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Abstract—We present the results of the BioCreative II.5 evaluation in association with the FEBS Letters experiment, where authors

created Structured Digital Abstracts to capture information about protein-protein interactions. The BioCreative II.5 challenge evaluated

automatic annotations from 15 text mining teams based on a gold standard created by reconciling annotations from curators, authors,

and automated systems. The tasks were to rank articles for curation based on curatable protein-protein interactions; to identify the

interacting proteins (using UniProt identifiers) in the positive articles (61); and to identify interacting protein pairs. There were 595 full-

text articles in the evaluation test set, including those both with and without curatable protein interactions. The principal evaluation

metrics were the interpolated area under the precision/recall curve (AUC iP/R), and (balanced) F-measure. For article classification,

the best AUC iP/R was 0.70; for interacting proteins, the best system achieved good macroaveraged recall (0.73) and interpolated area

under the precision/recall curve (0.58), after filtering incorrect species and mapping homonymous orthologs; for interacting protein

pairs, the top (filtered, mapped) recall was 0.42 and AUC iP/R was 0.29. Ensemble systems improved performance for the interacting

protein task.

Index Terms—Text mining, text analysis, natural language processing, molecular biology, biological curation.
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1 INTRODUCTION

BIOLOGISTS, authors, and database curators all face
difficulties when trying to make use of published

text mining and information extraction systems imple-
mented for the biomedical literature [1]. Several aspects
make it cumbersome to determine which approaches are
competitive for a particular task; these include hetero-
geneity of result formatting, different prior assumptions
and data selection criteria underlying each system design,
and the variability of evaluation settings [2]. The lack of
independent evaluation data collections as well as
limitations related to system accessibility have motivated
a series of community challenges, carried out with the
aim of gaining a better understanding of the performance
and methods used to solve biologically relevant text
mining tasks that could scale to real-world applications
[3]. The BioCreative (Critical Assessment of Information
Extraction Systems in Biology) challenges have attracted
considerable interest, as reflected by the number of
participating systems (over 40 for BioCreative II), and
citations to the results [2], [3], as well as reuse of the
resulting annotated corpora and evaluation software. The
first two BioCreative challenges, BioCreative I and II,
posed several tasks covering different levels of granular-
ity and complexity, from the identification of biological
entities within sentences to the extraction of complex
biological annotations according to predefined literature
curation guidelines followed by database annotators.

An important initial step for most biotext mining
systems is the correct recognition of mentions of biological
entities of interest, especially genes and proteins; this was
evaluated via the Gene Mention task of BioCreative I and II
[4], [5]. It is also of practical importance to provide links
between each article and the unique database identifiers of
the biological entities mentioned in these articles. Biological
annotation databases (e.g., UniProt [6], or model organism
databases) typically associate a unique identifer for each
biological entity in the database. The focus of the Gene
Normalization task in BioCreative I and II was to return
such lists of gene/protein identifiers, given a collection of
articles (abstracts). For BioCreative I [7], the task was to
return unique gene identifiers associated with gene pro-
ducts from a set of abstracts for model organisms (fly,
mouse, and yeast); for BioCreative II, the task focused on
human gene products [8] and used EntrezGene as the
source of gene identifiers. The Gene Normalization task
addresses a common step carried out by most database
curators, who typically provide their functional annotations
through associations of normalized bioentities to controlled
vocabulary or ontology terms. The extraction of such
functional associations, namely, of human gene products
to Gene Ontology terms, was pursued in the advanced task
of BioCreative I [9], where protein-GO term relations as well
as the corresponding evidence passages had to be extracted
from full-text articles.

Several databases are engaged in manual annotation of
protein-protein interactions (PPIs) from the literature,
including MINT [10], IntAct [11], and BioGRID [12]. The
automatic detection of PPIs from the literature has been the
focus of multiple text mining systems. During BioCreative
II, the PPI task evaluated the performance of automated
systems for several tasks designed to follow the manual
literature curation workflow [13]. This task covered

1. the detection and ranking of abstracts according to
the relevance for deriving PPI annotations,
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2. the extraction of the normalized protein interaction
pairs,

3. the retrieval of suitable protein interaction evidence
passages from full-text articles as well as

4. the automatic detection of the interaction detection
experimental methods mentioned in the papers.

To ensure that the PPI annotations followed commonly
used standards adopted by the biocuration community, the
evaluation data was prepared by experienced curators from
two different databases, MINT and IntAct [11].

The results obtained in the Gene Mention and Normal-
ization tasks of BioCreative II suggested that a combined or
ensemble system could provide improved predictive power
by integrating the results from multiple systems. This
motivated the implementation of the BioCreative Meta-
Server platform (BCMS) [14], which is able to display and
integrate multiple predictions from various annotation
servers based on Web services and accessible to end users
via a Web interface.

2 BACKGROUND ON SDAs AND THE

FEBS LETTERS EXPERIMENT

The vast majority of scientific results in the biological
domain are disseminated in a format that is optimized for
human consumption while little effort is made by authors
and publishers to make the published information suitable
for automatic retrieval and processing.

The FEBS Letters editorial board, which convened in
Vienna in July 2007, discussed the issue and resolved to
start rectifying this trend by asking authors to provide
structured information to be added to standard manuscript
text. The structured information was meant to be appended
to traditional abstracts as a structured summary. The goal
was to maintain human readability while at the same time
using database cross-references to precisely define the
biological entities, and controlled vocabularies to specify
their relationships. For the experimental phase, starting in
March 2008, authors, after acceptance of their manuscripts,
were asked to submit information related to protein
interactions for which they were reporting new experi-
mental evidence [15]. The author-submitted information
was monitored and, whenever necessary, edited by profes-
sional curators of the MINT protein interaction database
[16], [2] and finalized via a reciprocal exchange of
information with the authors. After this experimental
phase, the editors realized that this procedure entailing
author involvement after manuscript acceptance was un-
duly slowing down publication times. The alternative of
urging authors to include structured information before
submission, as originally suggested by the MIMIx proposal
[17], was not considered because of the prospect of
discouraging authors with submission requests that were
not yet enforced by competitor journals. Presently, FEBS
Letters articles, and more recently, the FEBS Journal, offer
structured digital abstracts but these are now produced by
MINT curators who, after composing them, ask for authors’
approval. This corpus of articles represents a unique, albeit
limited, collection of scientific articles annotated by profes-
sional curators through a clearly defined procedure and as
such represents an ideal benchmark for comparison of

performance of natural language processing designed to
extract biological information.

