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ABSTRACT

Motivation: Clustering algorithms play an important role in the
analysis of biological networks, and can be used to uncover
functional modules and obtain hints about cellular organization.
While most available clustering algorithms work well on biological
networks of moderate size, such as the yeast protein physical
interaction network, they either fail or are too slow in practice for
larger networks, such as functional networks for higher eukaryotes.
Since an increasing number of larger biological networks are being
determined, the limitations of current clustering approaches curtail
the types of biological network analyses that can be performed.
Results: We present a fast local network clustering algorithm
SPICi. SPICi runs in time O(V log V + E) and space O(E), where
V and E are the number of vertices and edges in the network,
respectively. We evaluate SPICi’s performance on several existing
protein interaction networks of varying size, and compare SPICi to
nine previous approaches for clustering biological networks. We
show that SPICi is typically several orders of magnitude faster than
previous approaches and is the only one that can successfully
cluster all test networks within very short time. We demonstrate that
SPICi has state-of-the-art performance with respect to the quality
of the clusters it uncovers, as judged by its ability to recapitulate
protein complexes and functional modules. Finally, we demonstrate
the power of our fast network clustering algorithm by applying
SPICi across hundreds of large context-specific human networks,
and identifying modules specific for single conditions.
Availability: Source code is available under the GNU Public License
at http://compbio.cs.princeton.edu/spici
Contact: mona@cs.princeton.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
High-throughput experimental technologies, along with computa-
tional predictions, have resulted in large-scale biological networks
for numerous organisms. In recent years, much research effort has
focused on analyzing these biological networks in order to obtain
hints about cellular organization and functioning. Clustering is
perhaps the most common approach for global network analysis,
and is frequently applied to uncover functional modules and protein

∗To whom correspondence should be addressed.

complexes, and to infer protein function (Bader and Hogue, 2003;
Hartwell et al., 1999; Pereira-Leal et al., 2004; Rives and Galitski,
2003; Spirin and Mirny, 2003). As a result, numerous clustering
algorithms for biological networks have been developed (e.g. Altaf-
Ul-Amin et al., 2006; Bader and Hogue, 2003; Blatt et al., 1996;
Brun et al., 2003; Chen and Yuan, 2006; Colak et al., 2009; Enright
et al., 2002; Georgii et al., 2009; King et al., 2004; Loewenstein
et al., 2008; Navlakha et al., 2009; Palla et al., 2005; Samanta and
Liang, 2003; Sharan et al., 2005).

Previous methods for clustering biological networks work well
on networks of moderate size. However, the size and number of
biological networks continue to grow. For example, by extensive
data integration, proteome-scale functional networks have been built
for hundreds of organisms across the evolutionary spectrum (Jensen
et al., 2009). Recently, by additionally considering specific
biological processes (BPs) of interest, hundreds of context-specific
functional networks for human have been built (Huttenhower et al.,
2009). Moreover, in the near future, biological networks will include
numerous additional biological entities such as non-coding RNAs
as well as a wider range of interaction types.

Large networks present considerable challenges for existing
clustering approaches. Here, we develop a new efficient network
clustering algorithm SPICi (‘spicy’, Speed and Performance In
Clustering). SPICi builds clusters greedily, starting from local
seeds that have high weighted degree, and adding nodes that
maintain the density of the clusters and are adjacent to a suitable
fraction of nodes within them. The intuition underlying SPICi is
similar to that of DPClus (Altaf-Ul-Amin et al., 2006). However,
SPICi exploits a simpler cluster expansion approach, uses a different
seed selection criterion and incorporates interaction confidences.
Approaches based on enumeration have also been developed; these
aim to uncover all clusters with specific density requirements.
CFinder (Palla et al., 2005) finds clusters such that each consists
of a maximal connected component of adjacent cliques of size
k where two cliques are adjacent if they share k−1 nodes. An
alternate approach relaxes the requirement of complete cliques and
instead finds all subsets of nodes with high density (Colak et al.,
2009; Georgii et al., 2009). While these approaches guarantee
that they output all clusters with a particular property, they are
computationally intensive. In contrast, SPICi takes a heuristic
approach with respect to the clusters it outputs, but guarantees a
runtime of O(V logV +E), where V and E are the number of vertices
and edges in the network.

