Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

VORONOI DIAGRAM & DELAUNAY TRIANGUALTION

ALGORITHMS

- Divide-&-Conquer
- Plane Sweep
- Lifting into d+1 dimensions
- Edge-Flip
- Randomized Incremental Construction

APPLICATIONS

- > Proximity space partitioning and the post office problem
- Height Interpolation
- > Euclidean: Minimum Spanning Tree, Traveling Salesman Problem,
- > Minimum Weight Triangulation, Relative Neighborhood Graph, Gabriel Graph.

EXTENSIONS

- Higher Order Voronoi Diagrams
- Generalized metrics Robot Motion Planning

References:

- [M. de Berge et al] chapters 7, 9, 13
- [Preparata-Shamos'85] chapters 5, 6
- [O'Rourke'98] chapter 5
- [Edelsbrunner'87] chapter 13

Introduction

 $P = \{ p_1, p_2, \dots, p_n \}$ a set of n points in the plane.

Delaunay Triangulation = Dual of the Voronoi Diagram.

DT(P): # vertices = n, # edges \leq 3n-6, # triangles \leq 2n-5.

Delaunay triangles have the "empty circle" property.

Voronoi Diagram

Voronoi Diagram of P: $VD(P) = \bigcup_{i=1}^{n} \{V(p_i)\}$

Voronoi Diagram Properties

- \Box Each Voronoi region V(p_i) is a convex polygon (possibly unbounded).
- \Box V(p_i) is unbounded \Leftrightarrow p_i is on the boundary of CH(P).
- □ Consider a Voronoi vertex $v = V(p_i) \cap V(p_j) \cap V(p_k)$. Let C(v) = the circle centered at v passing through p_i , p_i , p_k .
- \Box C(v) is circumcircle of Delaunay Triangle (p_i, p_i, p_k).
- \Box C(v) is an empty circle, i.e., its interior contains no other sites of P.
- $\label{eq:pj} \begin{array}{ll} \blacksquare & p_j = a \text{ nearest neighbor of } p_i \end{array} \Rightarrow V(p_i) \cap V(p_j) \text{ is a Voronoi edge} \\ & \Rightarrow & (p_i, p_j) \text{ is a Delaunay edge.} \end{array}$

Delaunay Triangulation Properties

- \Box DT(P) is straight-line dual of VD(P).
- DT(P) is a triangulation of P, i.e., each bounded face is a triangle (if P is in general position).
- \Box (p_i, p_j) is a Delaunay edge $\Leftrightarrow \exists$ an empty circle passing through p_i and p_j.
- Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P).
- \Box Each edge of DT(P) corresponds to an edge of VD(P).
- Each node of DT(P), a site, corresponds to a Voronoi region of VD(P).
- Boundary of DT(P) is CH(P).
- □ Interior of each triangle in DT(P) is empty, i.e., contains no point of P.

ALGORITHMS

A brute-force VD Algorithm

Voronoi region of each site can be computed in O(n log n) time.
There are n such Voronoi regions to compute.

• Total time O(n² log n).

Divide-&-Conquer Algorithm

- M. I. Shamos, D. Hoey [1975], "Closest Point Problems," FOCS, 208-215.
- D.T. Lee [1978], "Proximity and reachability in the plane," Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.
- D.T. Lee [1980], "Two dimensional Voronoi Diagram in the L_p metric," JACM 27, 604-618.

The first O(n log n) time algorithm to construct the Voronoi Diagram of n point sites in the plane.

	ALGORITHM Construct Voronoi Diagram (P)
	INPUT: $P = \{ p_1, p_2,, p_n \}$ sorted on x-axis.
	OUTPUT: CH(P) and DCEL of VD(P).
D (1)	1. [BASIS]: if n≤1 then return the obvious answer.
	2. [DIVIDE]: Let $m \leftarrow \lfloor n/2 \rfloor$
) (n)	Split P on the median x-coordinate into
	$L = \{ p_1, \dots, p_m \} \& R = \{ p_{m+1}, \dots, p_n \}.$
	3. [RECUR]:
-(n/2)	(a) Recursively compute CH(L) and VD(L).
(n/2)	(b) Recursively compute CH(R) and VD(R).
	4. [MERGE]:
	(a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P).
$\mathbf{O}(\mathbf{x})$	(b) Compute the y-monotone dividing chain C between VD(L) & VD(R).
O(n)	(c) $VD(P) \leftarrow [C] \cup [VD(L)$ to the left of C] $\cup [VD(R)$ to the right of C].
	(d) return CH(P) & VD(P).
	END.

 $T(n) = 2 T(n/2) + O(n) = O(n \log n).$

0

0

T

T(

 $P = \{ p_1, p_2, \dots, p_n \}$ a set of n points in the plane.

Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C.

Fortune's Algorithm

 Steve Fortune [1987], "A Sweepline algorithm for Voronoi Diagrams," Algorithmica, 153-174.

• Guibas, Stolfi [1987], "Ruler, Compass and computer: The design and analysis of geometric algorithms," *Proc. of the NATO Advanced Science Institute, series F, vol. 40: Theoretical Foundations of Computer Graphics and CAD*, 111-165.

- O(n log n) time algorithm by plane-sweep.
- See AAW animation.
 - http://www.cse.yorku.ca/~aaw/GregoryFine/applet.html
- Generalization: VD of line-segments and circles.

The parabolic front

- Sweep plane opaque. So we don't see future events.
- Any part of a parabola inside another one is invisible, since a point (x,y) is inside a parabola iff at that point the cone of the parabola is below the sweep plane.
- Parabolic Front = visible portions of parabola; those that are on the boundary of the union of the cones past the sweep.
- Parabolic Front is a y-monotone piecewise-parabolic chain.
 (Any horizontal line intersects the Front in exactly one point.)

 Each parabolic arc of the Front is in some Voronoi region.

 Each "break" between 2 consecutive parabolic arcs lies on a Voronoi edge.

Evolution of the parabolic front

- The breakpoints of the parabolic front trace out every Voronoi edge as the sweep line moves from x = -∞ to x = +∞.
- Every point of every Voronoi edge is a breakpoint of the parabolic front at some time during the sweep.

Proof:

- (a) Fig 1: Event w: C_u is an empty circle.
- (b) Fig 2: At event w point u must be a breakpoint of the par. front. Otherwise: Some parabola Z covers u at v \Rightarrow Focus of Z is on C_v and C_v is inside C_u \Rightarrow Focus of Z is inside C_u \Rightarrow C_u is not an empty circle \Rightarrow a contradiction.

The Discrete Events

• **SITE EVENT:** Insert into the Parabolic Front.

• **CIRCLE EVENT:** Delete from the Parabolic Front.

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

A parabola cannot appear on the front by breaking through from behind. **The following are impossible:**

CIRCLE EVENT

• Circle event w causes parabolic arc β to disappear.

• α and γ cannot belong to the same parabola.

DATA STRUCTURES (T & Q)

T: [SWEEP STATUS: a balanced search tree] maintains a description of the current parabolic front.

> Leaves: arcs of the parabolic front in y-monotone order. Internal nodes: the break points.

Operations:

- (a) insert/delete an arc.
- (b) locate an arc intersecting a given horizontal line (for site event).
- (c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.

- Each leaf points to the corresponding site.
- Each internal node points to the corresponding Voronoi edge.

DATA STRUCTURES (T & Q)

Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:

all future site-events &

- some circle-events, i.e.,
 - those corresponding to 3 consecutive arcs of the current parabolic front as represented by T.
 - The others will be discovered & added to the sweep schedule before the sweep lines advances past them.
 - Conversely, not every 3 consecutive arcs of the current front specify a circle-event. Some arcs may drop out too early.

Event Processing & Scheduling

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q &

simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

death(α): pointing to a circle-event in Q as the meeting point of the Voronoi edges. (If the edges are diverging, then death(α) = nil.)

Remove circle-event death(α) if:

- (a) α is split in two by a site-event, or
- (b) whenever one of the two arcs adjacent to α is deleted

by a circle-event.

Event Processing & Scheduling

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

A circle-event update:

each parabolic arc β (leaf of T) points to the earliest circle-event, death(β), in Q that would cause deletion of β at the corresponding Voronoi vertex.

Event Processing & Scheduling

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

 (α,γ,δ) do not define a circle-event:

(a,c,d) is not a circle-event now, it is past the current sweep position.

ANALYSIS

|T| = O(n): the front always has O(n) parabolic arcs, since splits occur at most n times by site events.

Also by Davenport-Schinzel:

 $\ldots \alpha \ldots \beta \ldots \alpha \ldots \beta \ldots$ is impossible.

[At most 2n-1 parabolic arcs in T.]

 $|\mathbf{Q}| = \mathbf{O}(\mathbf{n})$: there are at most n site-events and $\mathbf{O}(\mathbf{n})$ triples of consecutive arcs on the parabolic front to define circle-events.

Total # events = O(n), Time per event processing = $O(\log n)$.

THEOREM: Fortune's algorithm computes Voronoi Diagram of n sites in the plane using optimal O(n log n) time and O(n) space.

Delaunay Triangulation

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain: A 2D surface in 3D such that each vertical line intersects it in at most one point. $f: A \subseteq \Re^2 \longrightarrow \Re$.f(p) = height of point p in the domain A of the terrain.