3 BIOCREATIVE II.5 TASKS

Following the needs of biocuration pipelines [18], such as
for the MINT database, and in the light of the FEBS Letters
experiment, three tasks were announced that were similar
to BioCreative II. These tasks were chosen because they
seemed feasible for text mining and were thought to be the
most likely candidates for reducing manual (human)
curation workload:

1. Article categorization task (ACT): Binary classifica-
tion of articles (document classification) as relevant
for curation, i.e., for extracting PPI annotations.

2. Interactor normalization task (INT): Lists of identi-
fiers of proteins for which the article reports
evidence for an interaction.

3. Interaction pair task (IPT): Lists of binary interac-
tion pairs as protein identifier pairs per article.

For both the normalization (INT) and pair (IPT) tasks, the
interacting proteins were required to have experimental
evidence for their corresponding interaction in the article; it
was not sufficient to include proteins described as interact-
ing with each other in the text if the article did not present
experimental evidence. The protein identifier space the
systems had to select from was defined as the complete set
of UniProt [6] major release 15.0 primary accessions. UniProt
includes both manually curated SwissProt entries, as well as
automatically generated entries in TrEMBL. For the PPI task,
a great proportion of the identifiers in both the training and
test sets come from the manually curated SwissProt [19]
entries, with a much smaller subset from TrEMBL.

3.1 Classification: ACT

The binary classification (true/false) of full-text articles as
relevant for curation—i.e., containing protein-protein inter-
action annotations—had to be reported together with a
confidence score for the classification in the (0-1] range (i.e.,
excluding zero). Participants were provided with 595 full-
text articles for both the training and test sets, out of which
61 articles were curation-relevant (after the challenge, two
additional articles in the test set had to be reclassified as
relevant, for a total of 63 articles in this set—see below). The
articles were provided in two formats: raw XML with the
corresponding DTD, and as extracted UTF-8 “plain-text”
files in a format that preserved order, and section headers
and titles.

3.2 Normalization: INT

For the normalization task (INT), participating teams were
asked to return a ranked list of proteins that were detected
as being used in an interaction with experimental evidence
for a given interaction in the article (“interacting proteins”).
These lists consisted of: the primary UniProt accessions
(“protein identifiers”); a normalized confidence score
(again, in the range (0-1]); a unique, positive integer rank
for each protein identifier; and an optional evidence
passage that triggered the extraction of the given normal-
ization—although this optional evidence passage ultimately
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was not used by any of the teams. A total of 61 articles with
annotations existed for both the training and test sets.
However, all teams received the full 595 articles during the
test phase and were not told which articles in the set were
relevant until the end of the challenge (as this was part of
the ACT task). All teams provided results for at least 21/
61 articles in the test set, with an average of 55 annotated
articles for the INT.

3.3 Interaction Pairs: IPT

For the pairs task, participants were asked to return a list of
nonredundant, binary interaction pairs that have experi-
mental evidence for the interaction in the article, again with
a normalized confidence score (range: (0-1]) and a unique,
positive integer rank. Directionality of the interactions was
disregarded. Again, reporting an evidence passage for the
classification was offered optionally, but was not used by
any of the participants. As for the INT tasks, participants
were given all 595 articles with no prior information about
their relevance and were only evaluated on the articles for
which they reported results out of the 61 relevant articles.
The smallest result (from Team 42, see results) covered 21/
61 articles, with the average result set reporting annotations
on 47 articles.

3.4 The BioCreative Meta-Server

To make the challenge more realistic and to support a
scenario of generating full-text annotations for Structured
Digital Abstracts “on-the-fly” by an online mechanism, we
asked participants to take part in a novel online experiment
(see Fig. 1). To this end, we implemented a specialized
version of the BioCreative Meta-Server [14]. Through this
platform, participants could register their classification

servers (“annotation servers”) via a Web interface (up to
five annotation servers per participating group), instruct the
BCMS to send them annotation requests together with the
next article in the queue, and review the current state of the
process, including error and technical problem reports. This
architecture uses a Web-service protocol (XML-RPC) to
communicate between the BCMS and an annotation server.
The Meta-Server sent the articles as UTF-8 formatted plain
text to the annotation servers, which responded with a
predefined data structure reporting results after having
analyzed the text. The annotation servers had 10 min time
to respond/produce annotations per article, although the
average response time during the test phase was just
slightly over 2 min/article. In total, 10 of the 15 teams
agreed to participate in this advanced online setting,
simulating a real-world annotation scenario. This makes
BioCreative II.5, to the best of our knowledge the first
online, live challenge carried out for text mining.

3.5 Challenge Metrics

The background of this challenge was to provide a human
annotator (e.g., DB curator or the article’s author) with the
best possible set of machine-generated annotations, from
which the annotator then would choose the relevant items.
The most common utility measures for information extrac-
tion systems are recall and precision. Recall measures the
“coverage” the result set has over the true results
(commonly called “ground truth,” or “gold standard”),
while precision measures the percentage of correct answers
in the result set relative to its complete size. Therefore,
BioCreative II.5 used two common ways of measuring the
quality of the results [20]: 1) Balanced F-measure, a metric
that informs us about the overall quality of recall and
precision as harmonic mean on the complete result set,

F� ¼
ð1þ �2Þ�ðp�rÞ
�2�ðpþ rÞ

where p is precision, r is recall, and � is a variable to balance
the trade-off between precision and recall—for the balanced
F-measure, � is 1. Alternatively, 2) the area under the
interpolated precision/recall curve (AUC iP/R),