We demonstrate SPICi’s excellent runtime and its state-of-the-art
performance via several analyses. First, we compare SPICi to
nine previous network clustering algorithms (Altaf-Ul-Amin et al.,
2006; Bader and Hogue, 2003; Blatt et al., 1996; Enright et al.,
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Table 1. Test set of biological networks

Biogrid STRING Biogrid STRING Bayesian
Yeast Yeast Human Human Human

Vertices 5361 6371 7498 18 670 24 433
Edges 85 866 311 765 23 730 1 432 538 298 473 526

Five test networks are considered, two for yeast and three for human (see text). For
each network, the number of vertices and edges are given.

2002; Georgii et al., 2009; King et al., 2004; Loewenstein et al.,
2008; Palla et al., 2005; Sharan et al., 2005) on a test set of
five existing biological networks (Table 1). SPICi is more than
4–1000 times faster than the previous approaches on the networks
for which the approaches terminate within 12 h on a standard
desktop machine. Moreover, it is the only algorithm of those
tested that is able to cluster all the networks within a reasonable
amount of time. Second, we show that even though SPICi is
much faster than previous clustering approaches, the clusters it
uncovers in biological networks recapitulate functional modules
just as well. Third, we perform a robustness analysis on synthetic
networks, as described by Brohee and van Helden (2006), and
show that SPICi has very good performance in recapitulating
protein complexes, deteriorating only on extremely incomplete
networks. We also find SPICi to be robust to perturbations
in dense functional networks. Finally, we use SPICi to cluster
230 large, context-specific human networks (Huttenhower et al.,
2009) and identify modules specific for single conditions; because
of the size and number of networks, this type of analysis
was made feasible only by utilizing our new fast clustering
approach.

2 METHODS

2.1 Algorithm framework
2.1.1 Preliminaries Given a weighted network, the goal of our algorithm
is to output a set of disjoint dense subgraphs. We model the network as a
undirected graph G= (V ,E) with a confidence score 0<wu,v ≤1 for every
edge (u,v)∈E. For any two vertices u and v without an edge between them,
we set wu,v =0. Our approach utilizes several measures. For each vertex u,
we define its weighted_degree, dw(u), as the sum of all of its incident edges’
confidence values:

dw(u)=
∑

v:(u,v)∈E

wu,v.

For each set of vertices S ⊂V , we define its density as the sum of the
weights of the edges among them, divided by the total number of possible
edges (i.e. the density of a set is a measure of how close the induced sub-graph
is to a clique, and varies from 0 to 1):

density(S)=
∑

u,v∈S wu,v

|S|∗(|S|−1)/2
.

Finally, for each vertex u and set S ⊂V , we define the support of u by S
as the sum of the confidences of u’s edges that are incident to vertices in S:

support(u,S)=
∑

v∈S

wu,v.

2.1.2 Algorithm overview We use a heuristic approach to greedily build
clusters. SPICi builds one cluster at a time, and each cluster is expanded from
an original seed pair of proteins. The unclustered node that has the highest
support for the cluster is added if the support is high enough and the density

Fig. 1. Example to illustrate the clustering process. This example network
has 10 vertices, and every edge has confidence 1 except (1,6), (1,10), (5,6) and
(7,8). Suppose the support threshold is Ts =0.5. The highest weighted degree
vertex, vertex 1 with weighted degree 4, is taken as a seed protein. The highest
non-empty bin (0.8,1] for vertex 1 is composed of neighboring vertices 2, 3
and 9. Of these, vertex 2 has weighted degree 3, the largest of this bin, and
it is taken as the second seed vertex. In the first step of the density-based
search, vertex 3 has the highest support, 2, from the current cluster {1,2}. We
add vertex 3 to the cluster and this cluster now has density 1. Then, all the
remaining vertices have support less than density×cluster_size×Ts =1.5.
Thus we stop expanding the cluster and output {1,2,3} as the first cluster.
After this, the next search will start from vertex 6 and output {6,7,8} as the
next cluster. Vertices 4, 5, 9 and 10 are left as singleton clusters.

of the cluster remains higher than a user-defined threshold; otherwise, the
cluster is output and its nodes are removed from the network. SPICi thus has
two parameters: Ts, the support threshold and Td , the density threshold. (See
Fig. 1 for a simplified example.)

