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Abstract—Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and

structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by

protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant

papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge

addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the

increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-

named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to

identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds

and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a

more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance

to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for

paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional

adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions,

and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On

average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that

extend third-party software are available as supplementary information (see Appendix).

Index Terms—Biology and genetics, text analysis, bioinformatics (genome or protein) databases.
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1 INTRODUCTION

PROTEINS and their interactions govern virtually all cellular
processes, such as regulation, signaling, metabolism, and

structure. Maps of protein-protein interactions (PPIs) are
crucial to understand biological processes on a systems level.
A variety of factors influence the formation of protein
complexes [1]. Laboratory techniques to detect, analyze,
and quantify protein interactions are reviewed in [2]
(biochemical approaches) and [3] (molecular and cellular
approaches). Results from high-throughput methods, such
as yeast two-hybrid assays (Y2H) and affinity purification/
mass spectroscopy (AP/MS) are the most abundant found in
PPI databases. For instance, 64 percent of all PPIs in IntAct [4]
currently stem from two-hybrid screens.1 Deane et al. [5]

assessed the accuracy of high-throughput methods and
estimated an error rate of around 50 percent for Sacchar-
omyces cerevisiae data (about 8,000 distinct interactions, 6,000
derived from four independent high-throughput Y2H
screens, all from DIP [6]). Other studies suggest that Y2H
performs better in terms of false positive rates than AP/MS;
predictions can be validated further with protein comple-
mentation assays (PCAs) [7].

Databases follow different ways of curating PPIs. The first
is direct submission by authors, after a publication has been
accepted (but not necessarily been published yet), sometimes
required as per the respective journal’s policy. The second is
journal “shadowing,” in which database curators follow new
issues of a fixed set of particular journals and curate reported
interactions; some major databases, such as IntAct and MINT
cooperate such as to minimize the overlap in curated articles,
and thus, the workload. The third way of curating protein
interactions is a “topical curation,” in which database
maintainers pick a subject (such as a Gene Ontology (GO)
term) of interest to collaborators and try to find and curate
each article published referring to this subject (such as an
experiment that involves a protein assigned to the GO term).
This last way, in particular, deals with the large amount of
legacy data, decades of publications on PPIs, often retrieved
using the PubMed citation index. In an effort to quantify
these legacy data, Fundel et al. [8] found around 150,000 dis-
tinct PPIs of human genes/proteins within one million
PubMed abstracts from 1990 to 2007.

Database curation of PPIs comes at a high cost, as
curators are either PhD-level scientists specifically hired

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 3, JULY-SEPTEMBER 2010 481

. J. Hakenberg, N.H. Vo, and C. Baral are with the Department of Computer
Science, Arizona State University, 699 S Mill Avenue, Office suite 574,
Tempe, AZ 85281-8809.
E-mail: {joerg.hakenberg, Nguyen.H.Vo, chitta}@asu.edu.

. R. Leaman, S. Jonnalagadda, R. Sullivan, C. Miller, and G. Gonzalez are
with the Department of Biomedical Informatics, Arizona State University,
425 N 5th Street, Phoenix, AZ 85004-2157. E-mail: {bob.leaman, sjonnal3,
rpsulli, crmill3, Graciela.Gonzalez}@asu.edu.

. L. Tari is with Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley,
NJ 07110-1109. E-mail: luis.tari@roche.com.

Manuscript received 12 Jan. 2010; revised 2 Apr. 2010; accepted 14 Apr. 2010;
published online 20 May 2010.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number
TCBBSI-2010-01-0020.
Digital Object Identifier no. 10.1109/TCBB.2010.51.

1. See http://www.ebi.ac.uk/intact/statisticView, Oct. 2009.

1545-5963/10/$26.00 � 2010 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



for this task, or researchers working closely with the
database and providing topical or in-house data. Thus, any
of these efforts would largely benefit from automated
systems that handle one or multiple of the following steps
with sufficient accuracy:

1. identify abstracts/full-text articles that contain re-
levant data,

2. spot relevant passages in a given article (as opposed
to established background information),

3. recognize mentions of relevant biomedical entities
(proteins and organisms),

4. map each entity mention to a database identifier
(such as a UniProt ID for each protein),

5. extract relationships between entities (such as
mapping a protein to an organism or finding PPIs),
and also

6. extract additional information on the experiments
described (interaction-detection method, clone li-
brary, antibodies, etc.).

To alleviate the task of curation and provide quick
overviews of experimental findings, some journals started to
offer structured digital abstracts (SDAs), which, in addition
to an author-provided abstract, summarize found interac-
tions and map proteins to UniProt IDs, etc. Currently, ways
are sought to alleviate the task of creating SDAs for either
publishers or authors. One of the most time-consuming
steps for authors in writing SDAs is to find the correct
UniProt identifier for the proteins used in the experiments.
While authors know about the reported PPIs, articles have to
be searched meticulously if SDAs are created on the
publisher’s side. Thus, authors and curators both need tools
to simplify writing concise SDAs; tools are also needed to
deal with the vast amount of legacy data that was not
published together with SDAs.