AðfprÞ ¼
Xn
j¼1

ðpij�ðrj � rj�1ÞÞ;

where pi (interpolated precision) is defined as

piðrÞ ¼ max
r0�r

pðr0Þ

and A the area under the curve, is a measure of (decreasing)
precision at increasing levels of recall while iterating over a
ranked list of results. In this context, AUC iP/R can be
understood as a measure of quality for result ranking and
favoring recall, while F-score in this context might be
understood as measuring the quality of the overall result set
(without taking ranking or confidence into account). High-
recall systems might produce orders of magnitude larger
results than high-precision systems, thereby gaining a large
coverage over the true set (gold standard), but at an
ultimately low precision for their complete result set, and
achieving higher AUC iP/R scores if they use a good
ranking scheme. High-precision systems, on the other hand,
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Fig. 1. The online scenario for the BioCreative II.5 challenge. This
diagram depicts a possible scenario for the automated generation of
annotations by online users (authors, curators, readers, etc.). Users
would submit an article (full text) via a query to the BioCreative Meta-
Server (BCMS). The BCMS then distributes the article to all known
annotation servers (bold arrow down), which run the article through their
text mining pipelines, and return the extracted data to the BCMS (bold
arrow up). The BCMS then returns the valid data (existing UniProt
accessions, correct data formats, etc.). If any problem occurred with an
annotation server, the request is reissued to that server (dotted arrow).
Otherwise, after collecting the responses, a consensus prediction result
is delivered to the user. A user interface would allow the user to find
relevant results for the Structured Digital Abstract. The upper, gray part
is a hypothetical setup, while the colored lower parts are already in place
and form the online scenario used in this challenge.



trade the coverage on the gold standard for significantly
fewer, but very precise results, therefore potentially scoring
higher in the F-measure.

For the article classification, F-measure would not be a
very adequate estimate of overall set performance, as it does
not take true negatives (TN) into account, which are known
in the case of this task (as opposed to the INT and IPT
tasks). Instead, we use two standard measures from
Information Retrieval, accuracy and Matthew’s Correlation
Coefficient (MCC) [21]. Accuracy can be decomposed into
two elements: 1) Specificity, a measure of how well the
classifier was able to distinguish irrelevant results, where
100 percent specificity means no false positive (FP) was
picked up by the system: TN/(TNþFP)) and 2) Sensitivity, a
measure of how often the classifier misses out on relevant
results (TP/(TPþFN)), where TP is true positive and FN is
false negative), similar to the above Recall measure.

These two measures are then combined to establish the
Accuracy of an approach:

Acc ¼ TP þ TN
TP þ FP þ FN þ TN :

This measure therefore quantifies the degree of closeness of
the system to the actual true value. It is most easily
understood by comparison to Precision, through the “target
analogy” on a dart board: accuracy is a measure of how well
the darts’ hits gravitate around the board’s center (the
“bulls eye,” TP+TN), while precision measures how close
together the darts were placed on the board (TP only), i.e., it
is not possible to achieve high accuracy without also having
a high precision.

In addition to accuracy, we employed the more reliable,
yet similar MCC score, which produces the correlation
coefficient between the observed (true) and the predicted
(annotated) binary classifications in the range ½�1; 1�. A
coefficient of 1 would represent a perfect classification
result, 0 an average, “random” result, and �1 an inverse
classification:

MCC ¼
ffiffiffiffiffi
�2

n

r

¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FP ÞðTP þ FNÞðTN þ FP ÞðTN þ FNÞ

p :

MCC is also known as the � (phi) coefficient. The major
advantage over accuracy is that the MCC is unbiased by
sets where the two classes have very different sizes (as is the
case in this challenge, with 61 true versus 534 false articles).

3.6 BioCreative Data Sets

Given the publicly known background of the FEBS Letters
SDA experiment, the existing SDA-containing articles
generated by the authors could not be used as a test set for
the participants, since reproducing the results from available
results would have been an all-too-easy way to circumvent
this challenge. Instead, these SDA-containing articles, all
from FEBS Letters’ 2008 volume, were used as training set.
For the test set, articles from FEBS Letters’ 2007 volume were
chosen because of their close temporal proximity; this also
avoided the problem of introducing articles from different
journals into the challenge that might create an additional

bias in the sets due to the different interests of each journal.
The MINT staff curated all articles and the classifications are
available through the MINT database.

In addition to the online setting, we were interested in
establishing the quality of text mining systems on de novo
data. Therefore, participants were asked to not use the MINT
database as a resource in their information extraction system,
or report the use to us if they had. The use of existing
annotation resources, contrary to de novo extraction, can be
understood as “evidence mining,” a task not directly
relevant to the challenge’s objectives. To ensure that all
participants were honestly reporting the use of MINT, nine
of the 61 annotated true articles in the test set were taken
from the years 2002-2006 and are articles describing PPIs that
had not yet been curated by the MINT team and did not form
part of their database (or, as a matter of fact, of any of the
IMEx consortium PPI DBs, such as IntAct) during the time of
the challenge, a fact unknown to the participants during the
test phase. Only one team reported the use of MINT for some
of their result sets, and we observed—just for these runs—a
significant performance difference between this “secret” set
of nine articles and the “official” 52 test set articles. Thus, we
can safely assume that all participants honestly attempted to
generate novel results, unless they indicated otherwise.

To generate the gold standards for both the training and
test sets, there was a combined curation effort between the
MINT and BioCreative teams. Each article was annotated by
at least two or more MINT curators. Additionally, annota-
tions that the systems consistently were not able to
reproduce (false positives made by all systems) were re-
examined by the BioCreative team and the MINT curators,
leading to two cases where the gold standard was corrected
after the test phase. As a result, these efforts have produced
a very high-quality ground truth data set available from the
organizers (included in the “BioCreative II.5 Elsevier
Corpus,” available through the BioCreative Website at
http://www.biocreative.org/).

In addition, as we already detailed elsewhere [22], we
also measured the agreement scores between curators to
establish an “upper bound” for the automated system
performance. We measured the performance differences
(agreement) of two MINT curators and an MINT curator
compared to the curator of another database. Due to the
different curation protocols between databases and their
slightly different targets, agreement was lower in inter-
database measurements. We established an interdatabase
agreement of 81 percent, while the intradatabase agreement
increases this score to 93 percent (see [22]).