2.1.3 Seed selection To select the seed vertices, we first find the vertex
u that has the highest weighted degree in the current network. Then, we
divide the neighboring vertices of u into five bins based on their edge
weights: (0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8] and (0.8,1]. We search from
the highest weight bin (0.8,1] to the lowest weight bin (0,0.2]. If our current
bin is not empty, we use the vertex v in it with the highest weighted degree
as the second seed vertex. We refer to (u,v) as the seed edge. We utilize this
heuristic approach for seed selection based on two observations for functional
networks. First, there is a positive correlation between the weighted degree
of a node and a measure of the overall functional enrichment found among
its interacting proteins (data not shown); this suggests that high weighted
degree nodes are meaningful starting points for local module searches in
functional networks. Second, two vertices are more likely to be in the same
module if the weight on the edge between them is higher. This is why we
search from the highest weight bin to the lowest weight bin. For vertices in
each bin, their edge weights to the first seed vertex are quite similar, and by
taking the one with highest weighted degree, we obtain a larger candidate
set for continuing the search.

2.1.4 Cluster expansion After obtaining two seed nodes with an edge
between them, we grow each cluster in a procedure similar to that of Altaf-
Ul-Amin et al. (2006). At each step, we have a current vertex set S for the
cluster, which initially consists of the two seed vertices. We search for the
vertex u with maximum value of support(u,S) amongst all the unclustered
vertices that are adjacent to a vertex in S. If support(u,S) is smaller than a
threshold, we stop expanding this cluster and output it. If not, we put vertex
u into S and update the density value. If the density value is smaller than our
density threshold Td , we do not include u in the cluster and output S. We
repeat this procedure until all vertices in the graph are clustered.

2.1.5 Implementation and runtime We implement our algorithm using
two critical data structures, described in more detail in the next paragraph.
The first data structure is a priority queue, DegreeQ, to pick the seed proteins
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Search

Initialize DegreeQ to be V
While DegreeQ is not empty

1. Extract u from DegreeQ with largest weighted degree

2. If u has adjacent vertices in DegreeQ then

• Find from u’s adjacent vertices the second seed protein
v (see text)

• S =Expand(u,v)

else S ={u}
3. V =V −S

4. Delete all vertices in S from DegreeQ

5. For each vertex t in DegreeQ that is adjacent to a vertex in
S, decrement its weighted degree by support(t,S)

Expand(u,v)

Initialize the cluster S ={u,v}
Initialize CandidateQ to contain vertices neighboring u or v

While CandidateQ is not empty
1. Extract t from Candidate with highest support(t,S)

2. If support(t,S)≥Ts ∗|S|∗density(S) and
density(S∪{t})>Td then

• S =S+{t}
• Increase the support for vertices connected to t in

CandidateQ

• For all unclustered vertices adjacent to t, insert them
into CandidateQ if not already present

else break from loop

return S

Fig. 2. Pseudocode of the algorithm. The Search procedure iteratively finds
seed proteins and calls Expand to build a cluster from them.

from which clusters are built. Initially, all proteins are organized based on
their weighted degree. Once a cluster is built and output, its proteins are
removed from DegreeQ and the weighted degrees of all proteins adjacent to
these are decreased to reflect their connectivity to other unclustered proteins.
Thus, in addition to extracting the maximum degree node, DegreeQ also
needs to support deletions and decrease key operations. The second data
structure, CandidateQ, is used to expand clusters. It is also a priority queue,
where each element is a node u adjacent to one of the nodes in the cluster S
being built, and is prioritized based on support(u,S). In addition to extracting
the max element, CandidateQ needs to support insertions, as neighbors of
nodes added to S are added to it, and increase key operations, since as S
grows, the supports of all vertices with respect to S increase. We describe
SPICi with these data structures in the pseudocode given in Figure 2.

The specific data structures we use are now described. For CandidateQ,
we need efficient Insert, ExtractMax and IncreaseKey operations. We use
a Fibonacci heap (Fredman and Tarjan, 1987), as amortized analysis gives
a time complexity of O(1) for Insert and IncreaseKey and of O(logn) for
ExtractMax, where n is the number of possible items in the heap. We now
count the overall time cost for all Expand operations. There are at most
O(V ) ExtractMax operations, so the overall cost for them is O(V logV ).
For IncreaseKey, each operation is associated with an edge connected to
that vertex, so the overall cost for these operations is O(E). For Insert, the
overall cost is O(E) since each insertion is associated with an edge from S.