In recent years, the field of biomedical text mining has
seen a number of community challenges to address certain
aspects of the ongoing research. Most of these are held in a
manner similar to the “Critical assessment of methods of
protein structure prediction” (CASP; see [9] for the latest
edition). Among the earliest, the “Text Retrieval Conference”
(TREC) included a specialized genomics track each year from
2003 to 2007 [10], focusing on information retrieval (IR).
BioNLP/JNLPBA addressed the problem of named entity
recognition (NER) for five types of entities [11]. The BioNLP
Shared Task’09 dealt with the extraction of various kinds of
molecular events involving genes and proteins (such as
regulation, binding, and protein catabolism) [12]. The
BioCreative community challenge, so far held in 2003, 2006,
and 2009, focused on recognition of gene/protein names in
text; gene mention normalization, mapping gene names to
EntrezGene IDs; extracting PPIs, mapping proteins to
UniProt identifiers; as well as relevance ranking of articles;
see the respective overviews in [13], [14], [15]. BioCreative I
in 2003 also addressed functional annotation of proteins with
GO terms, based on textual evidence. Overall, the extraction
of relationships among biomedical entities, such as genes,
proteins, diseases, and mutations from scientific text has
been an active research topic for most of the past decade.
Most attention clearly has been paid to the recognition of
genes and the extraction of PPIs from PubMed abstracts;
more and more approaches tackle associations between

genes and diseases, genes and mutations, drugs and
enzymes, proteins and GO annotations, and so on, as well
as they are shifting to the use of full-text articles. Currently,
about 2.5 million full-text articles are available via PubMed,
many of them have open access through archives, such as
NIH’s PubMed Central and publishers, such as BioMed
Central and the Public Library of Science (PLoS).

BioCreative II.5 in 2009 dealt with the task of helping
database curators to find and identify PPIs in full-text
articles (IPT task); to map proteins to UniProt identifiers
(INT task); and to rank texts according to relevance for
curation (ACT task). All these tasks are potentially bene-
ficial also to authors submitting aforementioned SDAs,
which necessitate at least finding appropriate UniProt IDs
for all proteins studied. As BioCreative II.5 addressed
system performance for tasks related to curation, the
definition of a PPI went along the lines of “any association
between two proteins that is worth curating for a given
publication.” From the SDAs provided with the training
data, we see that this included physical interactions as well
as colocalizations; in any case, all PPIs in BioCreative II.5
are binary and undirected relations. The exact definition of
an interaction depends on the targeted database (here:
MINT; BioCreative II obtained data from IntAct, another
IMEx consortium member [16], [4], [17]). The second half of
the definition concerns curation; this can be interpreted as
“would a database curator consider a publication as a
reference for the given interaction?” Some published
experiments yield the first indication that two proteins
interact; some experiments try to confirm a given interac-
tion, possibly by using a different detection method; on the
other hand, many publications would cite interactions
found previously, for instance, to provide background on
the proteins studied. While in the first two cases, a curator
could decide to include the publication as reference for
first/further evidence, the last kind of publication would
mostly certainly not be considered (for the given interac-
tion; but possibly for another one). Overall, a PPI should be
reported if the underlying publication provides physical
evidence, by providing results (images!) of a pull-down,
immunoblot, fluorescence analysis, etc. All these aspects
lead to a relevance ranking step of automatically extracted
protein interactions, which we will describe in Section 2.4.

For BioCreative II.5, 15 participating research groups
returned 134 submissions in online and offline scenarios: the
online scenario required each team to set up CASP-like
annotations servers [9], [18], which would take a pre-
viously unseen query document and return predictions
within 10 minutes per document; the offline scenario
allowed for bulk download and annotation of a set of texts,
with a one week time constraint for returning predictions.
In this paper, we describe our approaches to extract PPIs
from full-text articles (IPT task) and to map individual
proteins to their respective UniProt identifiers (INT). Note
that we did not submit results to the aforementioned
article relevance ranking task (ACT), although this could
be emulated according to how many proteins/interactions
our methods are able to extract, together with their
respective predicted ranks.

In the following, we start with a detailed explanation of
our methods, which include NER, entity mention normal-
ization, relevance ranking of sentences, sentence simplifica-
tion, generating patterns for relationship extraction, and
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sentence-level annotation of the originally document-level
training data. We then describe our data sets and evaluation
on BioCreative II.5 and external data, both of the whole
system and its individual components. We conclude with a
discussion of our findings. Nontrivial data used in our
experiments, such as pattern sets or extensions of third-
party software packages, are provided as supplementary
information (see Appendix). For related work, we refer the
reader to the other articles published in this special issue,
together with the overview paper by Hirschman et al. [15].
Some of the approaches we discuss build on earlier systems
described in [19] (gene mention normalization and pattern
generation) and [20] (interspecies gene mention normal-
ization). We discuss related work inline with the methods,
data sets, and discussion where appropriate.