4 RESULTS

In total, 15 teams registered for the challenge, and each team
was allowed to participate in any number of the announced
tasks (see Supplement 1, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu
tersociety.org/10.1109/2010.61, for a mapping between
team IDs and the official participants). We received 37 test
set results from eight teams for the ACT, 10 teams submitted
52 normalization runs (INT) on the test set, and another nine
of the 15 teams participated in the interacting pairs task
(IPT), sending us 45 result sets. All data and result sets are
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available online at http://www.biocreative.org/events/
biocreative-ii5/results-and-data/.

Each participating system received all 595 articles from
the test set without any indication which articles were
relevant for extracting PPIs; however, we only evaluated
relevant articles for which a team actually produced results.
For the smallest result set, this means that the server
actually produced results for 83 articles, out of which 21
were relevant and evaluated. There are several reasons for
this evaluation strategy: first of all, as participants were not
informed which articles would be relevant for INT and IPT,
a system might decide autonomously if an article is relevant
to limit workload. This is even more reasonable given that
there was a very strict time limit for the online (but not the
offline) part of the challenge, set to 10 minutes/article.
Furthermore, since we believed that time would matter for
the long-term intended applications—users would un-
doubtedly grow very unsatisfied if it took too long to
generate results—we encouraged the teams to optimize the
performance of their online servers. Finally, all results are
evaluated using macroaveraging (i.e., the final score is
calculated by averaging over the individual results per
article). This means, the result reflects the average perfor-
mance of a system on articles for which it actually does
report results, and not the score of the system on the set,
which would make the score relevant for the chosen test set,
but would not inform us about the performance of the
system on articles for which it produces results: It is
obvious that a system has zero performance if it does not
produce results for an article, but including these empty
results in the final score would not let us estimate the
performance of the system where it did produce results.
Therefore, we stayed in the tradition of former BioCreative
challenges and only evaluated articles for which the
participants did submit results. However, this means that
the recall scores are not comparable across systems that
provided answers for a different number of documents.

In addition to the raw results presented here, we applied
several postprocessing procedures to the annotations to
explore how the raw results could be improved with
minimal human intervention. For example, systems were
not informed about the relevant (correct) species that the
article is treating and had to disambiguate the most
plausible species themselves. However, the human expert
(e.g., the paper’s author or a database curator) would likely
know the species the article is describing, while for
automated systems this is difficult to distinguish, because
authors tend to not mention species at all, or list them in the
methods section or list many different species, so that for an
automated system, it is difficult to identify the relevant
species for a given protein. Furthermore, the protein might
come from several species, not only one—including cross-
species interactions. Therefore, we used the gold standard
UniProt identifier to establish the relevant (correct) species
for the protein, and provided this as the hypothetical input
from a human expert. This information can be used to run
two postprocessing procedures on the results:

1. Mapping homonym orthologs to their correct results. For
this process, we created clusters of all homonymous
proteins in UniProt (protein and gene names, including
synonymous—but excluding numeric and one-letter
names), and used the UniRef50 clusters (sequences with

at least 50 percent sequence identity, which is commonly
used as an estimate to establish if a protein is homolog to
another or not; see the Box on Homology for explanations of
the concept of orthology). Establishing intersecting subsets
from these two cluster sets produces homonym homolog
sets. Then, for the mapping process, we extracted all
homonym orthologs to gold standard annotations by only
taking the proteins in a set where a gold standard protein
occurs that are from different organisms than the gold
standard protein (i.e., reducing the homologs to orthologs
only, see Box 1). This correlation is then used to map any
homonymous ortholog result to the correct gold standard
entry. Therefore, it allows us to estimate the performance
regarding the error introduced by choosing the right
protein, but from the wrong species. This postprocessing
step converted some false positives into true positives, but
did not make large changes to the result size.

2. Filtering wrong species from the results. Instead of
attempting to map wrong organism results to their correct
entry, we can also just remove all organisms which the
expert user does not want to see, again simulated by
establishing the organism via the gold standard. In contrast
to the mapping process in (1) above that increased recall,
this filtering step removed many false positives from the
result set, benefitting high recall systems that sacrificed
precision by reporting a large quantity of homonymous
proteins from many different organisms.
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3. Finally, the combination of both approaches can be used
to estimate the “optimal result”: mapping all gold standard
orthologs and filtering any leftover wrong species. This is
an optimistic score, because it does not include all possible
homonym ortholog mappings, and assumes that the human
user would have already chosen which mappings are
correct, filtering irrelevant mappings. It also can be under-
stood as an estimate of the best possible performance if the
systems would have known the species a priori.

Table 1 shows the raw results on the test set for each system
in the article classification task, Table 2 for the normalization
(identifier) task, and Table 3 for the interaction pair task. In
Table 4, the various effects of postprocessing the results with
the described approaches is shown for the highest recall
(AUC iP/R) and highest precision (F-measure) systems after
applying the corresponding procedure in the normalization
and pair tasks (for the ACT, no such postprocessing can be
made, obviously).

Another way of investigating the relative performance of
systems is by plotting the results in a 2D scatter plot using
the F-measure and AUC iP/R results, where high precision
and high recall systems occupy the highest values on their
respective axis. In addition, systems that balance the two

approaches become apparent, as they are close to the top
right corner (e.g., Team 18 for INT and Team 42 for IPT). For
the raw INT results, this is shown in Fig. 2, for the raw IPT
scores, the plot is shown in Fig. 3.

5 ANALYSIS OF RESULTS

5.1 Article Classification

The first task in a curation pipeline is the identification of
relevant articles. In the context of PPIs, this would relate to
the identification of articles that report interactions with
experimental evidence. As explained, participants were
asked to return a Boolean classification for each article,
together with a confidence score for this classification. For
offline results (not submitted via the BCMS), participants
were also allowed to rank the results from the most to least
relevant article. In the case of the online results, this ranking
was established by ordering the articles from the largest
confidence score applied to a true classification to the largest
confidence score for a false classification. Therefore, Accu-
racy and MCC measure how well the binary classification
was done, while the main evaluation function, AUC iP/R,
measures how well the confidence score/ranking scheme
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TABLE 1
ACT Results (Raw)

All results from the ACT. Online submissions are denoted by “S,” offline submissions by “R.” The highest score for each category is marked in bold.
“P at full R” refers to the precision measured at the point where all true articles are found in the ranked list (full recall). The best classification system
was S29 from Team 9 (MCC 0.583), the best ranking system S32 from Team 20 (AUC iP/R 0.699). Team 32 only submitted one incomplete
classification run where data was sent unintentional and shown as reference only. Team 13 classified all articles as positive, and therefore, has an
MCC score of zero.



fits the ground truth. Some participants only assigned one
class to all articles, resulting in possibly good AUC iP/R
scores at low accuracy and a correlation coefficient of zero.