Fig. 3. Integer heap data structure corresponding to the example in Figure 1.
Vertices are put into the data structure based on their weighted degree. For
example, Vertex 6 has weighted degree 3.1. It is rounded to 3 in slot 3.
Vertex 5 has weighted degree 0.5. It is rounded to 1 in slot 1. Each slot is
organized as a doubly linked list, so we can delete and insert an element in
O(1) time.

So, the overall time cost for all Expand operations is O(V logV +E). For the
Fibonacci heap, the space complexity is O(n), so we get a space complexity
of O(V ).

For DegreeQ, we need to support ExtractMax, Delete and DecreaseKey.
As an optimization, we round off each vertex’s weighted degree to an integer,
and utilize an extremely fast data structure, which we refer to as an Integer
heap, with time complexity of O(1) for Delete and DecreaseKey, and an
amortized time complexity of O(1) for ExtractMax. More specifically, since
every element in the heap is an integer, we use an array as its backbone,
and at every slot in the array, we use a doubly linked list for all vertices
with weighted degree rounded to that slot index. Since each edge has
confidence ≤1, the number of slots is O(V ), and the total space necessary
to handle all vertices is O(V ). (See Fig. 3 for a schematic of our Integer
heap data structure.) For insertion and deletion, we require the procedure
call to provide the pointer to the doubly linked list node, and so these
two operations can be performed in O(1) time. For DecreaseKey, we first
disconnect the node and then reconnect it to a new slot with O(1) cost. Note
that we store the initial weights per edge, and then round each time we
perform DecreaseKey. For ExtractMax, we just need to pop out a value at
the top slot of our array. If any array slot becomes empty, we need to search
down the array until we reach a new non-empty slot. The total number of all
down searches is V −1, which is the maximum length of the array. Thus, if
there are a total of V operations, the amortized time for each operation is O(1).
The time complexity of procedure Search without considering the time spent
for Expand is O(V +E)=O(E), as there are at most V ExtractMax and
Delete operations, E DecreaseKey operations, and each edge is considered
at most once when finding the second seed vertex. Thus, considering Search
and Expand together, SPICi has time complexity O(V logV +E) and space
complexity O(E).

2.2 Network datasets
We concentrate our initial analysis on two networks for yeast and three
networks for human (Table 1). The two Biogrid (Breitkreutz et al.,
2008) networks consist of experimentally determined physical and genetic
interactions. The two STRING (Jensen et al., 2009) networks and the
human Bayesian network (Huttenhower et al., 2009) consist of functional
associations between proteins that are derived from data integration. For
Biogrid, we extract all non-redundant interaction pairs, including all protein
physical and genetic interactions. For STRING (Jensen et al., 2009), we use
all weighted interactions. For the Bayesian human network, we use the global
network from Huttenhower et al. (2009); this network is not tuned toward
any specific BP. In subsequent analysis, we also use the 229 context-specific
human networks from Huttenhower et al. (2009); here each context is a BP
from the Gene Ontology (GO; Ashburner et al., 2000), and the training set
is altered according to the specific BP context so that the network will better
represent that specific context. None of the networks are further processed.
For functional module discovery and/or protein function prediction, it may be
beneficial in practice to remove high-degree nodes and/or otherwise prune the
networks; since different processing may be necessary for different networks,
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and our primary goal is to test SPICi’s ability to cluster large networks, such
variations are not explored here.