2 METHODS

Our system consists of a sequence of building blocks, which
we will describe in separate sections in the following. The
approach for PPI extraction is based on linguistic patterns
that we extract from training data, after reannotating it on
the sentence level (original annotations were given on the
document level). This requires sufficient NER and normal-
ization (also referred to as identification). We use our
patterns together with the OpenDMAP parser [21] for
efficient analysis of a large amount of text. Sentences are
analyzed and ranked for relevance, regarding containment
of PPIs with physical evidence and referral to novelties. We
also experiment with sentence simplification, that is,
heuristics to paraphrase sentences by reducing noun
phrases to head nouns, etc. We evaluated each individual
method on task-external data; these results can be found in
the part on evaluation; see Section 3.

As one of the tracks BioCreative II.5 targeted online Web
services for processing full-text articles, our goal was to find
an efficient and still effective composition of modules to
solve the various subtasks involved. Thus, we backed off
from some approaches presented previously, such as GNAT

for entity mention normalization and an alignment-based
pattern matching algorithm (see, [20], [19]). The focus of all
building blocks in our systems is on annotation time, and
our goal was to provide a service that can handle a full-text
article in 10 seconds and still have reasonable accuracy; our
most accurate composition/tuning parameters should still
be able to analyze a full text in about 2 minutes.

2.1 Named Entity Recognition and Identification

One important motivation for studying NER in biomedical
documents is a building-block step in a larger information
extraction pipeline. NER systems, in recent years, have
tended toward primarily employing machine learning
techniques, including conditional random fields, due to
the consistently high performance these techniques provide
when trained on a high-quality corpora, such as the
BioCreative II gene mention corpus [22]. In contrast, however,
systems for identifying proteins (also called normalization
and grounding, EMN) have largely focused on dictionary-
based techniques; some notable recent systems include GNAT

[20] and GeNo [23]. For BioCreative II.5, we have identified
several attributes, which are useful for supporting the
identification of proteins found, including:

1. the ability to associate a confidence with each mention
found,

2. improving consistency via enforcing a one-sense-per-
document assumption, and

3. generating a list of candidate proteins (identifications)
to which each mention could refer.

Our protein name recognition and identification approach
thus roughly falls into these steps:

1. machine-learning-based NER of protein names,
2. dictionary-based recognition of species names,
3. generating candidate IDs for each recognized men-

tion based on dictionary matching,
4. filtering of IDs by species, and
5. ranking of candidate IDs.

2.1.1 Recognition of Protein Names

Our method for locating proteins in text centered on the use
of the BANNER NER system. BANNER is based on machine
learning utilizing conditional random fields, and uses a rich
feature set widely surveyed from the literature [24]. For
more information on conditional random fields, the reader
is referred to the technical report by Klinger and Tomanek
[25]. For BioCreative II.5, we used a model created using the
BioCreative II gene mention training data (15,000 sentences
and 18,285 gene mentions).

Confidence scores. We extended the implementation of
tagging in the BANNER NER system to provide the n-best
labelings for each sentence, that is, the n labelings with the
highest probability according to the conditional random
fields model. We then normalize the probabilities by dividing
each by the sum of alln. The mention confidence is then taken
to be the sum of the sentence probabilities in which that
mention appears. We empirically noted that the probabilities
output for each labeling become negligible after n � 10.
Consider the following short sentence fragment having two
alternative labelings (predicted protein mention underlined):

“splicings of the human serotonin transporter gene”
“splicings of the human serotonin transporter gene”

In these cases, the normalized sentence probabilities
compute to 0.53 and 0.47 in our model, respectively.

Consistency. One of the strengths of conditional ran-
dom-field-based taggers is the ability to locate mentions
based on the context surrounding the mention. This
provides the beneficial effect of allowing mentions to be
tagged even though they contain unfamiliar vocabulary.
Not every mention will appear in an unambiguous context,
however, implying that there will be mentions, which are
correctly found and tagged in one context, but will not be
correctly tagged in another context within the same
document. To handle such inconsistencies, we employed a
variation on the one-sense-per-document assumption uti-
lizing confidence values calculated for each mention. We
create a set out of all mentions containing the same text, and
then, find the mention with the highest mention confidence.
We then assign that confidence to every mention within the
set. Since most proteins are mentioned several times in the
text, this has the effect of forcing all mentions with a
nonzero likelihood to appear with the same context as the
mention with the strongest context.