The article classification task in this challenge seems to
have been harder than most former challenges, which most
likely can be attributed to the fact that former BioCreatives
used abstracts only, while having to classify an article based
on the complete text is possibly a harder task. However,
with both a sensitivity and sensitivity score of about
85 percent measured in one of the runs submitted by the
two teams with exceptionally high MCC and AUC iP/R
scores (Teams 9 and 20), these systems seem more than fit
even when working on full text.

We analyzed the results by dividing the true and false
articles into two separate sets and plotting each article
against its average rank (x-axis) and the standard deviation
of the rank (y-axis) assigned by each result set we received.
When we do this, several clusters of articles become
apparent (see Fig. 4). The upper half shows the distribution
for positive (true) articles, the lower half for the negative
(false) articles. On the (horizontal) x-axis, the average rank
assigned by the best runs from each team is used; ranks are
weighted by the AUC iP/R score of the run. On the (vertical)
y-axis, the standard deviation of each article’s rank distribu-
tion within the used runs is plotted. This means, the closer an
article is to the left, the more systems, on average, evaluated
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TABLE 2
INT Results (Raw)

All results from the INT. Online submissions are denoted by “S,” offline submissions by “R.” The highest score for each category is marked in bold.
“EvDoc” refers to the number of relevant documents for which the system returned results and on which it was evaluated. TP: true positives,
FP: false positives, FN: false negatives. Team 42 submitted the highest F-score run (S01, 0.429), while Team 10 achieved the highest AUC iP/R
(R01, 0.435). However, Team 42’s run S01 only accounts for 1/3 of the documents in the set (21/61), while the next best F-score run from Team 18
(R04, bold italic)—at a significantly lower F-score of 0.286—submitted results for all but one article.
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TABLE 4
INT and IPT Results after Postprocessing for the Highest Scoring Teams

This table shows the improvements of the final scores when postprocessing the results with the described steps (see text). For each task, the best
system from the raw results is shown with its initial score and the improvement from homonym ortholog mapping (only), organism filtering (only), and
the combined step of mapping and filtering. Additionally, where applicable, the system that would achieve the highest result after the postprocessing
step is shown (as it is possible that a formerly lower ranked system achieves a better postprocessing result than the best raw result system). In total,
four outstanding teams are shown here: Teams 18 and 42, which dominate both tasks in the F-score rankings with high-precision systems, Team 10
with the best normalization systems, and Team 37 with the best interaction pair classification system.

TABLE 3
IPT Results (Raw)

Official results from the IPT. Online submissions are denoted by “S,” offline submissions by “R.” The highest score for each category is marked in
bold. “EvDoc” refers to the number of relevant documents for which the system returned results and on which it was evaluated. TP: true positives,
FP: false positives, FN: false negatives. Team 18 submitted the highest F-score run (R05, 0.222), while Team 37 achieved the highest AUC iP/R
(R07, 0.223). Four runs from Team 18 were removed because they used MINT data (R05 also produces [correct] results on the “secret set”—see
text); these runs achieve significantly higher scores. And two runs from Team 37 were removed, as the limit was five runs for online and offline
submissions each.



the article as relevant, the closer it is to the bottom, the higher

the agreement was between the systems about its placement.

At an StdDev of 225 ranks—meaning ranks were spread out

nearly over all the possible ranks—it becomes apparent that

systems agreed much less on the placement of positive than

negative articles (1/3rd versus 1/30th of the articles have a

rank StdDev over 225). There are 17 articles in the positive set

that were identified as relevant by virtually all systems

(“easy articles,” see figure), as well as two more articles in the

negative set that fall in this same category but were falsely

identified as negative in the initial gold standard (two errors

in GS, see figure and following paragraph). About 13 articles

in the positive set were consistently hard to identify, while

over 36 articles in the negative set were clearly classified as

highly irrelevant by most systems. Finally, articles at the

lower right front of the negative articles were shown to
contain nonrelevant genetic interactions.

We analyzed some of the properties of the articles in
these clusters, which helped to establish the possible nature
of the difficulties encountered. As the task is to identify
curation-relevant articles describing PPIs, we hypothesized
that the word “interaction” might be especially common in
the true set. As a matter of fact, the noun “interaction” is the
second most frequent noun in the positive set (after “cell,”
the most frequent noun in both sets), and occurs, on
average, three times more often per article in the positive
than the negative set. Furthermore, for the cluster of articles
most systems clearly identified as relevant (“easy articles”),
this frequency increases to nearly eight times higher than in
the negative set. By contrast, hard to identify articles have
an average frequency of this term lower than even the
average negative set frequency, and commonly only contain
indirect interaction descriptions, such as protein phosphor-
ylation descriptions. Furthermore, when looking into the
false positives, they mostly contain non-PPIs, such as
genetic interactions (e.g., promotor binding). Finally, this
clustering prominently distinguished two articles in the
negative test set that all systems rather consistently
classified as relevant. Investigating these two cases showed
that these two samples were actually true articles that were
missed by the curators. They was a posteriori reclassified as
positive in the gold standard and led to the slight imbalance
between true and negative articles in the training and test
sets (61/534 in the training set, 63/532 in the test set).

5.2 Protein Normalization (INT)

The normalization results might seem surprisingly low
when compared to results calculated from our gene/protein
normalization corpora from BioCreative I or II. However,
there are several aspects that are unique to BioCreative II.5
(and the PPI task in BioCreative II) and make it several
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Fig. 4. Plotting true and false articles by average rank and standard
deviation. See text for explanations.

Fig. 2. INT plot of F-score versus AUC iP/R. The scatter plot shows the
best AUC iP/R runs (y-axis, “ranking & recall”) of each team against their
corresponding F-score results (x-axis, “overall set score & precision”).