2.3 Computational experiments
All experiments are run on an Intel 2 GHz dual core computer with 2 GB
memory. We compare our approach to SPC (Blatt et al., 1996), MCL (Enright
et al., 2002), MCODE (Bader and Hogue, 2003), RNSC (King et al.,
2004), Cfinder (Palla et al., 2005), NetworkBLAST (Sharan et al., 2005),
DPClus (Altaf-Ul-Amin et al., 2006), MCUPGMA (Loewenstein et al.,
2008) and DME (Georgii et al., 2009). We briefly highlight the main
features of these algorithms. SPC associates a ‘spin’ with each node,
and spin–spin correlations are used to partition the network. MCL is a
global clustering approach based on modified random walks on networks.
MCODE is one of the first approaches specifically geared for clustering
interactomes, and greedily grows clusters from a seed node. CFinder
finds a set of k-clique percolation clusters, each of which consists of a
maximal connected component of adjacent cliques of size k where two
cliques are adjacent if they share k−1 nodes. NetworkBLAST , designed
for comparing multiple protein networks but applicable for clustering a
single protein network, greedily builds small ‘dense’ clusters. DPClus
is a greedy approach that grows clusters based on adding nodes that
are well connected to other nodes in the cluster and that maintains
cluster density. MCUPGMA is a memory-efficient average-link hierachical
clustering algorithm. DME finds all clusters that satisfy a user-defined
minimum density threshold.

For MCL, we set the inflation factor to 1.8, as this has been found to
yield the best performance in clustering biological networks (Brohee and
van Helden, 2006). For RNSC, we use the parameters given in the sample
README file that comes with the software (-e3 -n2 -N100 -D40 -d10
-c300 -t15 -T2). For SPICi, we set both Ts and Td to 0.5. We use the
default parameters for the other approaches. For MCUPGMA, the distance
between two nodes u and v is set to 1−wu,v. By default, MCUPGMA
allocates a fixed amount of memory corresponding to a prespecified limit
on the number of edges that are allowed into memory in each clustering
iteration. Without this limit, MCUPGMA runs out of memory on the large
Bayesian human networks. While we carefully experimented with changing
this memory limit for the human functional networks, the running time
of MCUPGMA on these networks still exceeded our time limits and thus
for simplicity, we ran the program with its default parameter. We also note
that MCUPGMA outputs a hierarchical clustering dendogram without a split
into clusters. We obtain clusters using an inconsistency coefficient (Jain and
Dubes, 1988); this is a standard procedure in MATLAB’s statistics toolbox
for processing hierarchical clustering dendograms to obtain clusters. The
inconsistency coefficient for each merge of the the dendogram is computed
by taking its height in the dendogram and subtracting the average height
of all merges considered, and dividing this by the standard deviation of
these the merges. The higher the value of this coefficient, the more a merge
would connect dissimilar nodes. As in MATLAB’s default parameters, we
consider only the current merge, and the merges one level below. We use
a value of 0.8 to cut the tree, as these values range from 0 to 1.2 in the
considered dendograms and there are only two peaks in the distribution (data
not shown), one corresponding to merges with inconsistency value <0.1, (i.e.
the initial merges) and the other corresponding to merges in the range of 0.7
and 0.8.

All reported runtimes are wall clock times for running the clustering
portion of the programs only. We do not report CPU times, as some of the
clustering algorithms are designed to be run within a user interface, making
strict system timing calls difficult.

2.4 GO analysis
The quality of clusters obtained from all algorithms are evaluated using the
framework described in Song and Singh (2009). We use GO to build our
reference set of functional modules, with all IEA (inferred from electronic

annotation) terms removed, as suggested in Rhee et al. (2008). For each
organism, only GO terms that annotate at most 1000 proteins are considered.
For a given GO annotation A, we define the ‘functional module set’ GA to
consist of all genes annotated with A. Song and Singh (2009) utilize the
following three measures to measure the overlap between computationally
derived cluster and the GO functional modules:

(1) Jaccard: for each cluster C, its Jaccard value with each GO derived
functional module group GA is computed as |C∩GA|

|C∪GA| . The Jaccard
measure for cluster C is the maximum Jaccard value over all
considered GO terms A.

(2) PR (precision–recall): for each cluster C, its PR value with a GO
derived functional module GA is computed as |C∩GA|

|GA|
|C∩GA|

|C| . The PR
measure for C is the maximum PR value over all considered GO
terms A.

(3) Semantic density: for each cluster, the average semantic similarity
between each pair of annotated proteins within it is computed.
In particular, for proteins p1 and p2 with annotations A(p1) and
A(p2) respectively, the semantic similarity of their GO annotations
is defined as:

2∗mina∈A(p1)
⋂

A(p2) log(p(a))

mina∈A(p1) log(p(a))+mina∈A(p2) log(p(a))
,

where p(a) is the fraction of annotated proteins with annotation a
in the organism (Lord et al., 2003; Song and Singh, 2009). Note
that more specific annotations a have smaller values of p(a), and
log(p(a))≤0. For our semantic density calculations here, all GO terms
are considered, even those annotating more than 1000 proteins.