We note that there are common exceptions to the notion
that biomedical text should be consistent under the tentative
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definition that consistency refers to the degree that identical
token sequences receive the same labels within a document.
These exceptions include ambiguous names, such as
abbreviations, which may be used to refer to entities of
many different types. Our methodology is still reasonable in
light of names, which are ambiguous with protein names,
since they are not likely to occur in contexts strongly
indicative of a protein name. A second exception includes
embedded names, such as the “HD” in the name “HD gene,”
which refers to Huntington disease. These were not common
in our data set.

2.1.2 Recognition of Species Names

Identification of proteins first requires to map each protein
to the correct organism. To recognize species names, we
created a dictionary from all entries in the NCBI Taxonomy
[26]. These included the NCBI Taxonomy’s preferred
name, common names, and synonyms, resulting in
405,279 different species, with a total of 557,915 unique
names. However, we restricted the number of proteins
from UniProt and TrEMBL to species associated with
proteins in the training data, see Section 2.2.1 on the next
page. We extended this dictionary by including cell lines
that can be traced to a single origin species. For example,
“HeLa” cells imply human, whereas “NIH-3T3” cells
imply mouse. Our collection covers 1,390 names of cell
lines from eight different species; see supplementary data
(see Appendix). For some model organisms, we added
additional commonly used names that were not contained
in the NCBI entries, such as “patients” referring to human.
Some generic names (mostly in the rank of genus) had to
be mapped to a specific organism. For instance, we map all
occurrences of “mice” (genus Mus) to M. musculus, “rats”
to R. norvegicus, “flies” and “Drosophila” to D. melanoga-
ster, and “yeast” to S. cerevisiae.

It showed that some species names are ambiguous, for
instance, with common English words and other biome-
dical types. Examples include “laser,” “beta,” “bears,”
“This,” and “cancer.” For BioCreative II.5, we performed
word sense disambiguation using the heuristic rules: we
removed some of these occurrences in any case (such as
“bears,” “laser,” and “codon”), and required another
synonym or hyponym of the species to appear in the
same text for some other occurrences (a mention of
“cancer” required any additional reference to crustaceans,
for example).

2.2 Entity Mention Normalization

Each individually recognized protein mention needs to be
mapped to a UniProt identifier. Our strategy was to first
assign candidate identifiers based on dictionary matches. We
then narrow down each list of IDs per protein mention by
species. We have shown previously [19], [20] how genes/
proteins can be disambiguated by using context profiles, that
is, information available on each protein that can be
compared to the current text and measure the overlap in
GO terms, disease associations, tissue specificity, chromoso-
mal location of genes, protein length, and mass, and so on.
For efficiency required in the online tasks in BioCreative II.5,
however, we do not perform actual disambiguation, but rank
IDs by dictionary match and species only. We describe these
two steps in this section.

2.2.1 Assigning Candidate Identifiers to Proteins

Dictionary-based NER approaches create a short list of
potential or candidate identifications that can then be
disambiguated. Our NER system, however, only specifies
the location and entity type of each mention. We thus
extended BANNER to also perform candidate generation by
using approximate string comparison techniques to compare
the text of the protein mentions found to the text of known
protein names in UniProt. The string comparison employed
was the Jaccard index over the position-independent set of
tokens in the mention and in the protein name, and was
implemented using a trie data structure for efficiency. Each
string comparison (recognized mention versus dictionary
entry) results in a string similarity score, which we can use to
rank individual identifiers, in addition to the aforemen-
tioned probability assigned to each mention.

We decided to use all of UniProt/SwissProt, but
included data from TrEMBL only for species that were
associated with more than one protein in the training set
gold standard; we found 10 such species. The distribution
of species differed slightly between training and test set, in
that the test set consisted to 7 percent each of rat and bovine
proteins (none in the training set), and the training set
contained about 14 percent E. coli proteins (none in the test
set); while distributions for human, mouse, and yeast
proteins were roughly the same. Thus, due to the afore-
mentioned reduction of TrEMBL data, we would not find
any rat/bovine protein exclusive to TrEBML (but still all
rat/bovine SwissProt proteins).

2.2.2 Mapping Protein Mentions to Species

After candidate identifiers have been assigned to each
protein mention, we narrow down each list by potential
species. We experimented with four different methods:

. scan the text to the left of the protein mention and
pick the closest species; if no species was found, scan
to the right,

. assign species by occurrence frequency per docu-
ment, for example, if 70 percent of the species
mentioned in a document refer to human, pick the
first best human protein; if a candidate list for a
protein mention does not contain human proteins,
pick the second most frequent species, and so on,

. assign species by occurrence frequency in title and
abstract alone, and

. pick the first protein ID (which corresponds to a
random choice).

After experiments on the training data, we decided to use
the first method (data not shown). If no species was found
in the entire text, we picked a species that was valid for at
least one candidate protein at random.

