi vertex.

death(b)

v

s

a

g

b

spurious circle-event

death(b’)

s

a

g

b’

b’’

death(b’’)

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

(a,g,d) do not define a circle-event:

(a,c,d) is not a circle-event now, it is past the current sweep position.

a

b

a

g

b

cd

d

|T| = O(n) : the front always has O(n) parabolic arcs, since splits occur at

most n times by site events.

Also by Davenport-Schinzel:

… a … b … a … b … is impossible.

[At most 2n-1 parabolic arcs in T.]

ANALYSIS

|Q| = O(n) : there are at most n site-events and O(n) triples of consecutive

arcs on the parabolic front to define circle-events.

Total # events = O(n), Time per event processing = O(log n).

THEOREM: Fortune’s algorithm computes Voronoi Diagram of n sites

in the plane using optimal O(n log n) time and O(n) space.

Delaunay Triangulation

Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.

Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.

Terrain: A 2D surface in 3D such that each vertical line intersects it in at most one point.

f : 2 . f(p) = height of point p in the domain A of the terrain.

Method: Take a finite sample set P A. Compute f(P), and interpolate on A.

P A

f

Triangulations of Planar Point Sets

P = {p1, p2, … , pn } 2.

A triangulation of P is a maximal planar

straight-line subdivision with vertex set P.

THEOREM: Let P be a set of n points, not all collinear, in the plane.

Suppose h points of P are on its convex-hull boundary.

Then any triangulation of P has 3n-h-3 edges and 2n-h-2 triangles.

Proof: m = # triangles

3m + h = 2E (each triangle has 3 edges; each edge incident to 2 faces)

Euler: n – E + (m+1) = 2

 m = 2n - h - 2, E = 3n – h – 3.

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as dual of Voronoi Diagram VD(P).

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as strainght-line dual of Voronoi Diagram VD(P).

Delaunay Graph is a Triangulation

THEOREM: Delaunay Graph of P is

 a straight-line plane graph, &

 a triangulation of P.

Proof: Follows from the following Lemmas.

Alternative Definition of Delaunay Graph:

• A triangle D(pi , pj , pk) is a Delaunay triangle iff the circumscribing circle

C(pi , pj , pk) is empty.

• Line segment (pi, pj) is a Delaunay edge iff there is an empty circle

passing through pi and pj, and no other point in P.

Delaunay Graph is a Triangulation

LEMMA 1: Every edge of CH(P) is a Delaunay edge.

Proof: Consider a sufficiently large circle that passes through the 2 ends

of CH edge e, and whose center is separated from CH(P) by the line aff(e).

e

Delaunay Graph is a Triangulation

LEMMA 2: No two Delaunay triangles overlap.

Proof: Consider circumscribing circles of two such triangles.

Line L separates the two triangles.

L

empty area

Delaunay Graph is a Triangulation

LEMMA 3: pi & pj are Voronoi neighbors (pi , pj) is a Delaunay edge.

Proof: Consider the circle that passes through pi & pj and whose center is

in the relative interior of the common Voronoi edge between V(pi) & V(pj).

V(pi)

V(pj)

pi

pj

Delaunay Graph is a Triangulation

LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors

of pi & pjpipk < 180, then D(pi , pj , pk) is a Delaunay triangle.

Proof: pj & pk must also be Voronoi neighbors.

Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).

Delaunay Graph is a Triangulation

LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors

of pi & pjpipk < 180, then D(pi , pj , pk) is a Delaunay triangle.

Proof: pj & pk must also be Voronoi neighbors.

Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).

COROLLARY 5: For each pi P, the Delaunay triangles incident to pi

completely cover a small open neighborhood of pi inside CH(P).

pi

pi

CH(P)

Delaunay Graph is a Triangulation

LEMMA 6: Every point inside CH(P) is covered by some Delaunay

triangle in DG(P).

Proof: Let q be an arbitrary point in CH(P). Let (pi , pj) be the Delaunay

edge immediately below q. ((pi , pj) exists because all convex-hull

edges are Delaunay by Lemma 1.) From Corollary 5 let D(pi,pj,pk)

be the next Delaunay triangle incident to pi as in the Figure below.

Then, either q D(pi,pj,pk), or the choice of (pi , pj) is contradicted.

pi pj

pk

q

pi pj

pk q

pi pj

pk
q

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote

the Delaunay triangulation of P.

Angles in Delaunay Triangulation

THEOREM: DT(P) is the unique triangulation of P that lexicographically
maximizes A(T).

Proof: Later.

DEFINITION:
T = an arbitrary triangulation (with m triangles) of point set P.

a1, a2, …, a3m = the angles of triangles in T, sorted in increasing order.

A(T) = (a1 , a2 , … , a3m) is called the angle-vector of T.

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation & linear interpolation.

Small angles (long skinny triangles) cause large approximation errors.

A simple O(n2) time DT Algorithm

D

C

A
B

Step 1: Let T be an arbitrary triangulation of P 2.

[e.g., use sweep in O(n log n) time]

Step 2: while T has a quadrangle of the form below with A + B > 180

do flip diagonal CD (i.e., replace it with diagonal AB). [O(n2) iterations]

D

C

A
B

flip CD

don’t flip CD

C

A
B

D

Fact 1: 6 sorted angles are

lexicographically increased

A snapshot of the Algorithm

A snapshot of the Algorithm

e1

FLIP e1

A snapshot of the Algorithm

A snapshot of the Algorithm

e2

FLIP e2

A snapshot of the Algorithm

A snapshot of the Algorithm

FLIP e3

e3

A snapshot of the Algorithm

A snapshot of the Algorithm