Each of these three measures varies from 0 to 1, with higher values
indicating better agreement of the uncovered clusters with functional
modules corresponding to GO. We consider the GO BP and cellular
component (CC) ontologies separately. For each cluster, we calculate these
three measures separately for both ontologies, and these measures are
assigned to all proteins within the cluster. Genes in singleton clusters are
penalized by having Jaccard, PR and semantic density values of 0. Finally,
for each of the six measures (three BP and three CC), we compute its average
value over all proteins in the network; this is equivalent in the case of non-
overlapping clusters to taking a weighted average over all clusters, where
each cluster is weighted by its size. For more details, please see Song and
Singh (2009). Some of the tested approaches output overlapping clusters. In
this case, if a protein is found in more than one cluster, then each of its six
measures is obtained by averaging over the values obtained from each of its
clusters.

2.5 Robustness analysis
In order to characterize SPICi’s robustness to changes in the network, we
use the procedure of Brohee and van Helden (2006) to characterize how
well MIPS complexes are recapitulated from synthetic test network data. In
particular, networks are initially created for each of the 104 Saccharomyces
cerevisiae MIPS (Mewes et al., 2004) complexes that are not determined
from high-throughput experiments. A node is included in the network for
each protein in one of these complexes, and an edge is included in the
network between any two proteins in the same complex. This network with
|E| edges is then modified as follows. For an edge addition rate pa and
an edge deletion rate pd , first pa ·|E| edges are added to the network, and
then pd ·|E| edges are chosen uniformly at random for deletion. Brohee and
van Helden (2006) utilize two measures, Accuracy and Separation, for
evaluating clusterings. Accuracy measures how well the clustering recovers
the gold standard MIPS complexes. Separation measures how specifically
the clustering can be mapped to the MIPS gold standard set without cross-
complex contamination. [See Brohee and van Helden (2006) for precise
definitions of these two measures.]
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Table 2. Running time and memory usage of clustering approaches

Running Biogrid Biogrid STRING STRING Bayesian
Time (s) Yeast Human Yeast Human Human

SPICi 1 1 2 7 1111
MCUPGMA 5 4 9 33
MCL 336 114 645 4926
NetworkBLAST 1904 427 7848
SPC 183 215 219
MCODE 101 49 7848
DPClus 1602 2113
RNSC 172 17 1325 23 448
CFinder 25
DME

Memory Biogrid Biogrid STRING STRING Bayesian
(MBs) Yeast Human Yeast Human Human

SPICi 1.2 1.5 15.1 90.5 1143.0
MCUPGMA 259.1 259.1 259.1 259.1
MCL 73.3 24.9 111.7 357.0
NetworkBLAST 61.9 60.5 72.8
SPC 220.5 430.3 311.0
MCODE 375.6 306.1 606.9
DPClus 140.2 202.1
RNSC 25.9 9.8 82.3 349.4
CFinder 23.0
DME

Running time and peak memory usage of each algorithm on each network. For running
time, clock times, rounded to the second, are reported. Peak memory usage is given in
megabytes. Note that MCUPGMA’s memory usage is preallocated with a default limit
and is thus constant for these networks (Section 2). Blank entries in the table indicate
that the approach did not successfully cluster the network within 12 h. In each column,
bold entries indicate the smallest memory usage and the fastest running time obtained
on the given network.

3 RESULTS AND DISCUSSION

3.1 Speed and memory analysis
We run SPICi and nine previous clustering approaches on our five
network datasets. Table 2 gives the runtime and memory usage of
each approach on each of the datasets. SPICi is the only approach
that can cluster each of the five networks within 12 h; indeed it takes
<10 s for four of the five networks and takes <20 min on the largest
dense functional network. Even on networks that can be clustered
by the other approaches, SPICi obtains substantial speed-ups. This
decrease in runtime is accompanied by a decrease in memory usage
as well. For the human Bayesian functional network, SPICi uses
1.11 GB of memory, which corresponds to the size of the network
itself.