2.3 Relationship Extraction

In our experiments for PPI extraction, we concentrate on
approaches that employ linguistic patterns and compare
them to co-occurrence methods as a baseline. In order to
obtain a suitable set of patterns, we pursue an automatic
strategy that generates patterns from a training corpus. We
search for groups of similar (partial) sentences describing
PPIs and try to express their commonalities using patterns.
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In this paper, we base such commonalities on the flat
structure of a sentence, that is, sequences expressed in
terms of word categories, words, and lemmata, as opposed
to parse trees, etc., as seen in other approaches. Owing to
the Web-service scenario in BioCreative II.5, we sought for
relation Extraction approaches that are fast at application
time, just like for all other components discussed here. We
compared several techniques of generating and applying
linguistic patterns in [19]. We found that patterns can be
generated from automatically created, sentence-level train-
ing data, based on PubMed abstracts and interaction
databases, such as IntAct. Sentence patterns can also be
generated from document-level annotations, as was the
case in BioCreative II.5 IPS. While the first strategy yields
high-recall patterns that result in good precision for the
extraction of any kind of PPIs, we found that the second
strategy yields better results on the BioCreative 2/II.5 data,
albeit being very subtask-specific: BioCreative II.5 seeks for
novel, physical interactions; it includes (as opposed to
some other benchmarks) colocalizations and copurifica-
tions, excludes protein-gene interactions, and so on. This
improvement in performance can certainly be attributed to
the close ties between training and test data, which is not
given in the first strategy that extracts patterns from
arbitrary PubMed abstracts.

At application time, we found that the best performing
strategy is an alignment of patterns against new text.
However, the processing time is very long, in particular,
when the pattern sets become large, alignment algorithms
are quadratic to compute the alignment score, and cubic
when the traceback is needed (e.g., to identify exact pairs
plus relation-indicating keywords). We introduced some
drastic improvements concerning time performance in [27],
which included indexing and filtering of patterns to reduce
the amount of alignments to be computed, and which led to
only a small decrease in recall.

In this paper, we decided on a method that generates task-
specific patterns by clustering annotated training data, we
then introduce conceptualizations of tokens, that is, lists of
words referring to similar concepts (here: protein interac-
tions) that are interchangeable without changing the overall
meaning of a sentence and also keeping the sentence
grammatical. In the remainder of this section, we first
explain how we derived sentence-level annotations from
the document-level gold standard. These are used to
generate linguistic patterns from all positive sentences in
the training data. In the last part of this section, we explain
how we used the OpenDMAP framework [21] for maintain-
ing and matching patterns.

2.3.1 Generating Training Data

Our pattern generating techniques require sentence-level
annotation of entities and relationships, whereas the Bio-
Creative II.5 IPS data is annotated on a document level. This
means that per document, the list of relevant interactions is
known in terms of pairs of UniProt IDs, but no positions in
the text, evidence sentences or paragraphs, kinds of interac-
tions, and so on, are given. To annotate the full-text articles
on a sentence level, we apply NER and assignment of
candidate IDs, as described in the previous sections. Thus,
the outcome is a text annotated with protein mentions and a
list of candidate identifiers per mention. We narrow down

these candidate IDs according to the IDs given in the gold
standard per document. We then skim through the list of
interacting pairs per document and pick all sentences that
contain any one (or more) of the pairs. A further filtering step
removes sentences that do not contain any word from a
predefined list of keywords referring to PPIs. This list is
based on the one used in [19], and extended with words
found in the SDAs provided with the training data (key-
words such as “colocalization” that are task-specific). For a
recent study of the predictive power of such individual
predicates, we refer the interested reader to [28]. We were
able to recover evidences for 93 of the 223 pairs in the training
data; see Section 3.3 for details. We provide the automatically
annotated training data, consisting of 784 positive out of
14,844 sentences in total, as supplementary information (see
Appendix); thus, on average, we have almost eight evidence
sentences per pair found.

2.3.2 Generating Patterns

To generate patterns, we use all sentences that contain a
protein interaction mentioned in the gold standard. We
reduce each sentence to the shortest, continuous snippet that
contains both proteins from the gold standard pair as well as
a keyword that indicates an interaction. This keyword then
becomes a placeholder for similar keywords, so that similar
sentences/snippets can be found in new text. As an example,
consider the snippet “protein A interacts with protein B,”
where “interacts” might be replaced with “colocalizes” or
“binds.” We distinguish between interaction-indicating
verbs, nouns, adverbs, and adjectives, further subdividing
each category by interaction types and/or tense/conjuga-
tion/declension. Examples for such concept groups are shown
in Fig. 1 for regulators, regulations, activities (all three are
represented in groups of singular nouns), and verbs (here:
past tense). Note that these groupings, in particular for verbs,
aim at identifying predicates that can be exchanged with
each other so that the resulting sentence will still be
grammatically correct; the groupings usually are not
restricted to a single biological concept.