Fig. 3. IPT plot of F-score versus AUC iP/R. The scatter plot shows the

best AUC iP/R runs (y-axis, “ranking & recall”) of each team against their

corresponding F-score results (x-axis, “overall set score & precision”).



degrees more challenging over the data found in currently
existing normalization corpora. First of all, the mappings
had to be found in the full text of the articles and not just in a
limited text space such as sentences or paragraphs, and
participants did not receive high-quality training data with
exact annotations of protein mentions that give rise to the
corresponding normalizations. Second, there was no limita-
tion in species, meaning that the systems had to disambig-
uate species themselves and were never told which species
they should map to. This problem is amplified by taking into
account that about one-quarter of the protein annotations in
the test set belong to species that do not occur in the training
set and vice versa (see Fig. 5). Finally, the goal was to return
normalizations for proteins that actually have an interaction
description in the article and are backed by experimental
evidence. This meant that although systems were correctly
reporting identifiers for proteins mentioned in the article,
these were counted as false positives because of this
limitation. This factor creates a decreased precision score
for the systems (while recall is not commonly much affected,
see Fig. 6). Therefore, the results of this challenge under-
estimate the ability of the automated systems to correctly
map protein mentions to database identifiers, and these
results should not be compared to regular normalization
tasks. However, by modeling the challenge on a real curation
task, we believe that we have created a setup that simulates
the problems that automated systems would need to deal
with when applied to large-scale biological data mining
scenarios that commonly impose very specific requirements
about the information they need to extract. Fig. 6 shows how
the true annotation to proteins with experimental evidence
influences the result evaluation. If all proteins mentioned in
the article counted as correct results, a portion of the false
positives that systems report would change to correct
annotations ðFP2 ! TP2Þ, although it would also increase
the number of false negatives ðn=a! FN2Þ. The net effect,
however, is an average increase in precision when all
mentions can be annotated, while recall stays roughly equal.
A common counterargument to this assumption is the
“Cooperative Effect”: For example, given a system reporting

on an article annotating mouse proteins: if that system had
missed the mouse association in the first place (e.g., falsely
reporting only human proteins), it would actually only
decrease the system’s scores if all mouse protein mentions
were included.

5.3 Interaction Pairs (IPT)

The same logic applies to the interaction pair results, where
the difficulty is increased because of the squared number of
possibilities of combining binary groupings after normal-
ization, and also because, in quite a few cases, in vitro cross-
species interactions are reported. It is nontrivial to train a
system that can report cross-species interactions without
incurring a large negative cost caused by introducing many
false positive interactions. The effect of this factor can be
seen in the difference between the raw results and the
homonym ortholog evaluation of the IPT.

However, for many scientific annotation needs, identify-
ing the proteins that actually have experimental evidence is
important; this “limitation” is required to create scientifically
sound protein interaction maps in Systems Biology that are
backed up by empirical evidence. On a side note, given that
for the biological use of this data, the experimental evidence
is of utmost importance, it is rather discouraging that no
team reported the textual evidence from which it had drawn
the classification (“evidence passage”).

Interesting aspects are the differences between techni-
ques applied by the teams, including differences between
each of the runs they submitted. For detailed descriptions of
each system, see the corresponding publication from each
team in this special issue. However, we asked the
participants to fill in a short questionnaire after the test
phase, which all but one team completed.

From the three strongest teams in the ACT (9, 20, and 31),
Team 31 reported using support vector machines (SVM) for
classification (the other two did not disclose their supervised
learning technique), and none of them used part-of-speech
(POS) tagging or any specialized parsing techniques. In
general, only Team 31, which also participated in the two
other tasks (teams 9 and 20 only participated in the ACT),
used a specialized natural language processing in biology
(BioNLP) pipeline that could handle problems such as
species mentions or protein normalization. We therefore can
conclude that this aspect does not seem critical to this task,
and we know from the earlier BioCreative II that SVMs are
very powerful at document classification.

The highest scoring teams in the normalization task
(10 and 42) both used conditional random fields and
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Fig. 6. The effect of the experimental evidence annotation restriction on
precision.

Fig. 5. Species differences between training and test set. The two pie
charts show the distribution of species among the proteins in the training
and test set. Although the differences look large here, the overall
“agreement” between the two sets (number of proteins with matching
species in the other set/total number of proteins in both sets) is
82 percent. The main difference is accounted for by E. coli proteins in
the training set (13 percent of training set annotations), for which no
annotation exists in the test set.



Team 10 used a broad selection of NLP techniques,
including conjunction handling, pattern matching, POS
tagging, and shallow parsing. However, both teams had
methods in place to handle the necessary processing for this
task: recognition of species mentions, normalization of
species (to their taxonomic ID), and disambiguation of
protein mentions and of protein-organism associations. The
only difference here was that Team 10 additionally
employed biosyllable handling (that is, for example, special
handling for words with biologically significant endings,
such as -ase in terms like “protein kinase”).

For the most successful teams in the IPT (teams 18, 37, and
42), the approaches seem to be technically quite variable:
Team 42 only used pattern matching, Team 18 employed
conjunction handling including shallow parsing, while
Team 37 employed a very wide range of NLP techniques,
even deep parsing of the grammatical structures of the text.
Regarding biologically relevant language processing techni-
ques, again all three teams made use of a wide range of the
commonly used approaches mentioned for INT, and only
Team 18 had a way of handling biosyllables. In general,
although the use of these BioNLP techniques is no guarantee
for excellent performance, it seems impossible to achieve
significant results without them.

Regarding NLP approaches, all but one team (Team 9)
had specialized approaches for special characters (e.g.,
greek letters, roman numerals, etc.). Teams 9, 10, and 22
used additional (nonbiological) NLP resources for training
their classifiers, and teams 9, 22, and 42 used additional
training material on top of the provided training set. Given
that all these four teams achieved noteworthy results, this is
another factor that might have contributed to their high
performance. Most of these mentioned high-scoring teams
(except 20, 31, and 37) used additional biological resources
(e.g., protein databases, MeSH terms, etc.) in their systems.
Common NLP resources used by a few teams seem to be the
LingPipe [23] framework, and protein taggers—specifically
the GeniaTagger [24] and ABNER [25].