3.2 GO analysis
We use the procedure from Song and Singh (2009) to assess
the overall quality of the clusters we find. Three approaches
(SPICi, MCUPGMA, MCL) can cluster four of the networks, and
we focus on these methods and networks in our analysis in the
main body of the article. We find that neither SPICi, MCUPGMA
nor MCL clearly dominates the other approaches (Table 3 and
Supplementary Table 1). We observe that these three approaches
have complimentary strengths when considering clusters of different
sizes on the functional networks (see Supplementary Fig. 1).

Table 3. GO analysis of clusters output by SPICi, MCUPGMA and MCL

BP CC

Network Algorithm sDensity Jaccard PR sDensity Jaccard PR

Biogrid SPICi 0.368 0.214 0.183 0.379 0.167 0.141
Yeast MCUPGMA 0.414 0.200 0.160 0.444 0.147 0.115

MCL 0.284 0.208 0.156 0.324 0.171 0.125

Biogrid SPICi 0.254 0.183 0.159 0.271 0.097 0.078
Human MCUPGMA 0.319 0.179 0.150 0.348 0.096 0.074

MCL 0.348 0.177 0.141 0.388 0.120 0.091

STRING SPICi 0.466 0.264 0.232 0.450 0.220 0.199
Yeast MCUPGMA 0.579 0.235 0.206 0.584 0.187 0.172

MCL 0.227 0.205 0.194 0.261 0.167 0.143

STRING SPICi 0.316 0.210 0.180 0.331 0.123 0.103
Human MCUPGMA 0.338 0.200 0.178 0.344 0.088 0.074

MCL 0.247 0.197 0.159 0.297 0.163 0.125

sDensity, Jaccard and PR values (see text) for SPICi, MCUPGMA and MCL on four
networks, as judged via overlap with functional modules derived from the BP and CC
ontologies. Bold entries correspond to the best values obtained for each measure on
each network.

For clusters with at most five proteins, MCUPGMA has the highest
average quality measures. On the other hand, SPICi’s clusters
of intermediate size (from 6 to 150 proteins) generally have
higher quality measures. For clusters with more than 150 proteins,
SPICi and MCL perform best.

Many of the remaining seven algorithms can cluster the smaller
sized networks well, and in some cases may outperform the three
approaches here; however, their runtime or memory requirements
limit their applicability. We note that while it is possible to reduce
the large functional networks into smaller ones by only keeping
edges with a weight above a certain threshold, we find that, for
all approaches we tested, by keeping all interactions, we find
additional ‘unique’ functionally enriched clusters as well as an
increase in the number of proteins in functionally enriched clusters.
(Supplementary Material.)

3.3 Robustness analysis
We first apply the procedure of Brohee and van Helden (2006)
to compare the robustness of SPICi against that of MCL and
MCUPGMA. We build 10 synthetic test networks edges for each
pairwise combination of 10 addition rates and 10 deletion rates.
The averaged Separation and Accuracy measures (Brohee and
van Helden, 2006) for each addition and deletion rate are shown
in Figure 4 (see also Supplementary Table 2). We find that
SPICi has better overall performance than MCUPGMA (Fig. 4b).
When comparing MCL and SPICi, it is clear that neither method
dominates the other at all noisy edge insertion and deletion rates.
For low interaction insertion and deletion rates, the methods perform
comparably. For high deletion rates, MCL generally outperforms
SPICi. For high interaction addition rates and low interaction
deletion rates, SPICi has better overall performance than MCL.
These results suggest that SPICi is less sensitive to noisy edge
addition than MCL, and is perhaps better suited for dense functional
networks such as the STRING networks. Consistent with this,
we find that SPICi is quite robust to perturbations of confidence
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Fig. 4. Robustness analysis comparing SPICi, MCL and MCUPGMA in their
ability to recapitulate MIPS complexes from synthetic networks. Ten edge
deletion and insertion edges are considered (from 0.0 to 0.9 in increments
of 0.1). The x-axis gives the random edge deletion rate, and the y-axis
gives the noisy edge addition rate. Each cell corresponds to a single
insertion and deletion rate combination. In (a), the lower triangle within
each cell gives the average value of log2(SPICi Accuracy/MCL Accuracy)
over the 10 networks generated for the corresponding insertion and deletion
rate combination. The upper triangle within each cell gives the analogous
log2(SPICi Separation/MCL Separation) values. Values greater than 0,
shown in red, indicate that SPICi is better. Similarly, values smaller than
0, shown in green, indicate that MCL is better. In (b), the same data are
shown, except SPICi is compared with MCUPGMA.

values in both the STRING human and yeast networks, with a
steady but relatively modest decrease in average Jaccard, PR and
semantic density values as increasing amounts of noise are added
(Supplementary Table 3).