We used such groupings not only for interaction-indicat-
ing keywords, but also for tokens in domain-independent
word categories, for example, to replace “is,” “are,” “was,”
and “were” with each other. Note that we explicitly do not use
part-of-speech tagging, but rather have predefined grouped
lists. All such snippets are converted into OpenDMAP
patterns (see next section), and we provide these patterns as
supplementary information (see Appendix); Fig. 2 shows
some examples.

2.3.3 Pattern Matching with OpenDMAP

For curation and matching of linguistic patterns, we used the
OpenDMAP framework [21], which was previously used for
BioCreative 2 and related tasks [29], [21]. OpenDMAP
patterns are backed by an ontology, in the simplest case, a
concept hierarchy containing genes, proteins, species, and
other entities on one hand, and tokens arranged by word
category (for instance, verbs by tempus) and meaning (such
as our interaction-indicating keywords) on the other hand.
This ontology is easily maintained using the Protègè editor.
Our implementation requires few additional Java classes to
run OpenDMAP with our patterns, these can be found in the
supplementary information (see Appendix).
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2.3.4 Sentence-Level and Figure Caption

Co-Occurrence

As a fast baseline, we also set up a service that skips the
pattern matching and simply extracts protein pairs based
on sentence-level cooccurrence. Thus, the only filter to
remove false positives is relevance ranking, which we
describe in the next section. We treat each figure and table
caption as a single sentence.

2.4 Relevance Ranking of Sentences

The particular task of BioCreative II.5 IPT required to
extract novel PPIs for which physical evidence is provided
in a given article. We thus sought a module that ranks
sentences according to both criteria (novel and physical
evidence). We implemented this module as a classifier
learned from the aforementioned, preprocessed training
data, which has PPI annotations on a sentence level instead
of document level. We used LibSVM as machine learner,
trained on the entire training data (9,750 sentences).

Only sentences predicted as positive are fed into
subsequent modules; the input comprises sentences anno-
tated during the protein NER step; and a threshold may be
applied to influence precision/recall. This ranking module
also helps in reducing the number of sentences that have to
be fed to subsequent, possibly time-consuming modules,

thus reducing the overall processing time, which is

beneficial for an online scenario.
The features we used for ranking characterize each

sentence in using the following aspects:

1. section: in which major section does the sentence
occur—Abstract, Introduction, Results, . . .

2. position: where in a paragraph can a sentence be
found—mapped to a value between 0 () section
heading) and 1 () last sentence),

3. is the sentence a (sub-) section heading?
4. does the sentence occur in a) a figure caption or b) a

table caption?
5. does the sentence contain a reference to

a. a figure,
b. a table,
c. a cited paper, or
d. supplementary information (see Appendix)?

6. bag-of-words, lemmatized; drawn from current and
previous sentence (treated as separate features)

7. number of proteins mentioned in the sentence.

The rationales behind some of these features are as follows:

We are trying to find sentences that express a novel, major
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Fig. 1. Examples of four conceptualized groups of tokens used in our experiments. Any such token in a training/test sentence can be replaced with
any of the others in the same group. See supplementary information (see Appendix) for the entire set.

Fig. 2. Example source sentences and resulting patterns; see supplementary information (see Appendix) for the whole set. Terms in square brackets
refer to slot fillers, here: interacting proteins. Curly brackets represent concepts used as placeholders for word lists, see Fig. 1 for examples. “?”
indicates optional terms. Tokens without brackets (“partner”) are fixed.



finding of the current publication, relating to a physical
protein interaction. In such publications, protein interac-
tions are often mentioned as subheadings in the Results or
Discussion section, and often quite literally so (“A
colocalizes with B” as a heading). Major findings are often
mentioned at the very beginning (as an “appetizer”) or very
end (as a summary) of a section. A reference to another
publication points away from a finding being novel, while a
reference to a figure or table points to additional informa-
tion that the authors apparently thought useful to underline
their findings. Facts mentioned in the introduction of a
paper are most often repetitions of known facts (back-
ground information involving the entities discussed in the
paper) mentions in abstracts, results, and conclusions are
more likely to point to novel findings. Such sentences often
contain phrases, such as “Here, we show that . . . ” or “We
conclude that . . . ,” indicating novel findings.

2.5 Paraphrasing Sentences

The idea behind our paraphrasing approach is to simplify
sentences to retain only information necessary for relation-
ship extraction. Our strategy follows four steps, explained
in detail in [30]:

1. deleting uninformative words,
2. replacing entity names with a single-word tag,
3. replacing noun phrases with the head noun, and
4. simplification of syntax.

All these steps serve the purpose of arriving at a sentence
that is simpler to parse for a dependency parser, creating
less parsing errors. In the framework presented for
BioCreative II.5, simplification serves mostly to increase
recall by removing unnecessary “fillers” from both patterns
and new sentences.