5.4 Assessing Support for the Human Analyst

It is of special interest to investigate how the systems might
support a range of human users in their work. Some results
of this analysis are reported in [22], where we were able
to show that each source (automated systems, authors,
curators) provided novel annotations that were missed by
the others, making it likely that each could assist the others
in this task. However, from the above analysis of results, it is
clear that the particular metrics chosen for BioCreative II.5
give only limited insight into the potential of the automated
systems to help the user.

This raises two related questions: can we define one or
more scenarios where an automated system could help a
class of end users; and if so, what are the appropriate
performance metrics? In choosing metrics, we need to keep
in mind two distinct audiences: metrics needed by devel-
opers to optimize their system; and metrics for potential
end users (e.g., authors and curators) to assess the impact of
an automated system on their work. These measures do not
necessarily have to be the same, but it is important to
synchronize them so that the metrics used to optimize
system performance can lead to improved performance for
the end user(s).

In BioCreative II.5, the use of the AUC based on
interpolated precision and recall rewarded high recall on
the INT and IPT tasks, at the expense of precision. As noted
above, systems had a hard time with several aspects of the
problem, leading to overgeneration (low precision) of results.
The low precision scores dominated recall scores in the
balanced F-measure, resulting in low scores; the highest
“raw” F-measure of 0.40 was for a high-precision run
(precision of 0.38 and recall of 0.41), but this system provided
annotations for only 21 of the 61 articles. Authors had a hard
time with different aspects of the problem when preparing
their structured digital abstracts. In their feedback, the
authors noted that one of the most cumbersome aspects
was the need to associate each protein with the correct
UniProt identifier. Finding the correct identifier requires an
understanding of UniProt, including selecting the right
identifier from different proteins with similar names and
from orthologous proteins from different species with the
same name. Authors reported spending around an hour to
generate a structured digital abstract for their article—a fair
part of that time was spent looking up the UniProt identifiers.
We can make a conservative estimate of that time by
assuming that the authors spent 15 minutes of their time on
UniProt code lookup—approximately 5 minutes per inter-
acting protein, since authors annotated, on average, three to
four proteins per document. In contrast, the automated
systems were very fast (�2 minutes processing time per
document), and achieved recall comparable to or better than
the recall of the authors—close to 70 percent for the best single
system, which provided annotations for all 61 documents
(precision 0.006, recall 0.68, balanced F-measure of 0.013).

These results suggest a specific scenario where the user
(an author or curator who knows the interacting proteins)
could quickly skim a list of candidate proteins to select the
correct identifiers. This should be possible, provided that
the automated system returns a ranked list of interacting
proteins plus contextual information, e.g., the protein name
as mentioned in the paper, its UniProt identifier, its
“standard” name, species, and symbol, plus a linkage to
the place(s) in the paper where it is mentioned. This would
provide sufficient information for a curator or author to run
through a list of 30 candidates per document in 5 minutes,
assuming 10 seconds to accept or reject an entry in the list.
This could provide the user with comparable performance
in less time: from our estimates above, authors achieved a
66 percent recall in about 15 minutes; the best automated
system achieved a slightly better recall of 69 percent at a
cutoff of 30 candidates per document, using the filtered and
homolog-mapped data (as shown in Table 4). This suggests
that an automated system can help the user to create a
comparably rich answer set (2/3 of the interacting proteins)
in less than half the time (2 minutes to run the system plus
5 minutes to screen 30 answers, compared to 15 minutes to
generate). And we can achieve even better scores by
combining inputs from multiple systems (an ensemble
system—discussed below); the trick is to select the right
cutoffs to support the intended use, and to select the metrics
that will encourage—in this case—high recall with good
ranking (right answers in the top 30).

To support this use case, a false negative is far more
costly than a false positive, so we want to weight recall far
more heavily than precision. This is because it is relatively
cheap (in terms of time) to reject false positives from a list;
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however, if the correct identifier is not on the list, then it is
likely to be missed (a false negative) or it will require
significant user effort to look it up (costly in terms of time).
The choice of � (the weighting of recall) depends on how
long the list is (the cutoff) and also on the expected ratio of
true positives to false positives in a document.

To estimate this, we first looked at the distribution of
true positives per document in the gold standard in both the
training and test sets (Fig. 7). We assumed we could run an
ideal system with optimal answer ranking, such that all the
gold standard true positives were ranked higher than any
false positives. In this scenario, both recall and precision
depend on the choice of cutoff: for example, if the answer
list is cut off at 10, this ideal system would give perfect

recall for any document with less than 10 answers—but
somewhat lower precision. However, the (few) documents
that had more than 10 proteins in the gold standard would
have perfect precision, but lowered recall.

To explore the relation between cutoff, answer distribu-
tion, and weighting factor, we varied both the answer cutoff
value and the weighting factor �. These results are shown in
Fig. 8. The best results for this ideal system on the training
data were achieved at a cutoff of 10 and � ¼ 10 (a
macroaveraged weighted F-measure of 0.96).

5.5 Ensemble System—Combine Systems to Get
Better Results

So far, we have focused on individual “best system” results.
However, in BioCreative II, we demonstrated that a
combination of systems (an “ensemble” system) generally
outperforms even the best single system. We ran experi-
ments to create an ensemble system for two different
scenarios: the first was an ensemble system made up of the
best test submission from each group, run at a cutoff of 30
and a � ¼ 10. In the second experiment, we built an ensemble
system by combining results from author curations plus
system results; for this, we used the number of answers
provided by the author as a cutoff that varied by document.

The ensemble runs were produced using a trained
classifier that combines the output of multiple sources into
a single ranked list. Using a set of documents for training, we
created a maximum entropy classifier that we used to predict
whether a particular protein is properly in the gold standard.

The output of the ensemble is produced by reordering all
the candidates for a given document according to the
probability of correctness assigned by the classifier. Results
are then scored by the BCII.5 evaluation script. Because
author annotations were available only for a portion of the
training set, it was not possible to train and test on
independent data sets as in BCII. Therefore, all the author
ensemble results reported here are fivefold cross-validation
averages utilizing the 48 available documents. When
creating the ensemble (without author annotations) to run
on the blind test data, we train on the BCII.5 training corpus
and test on the test corpus. This is made possible because all
participants were asked to submit the output from their
runs on both the test and training data sets.