3.4 Clustering of numerous context-specific human
functional networks

While the Bayesian human network from Huttenhower et al.
(2009), obtained by global data integration of multiple sources

DRG1

TNNT2

ASNA1

MT1X

AQP9

SLC25A13

SLC25A12

ATP7B

ATP7A

MYT1

Fig. 5. A context-specific module found in the response to inorganic
substance network of Huttenhower et al. (2009). We only show interactions
with weights >0.5. Gray colored nodes correspond to proteins with the GO
annotation Transport. Double peripheral ellipse nodes correspond to proteins
with GO annotation response to metal ion. The DRG1 protein, shown in a
box node, is discussed further in the text.

of evidence linking proteins, proves to be challenging for all the
previous network clustering approaches, the authors actually created
229 additional networks of similar size. Each of these networks
corresponds to one of 229 specific BPs. Here, we show the type
of analysis SPICi enables by its fast clustering approach—analysis
that would not be possible by the previous approaches. In particular,
we utilize SPICi to uncover context-specific modules from these
context-specific networks.

We use SPICi to cluster all 229+1 human functional networks.
Altogether, we get 63 973 clusters of size >5 and density >0.5. We
select context-specific modules utilizing the following criteria. For
each candidate cluster, we require that:

(1) No uncovered clusters from any other context-specific
network can overlap more than half of its proteins.

(2) The density of the cluster’s set of proteins is <0.25 in the
global network.

(3) Fewer than 10 other context-specific networks contain this set
of proteins with a density >0.25.

By applying these three criteria, we attempt to uncover modules
that are unique to a certain context. In total, 2088 clusters passed
these criteria. As an example, we look at one such cluster, found
in the response to inorganic substance network (Fig. 5). There are
10 proteins in this cluster. This cluster has very limited overlap
(at most two proteins) with clusters found in the other networks.
Moreover, all other networks contain this set of proteins with
a density <0.25. The cluster is found to be enriched via the
hypergeometric distribution with the annotations response to metal
ion (P-value = 1.39E-015, seven proteins annotated) and transport
(P-value = 4.20E-006, seven proteins annotated). An interesting case
is the DRG1 protein (also known as developmentally regulated
GTP-binding protein 1). It is annotated with GO terms such as
GTP binding and transcription factor binding, but has no known
annotations related with response to metal ion or transport. This
uncovered cluster reveals DRG1’s potential role in metal ion
response and transport.
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4 CONCLUSIONS
We have developed a fast, memory-efficient clustering algorithm,
SPICi. SPICi is significantly faster than previous clustering
algorithms for biological networks, and importantly, enables us to
cluster larger networks than previously possible. Moreover, we have
demonstrated via several analyses that the clusters uncovered by
SPICi are of comparable quality to those found by other state-of-
the-art algorithms. In our experience, SPICi is especially well-suited
for dense networks, such as functional networks. Within sparser
networks, we have found that SPICi also readily identifies dense
regions, but for reasonable parameter settings will conservatively
leave many proteins unclustered.

We have shown that SPICi can be effectively run on hundreds
of large human context-specific networks in order to find context-
specific modules. In the future, we foresee using SPICi to
perform other types of comparative interactomics. For example,
protein interaction networks for a single organism can be
modified to incorporate information about each protein’s tissue-
or condition-specific expression, and comparing clusterings across
these networks can help to identify modules that are either conserved
across numerous conditions or specific to certain conditions. Given
the large number of expression datasets, this leads to the possibility
of hundreds or even thousands of varying networks across a single
organism. SPICi’s runtime and memory efficiency enables these new
types of analyses, and should be particularly useful as biological
networks continue to grow in size and number.
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