Deletion of uninformative words. Each sentence is first
preprocessed to remove phrases that are not essential to the
sentence. This includes removal of section indicators, which
are phrases that specify the name of the section at the
beginning of the sentence and are followed by a colon. These
section indicators typically do not contain a verb. Another
type of removal is the removal of phrases in parentheses,
which include citations and numbering in sentences that
represent lists. Other than removal, the preprocessing step
involves a simple transformation of partial hyphenated
words, which are words that begin or end with a hyphen.
Such words are typically parts of the nearby hyphenated
words. A partial hyphenated word is transformed by
combining it with the nearest hyphenated word that follows
or precedes the partial hyphenated word, depending if the
partial hyphenated word begins or ends with a hyphen. For
instance, the phrase “alpha- and beta-catenin” is trans-
formed into “alpha-catenin and beta-catenin.” In addition,
we remove introductory phrases that frequently occur at the
beginning of a sentence, examples are the underlined parts
in “These results suggest that affixin is involved in
reorganization of subsarcolemmal cytoskeletal actin [. . . ]”
and “As reported previously, alphaPIX was specifically
coimmunoprecipitated by [. . . ],” which we remove.

Replacement of entity names. Named entities occur
frequently in biomedical text, and due to their inherent
complex structure they are one of the main reasons for
natural language parsers to perform poorly on biomedical
text. Our approach is to replace each entity name (typically

noun phrases) with a single element. For the system
described in this paper, we focus on named genes, as
recognized by BANNER and described in Section 2.1. Each
named entity will also be numbered, so we would replace
each such name with tokens like “GENE0,” “GENE1,” and
so on. To satisfy the linking requirements when using a
deep parser (Link Grammar in our case), we also have to
consider the grammatical category of each name (that is,
singular or plural). To address this issue, single elements are
concatenated with an “s” if the following verb is not third-
person singular.

Replacement of noun phrases. The occurrences of
multiword technical terms involved in biomedical text
imply that such terms introduce inaccuracy while calculat-
ing the syntactic information available in the sentence, for
instance, many parsers would join adjectives with their
corresponding nouns [31]. Our approach uses LingPipe [32]
for shallow parsing to identify noun phrases and replace
them with single elements. As in the replacement of gene
names, the grammatical category has to be taken into
account. A single element is considered singular when the
following verb is third-person singular or the determiner
preceded by the element is either “a” or “an.” The single
element is otherwise considered as plural and an “s” is
attached to the end of the element.

Replacement of gene names with placeholders like
“GENE0” does not generally lead to loss of context for the
task of PPI extraction, as we maintain a list of placeholders
cross-referenced to the corresponding original gene names.
However, replacing noun phrases with place holders like
“REPNP0” (for the first such replaced noun phrase) can
cause loss of context because of skipping the words that
indicate association. Hence, we replace the noun phrases
with the head noun of the phrase as identified using the
Stanford parser.

Simplification of syntax. In [30], we discuss the
necessity of building a ratioed metric for determining the
grammatical correctness of a sentence. Every sentence can
be uniquely associated with the two-tuple of null count and
disjunct cost obtained from the cost vector of Link Grammar
output. The null count (which represents words left out in
the Link Grammar parse) needs more attention than the
disjunct cost (which represents linkages marked as less
likely by Link Grammar). Since null counts and disjunct
costs are typically less than 10 (that is, single digit
numbers), for the purpose of easy comparison and for
capturing the two-tuples in one dimension, we define a
GRAM value of a sentence to be 10 times the null count plus
its disjunct cost. It is an easy proof that a GRAM value is
equivalent to the two-tuple of null count and disjunct cost,
under the assumption that the disjunct cost of the
corresponding collection of sentences is not more than 10.
Any syntactic simplification will be approved only if the
resulting sentences are collectively at least as grammatically
correct as the original sentence alone, that is, the sum of
GRAM values of the parts should be less than or equal to
the GRAM value of the original sentence. We implemented
rules for prefix subordination, infix subordination, and if-
then coordination (for details, see [33]). These rules were
also adapted recently by SimText [34], a text simplification
system for improving the readability of medical literature.
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2.5.1 Limitations and Future Work

Since the process of determining grammatical correctness
requires processing the sentence and its components with
Link Grammar multiple times, the last step is computation-
ally expensive and is not suitable. For an online competition
like BC 2.5 that has time constraints, we did not use
syntactic simplification in our pipeline of BC 2.5. We also
noted that Link Grammar is not as efficient as statistical
parsers like [35], and hence, we wish to change the GRAM
metric to use notions based on normalized probability and
transpose the algorithm by replacing Link Grammar
dependencies with Stanford dependencies.