Method: Take a finite sample set $P \subseteq A$. Compute f(P), and interpolate on A.

Triangulations of Planar Point Sets

 $P = \{p_1, p_2, \dots, p_n\} \subseteq \Re^2.$ A triangulation of P is a maximal planar straight-line subdivision with vertex set P.

THEOREM: Let P be a set of n points, not all collinear, in the plane. Suppose h points of P are on its convex-hull boundary. Then any triangulation of P has 3n-h-3 edges and 2n-h-2 triangles.
Proof: m = # triangles
3m + h = 2E (each triangle has 3 edges; each edge incident to 2 faces)
Euler: $n - E + (m+1) = 2$
\therefore m = 2n - h - 2, E = 3n - h - 3.

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as dual of Voronoi Diagram VD(P).

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as strainght-line dual of Voronoi Diagram VD(P).

Alternative Definition of Delaunay Graph:

- A triangle $\Delta(p_i, p_j, p_k)$ is a Delaunay triangle iff the circumscribing circle $C(p_i, p_j, p_k)$ is empty.
- Line segment (p_i, p_j) is a Delaunay edge iff there is an empty circle passing through p_i and p_j, and no other point in P.

THEOREM: Delaunay Graph of P isa straight-line plane graph, &a triangulation of P.

Proof: Follows from the following Lemmas.

LEMMA 1: Every edge of CH(P) is a Delaunay edge.

Proof: Consider a sufficiently large circle that passes through the 2 ends of CH edge e, and whose center is separated from CH(P) by the line aff(e).

LEMMA 2: No two Delaunay triangles overlap.

Proof: Consider circumscribing circles of two such triangles. Line L separates the two triangles.

LEMMA 3: $p_i \& p_j$ are Voronoi neighbors \Rightarrow (p_i, p_j) is a Delaunay edge.

Proof: Consider the circle that passes through $p_i \& p_j$ and whose center is in the relative interior of the common Voronoi edge between V(p_i) & V(p_j).

LEMMA 4: If p_j and p_k are two (rotationally) successive Voronoi neighbors of $p_i \& \angle p_j p_i p_k < 180^\circ$, then $\Delta(p_i, p_j, p_k)$ is a Delaunay triangle.

Proof: $p_j \& p_k$ must also be Voronoi neighbors. Now apply Lemma 3 to (p_i, p_j) , (p_i, p_k) , (p_j, p_k) .

LEMMA 4: If p_j and p_k are two (rotationally) successive Voronoi neighbors of $p_i \& \angle p_j p_i p_k < 180^\circ$, then $\Delta(p_i, p_j, p_k)$ is a Delaunay triangle.

Proof: $p_j \& p_k$ must also be Voronoi neighbors. Now apply Lemma 3 to (p_i, p_j) , (p_i, p_k) , (p_j, p_k) .

COROLLARY 5: For each $p_i \in P$, the Delaunay triangles incident to p_i completely cover a small open neighborhood of p_i inside CH(P).

LEMMA 6: Every point inside CH(P) is covered by some Delaunay triangle in DG(P).

Proof: Let q be an arbitrary point in CH(P). Let (p_i, p_j) be the Delaunay edge immediately below q. $((p_i, p_j)$ exists because all convex-hull edges are Delaunay by Lemma 1.) From Corollary 5 let $\Delta(p_i, p_j, p_k)$ be the next Delaunay triangle incident to p_i as in the Figure below. Then, either $q \in \Delta(p_i, p_j, p_k)$, or the choice of (p_i, p_j) is contradicted.

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote the Delaunay triangulation of P.

Angles in Delaunay Triangulation

DEFINITION:

 \mathcal{T} = an arbitrary triangulation (with m triangles) of point set P. $\alpha_1, \alpha_2, ..., \alpha_{3m}$ = the angles of triangles in \mathcal{T} , sorted in increasing order. $A(\mathcal{T}) = (\alpha_1, \alpha_2, ..., \alpha_{3m})$ is called the angle-vector of \mathcal{T} .

THEOREM: DT(P) is the **unique** triangulation of P that lexicographically maximizes $A(\mathcal{T})$.

Proof: Later.

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation & linear interpolation. Small angles (long skinny triangles) cause large approximation errors.

A simple O(n²) time DT Algorithm

Step 1: Let T be an arbitrary triangulation of P ⊆ ℜ².
[e.g., use sweep in O(n log n) time]
Step 2: while T has a quadrangle of the form below with ∠A + ∠B > 180°
do flip diagonal CD (i.e., replace it with diagonal AB). [O(n²) iterations]