During training and testing of the ensemble system, the
classifier was passed instances such as shown in Table 5.
For each participant run (sysrun) used as input, the
classifier is given an indication whether that run reported
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TABLE 5
Representations Prepared for the Classifier

Two representations are shown: on the left, for a protein that is correctly
identified for the given document, and on the right, an incorrectly
identified protein. Author data, when used, is treated identically as any
system run, although no confidence is available to be used.

Fig. 8. Training data. Optimal system answers at different cutoffs and

betas. Mixed dot-dash lines are the recall and precision at different

cutoffs (given on the x-axis); the pure dashed lines represent F-measure

for different values of �. The maximum F-measure (0.96) is achieved for

a cutoff of 10 and a � of 10.

Fig. 7. Interacting proteins per document. The x-axis shows the number

of interacting proteins per document; the y-axis shows the number of

documents with that number of proteins for both the test collection and

the training collection (based on the gold standard). The third set of bars

shows the number of annotations provided by the authors on the training

set. Most documents (77 percent of test set and 67 percent of training

set) have four or fewer answers; however, both sets have a “long tail” of

documents with six or more answers.



the answer anywhere in its result (sysrunguessed), the
reciprocal of the rank of the answer (sysrunrank), and the
numerical confidence supplied by the run (sysrunconf).
Using only the sysrun-guessed feature reduces the en-
semble to a simple weighted voting scheme. Experiments
indicated both rank and confidence contributed positively
to the final performance.

Only one run from each team is used in creating a
particular ensemble system, so as to limit bias that might
accrue from overrepresentation of any one team. Further-
more, the various runs from a given team are less likely to
contain statistically independent errors that can be
exploited by the classifier to obtain an improved result.

We chose which runs to include by selecting, for each
team, the run that maximized a particular metric. In
general, choosing runs that maximized recall or AUC
tended to produce ensemble runs that did the same;
similarly, runs that maximized precision or F-measure
tended to produce ensemble runs that were better in those
metrics. In this paper, we report ensemble runs that were
based on system runs maximizing the microaveraged recall.

The experimental setup we chose has two opportunities
to impose a cutoff in the number of answers utilized:

1. a training cutoff—the number of answers per system
per document used when training the classifier and

2. a candidate selection cutoff—the number of answers
per system per document gathered as candidates for
reranking by the ensemble classifier.

Through experimentation, we found that performance
was degraded when we trained on fewer answers than we
used during candidate selection. Furthermore, training with
many more answers than we used during selection provided
limited improvements, and in some experiments, caused a
drop in performance. Consequently, most runs are con-
ducted with the training cutoff equal to the selection cutoff.

The selection cutoff, because it bears on the size of the
candidate pool for the ensemble, has a definite impact on the
ensemble system’s recall. Choosing an optimal value for the
selection cutoff depends on the evaluation criteria, in
particular, on how many answers per document will be
evaluated. When we evaluated performance on the top
N results only, setting the selection cutoff near to N
produced best results.

We experimented with two ensemble systems. The first
was trained using the runs provided on the training data,
and tested against the test data gold standard. We computed
the F-measure at � ¼ 10 at a cutoff of 30. The resulting system
(using the “raw” data, with training and candidate selection
cutoffs of 5) achieved a recall of 0.67, a precision of 0.10, and a
weighted F-measure of 0.62, evaluated on all 61 test
documents. This ensemble system did better than the high-
scoring comparable single run—for example, at a cutoff of
30, team 10 R5 had a recall of 0.60 and a precision of 0.08.

We also created an ensemble system that combined the
author’s list of interacting proteins with the lists generated
by the automated systems (using the highest scoring
microaveraged AUC run from each group). The ensemble
used the top 10 candidates per document from each system
to train the classifier, and also 10 candidates per system per
document to create the ranked list for evaluation. In order
to provide results that were comparable to those produced
by the authors, the cutoff was chosen to be the number of

answers provided by the author for each document. This
produced a hybrid author/system ensemble that achieved a
macroaveraged balanced F-measure of 0.75 (recall of 0.83,
precision 0.73)—distinctly better than the authors alone:
0.71 F-measure, with 0.66 recall and 0.84 precision.

6 CONCLUSIONS

We have carried out a successful evaluation of automated
systems creating protein-protein interaction annotations.
With 15 teams participating and 134 results sets in total, the
size of this challenge was definitely large enough to draw a
number of interesting conclusions. In addition, the chal-
lenge used a corpus of 1,190 articles for which Elsevier, the
publisher of FEBS Letters, granted us permission for
continued distribution as the “BioCreative II.5 Elsevier
corpus” via the BioCreative Web site. From these 1,190 arti-
cles, 122 have high-quality protein normalization and
protein interaction pair annotations that can be used in
the future for training and evaluating text mining systems.
This forms an openly available collection of continuous full
text (both as raw XML and processed to UTF-8 format) that
is free to use for the scientific community.

The metrics reported on the raw results appear quite
low; however, these results do not reflect the potential
utility of the automated systems. By applying postproces-
sing techniques and using more task-centric metrics, we can
get a better sense of the potential utility of the results
provided by the automated systems and how these results
can provide valuable data to increase the performance and
throughput of human annotators. It is probable that such
postprocessing steps would form part of a real pipeline.
Furthermore, some of these improvements could be
achieved with very minimal human interaction. We
estimate that use of an appropriately configured automated
system could speed up by at least a factor of 2 the task of
finding UniProt identifiers for interacting proteins, with no
loss in overall accuracy.

Once again, we found that an ensemble system provided
better results than any single system; we also developed an
ensemble system that combined both author annotations
and annotations from automated systems. This author-
system ensemble improved the author-only results from
0.71 to 0.75 balanced F-measure.

The upcoming BioCreative III evaluation (September
2010) will include a task focused on interactive use of
automated systems for the protein normalization task and
the selection of appropriate user-centric metrics. This will
provide an ideal setting to determine whether we see the
expected time savings from the use of automated systems
applied to the gene/protein normalization task; it will also
provide developers with direct feedback from curators of
multiple databases.
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