2.6 Ranking of Extracted Pairs and Proteins

Ultimately, we rank all pairs and individual proteins per
article. This ranking is influenced by the confidence scores
we obtained for each protein mention, the disambiguation
to find a UniProt ID per protein, the relevance score of the
ranked sentence, as well as the number of evidences found
for each pair in the overall article. We can also use the later
value for filtering, requiring a minimum number of
occurrences of each pair throughout the article. We set a
threshold for each individual of the aforementioned scores
as well as the combined score to filter out likely false
positives, the combined score was the product of all
individual scores, normalized to [0..1] by dividing by the
maximum score observed in the corresponding article.

3 EVALUATION AND RESULTS

We first describe the evaluation results relevant to the
BioCreative II.5 INT and IPT tasks. The second half of this
section presents results obtained for individual modules, as
established in intrinsic evaluations. Submissions in Bio-
Creative II.5 were evaluated in two ways for the interaction
normalization (INT) and the interaction pair extraction
(IPT) tasks: 1) using the raw submitted data and 2) using the
submitted data mapped to orthologous proteins. For the
first evaluation, submissions predict the exact protein in
terms of its UniProt ID to achieve a true positive; for the
second, prediction of a protein that was homologous to the
true protein was also considered correct. The reason for
introducing “homonym ortholog mapping and organism

filtering” (HOF) was that it is, for automated systems, often
impossible to disambiguate species: authors do not always
mention the species, or multiple species are plausible for a
given protein mention; also, some interactions include
proteins from different species. In BioCreative II.5, putative
organism(s) were selected per protein by curators, and a
predicted protein was mapped to these target organism(s) if
an orthologuous protein with the same name existed for the
later; see [15] for details. Thus, this second assessment
essentially made up for errors in mapping a protein to an
organism, alleviating the task of protein normalization.

In addition to precision and recall, two metrics were
used in BioCreative II.5 for ranking submissions: F-score
and AUC interpolated precision/recall (iP/R) curves. As
per the initial task description, submissions were assessed
using the macroaveraged F-score for INT and IPT. They
were later also ranked according to AUC iP/R. To obtain
AUC iP/R curves, the highest precision at each recall point
is calculated. The interested reader can find a detailed
discussion regarding f-measure versus AUC scores (for PPI
extraction systems) in [36].

Our systems for INT and IPT were tuned toward high
F-score, in particular, trying to balance precision and recall
(this does not hold for all of our cooccurrence-based
submissions, which concentrate on high recall). From the
overall data (see overview article, [15]), it can be seen that
high AUC iP/R can practically be guaranteed by tuning
systems toward high recall. For both INT and IPT, this can
simply be achieved by submitting multiple identifiers per
protein, thus leading to hundreds of UniProt IDs per article.
The highest AUC iP/R submission of 43.5 percent contained
an average of 83 IDs for each of the 252 relevant proteins
(20,888 IDs in total for the 61 relevant documents, 342 IDs on
average per document), with a resulting precision of
1.2 percent. For a database curation scenario, narrowing
down the number of IDs per protein/article might prove
suitable, for curators as well as authors writing an SDA, thus,
we focus on reporting F-scores in the remainder.

For the INT task, mapping proteins that take part in
an interaction to UniProt identifiers, we achieve a
maximum F-score of 42.9 percent on the raw data set;
see Table 1. The second best f-score was obtained by
team 18, achieving 28.6 percent. Our system yields the
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TABLE 1
(a) Interaction Pair Normalization Raw Results and (b) Ortholog-Mapped Results

The table shows results for our five experiments (gray); for other participants, only their respective best result is mentioned. Each row starts with a
team number plus a key (“run4”) to further identify the experiment, cf. overview paper [15]. o indicates an online run, f offline. Results are
macroaveraged, in percent, sorted by F-score in raw results.



highest precision among the approaches presented by all
teams (43:4 percentþ 13 percent over the next best ap-
proach), and a maximum recall of 53.5 percent (best
team: 59.1 percent), both again on the raw data.

In the IPT task, extracting protein interactions from full-

text articles, we achieve an F-score of 22.1 percent, slightly

behind the best system (team 18), which achieves 22.2 percent

on the raw data; see Table 2. Our system obviously benefits

from the homonym-ortholog mapping (see overview paper

[15]), after which we achieve an F-score of 30.1 percent,

outperforming all other approaches.

3.1 Server Configurations

All our five submissions were implemented as online
servers with different settings, referred to as s01, s02, s03,
s19, and s20 in the following. In essence, we varied the
methods for interaction extraction (pattern-based, sentence-
level co-occurrence, and sentence and figure caption co-
occurrence), applied or skipped relevance ranking, and
applied or skipped sentence simplification; for relevance
ranking, we varied the threshold above which an interac-
tion (IPT) or individual protein (INT) was reported. For
protein NER and identification, we varied the thresholds
considering mention and identification probabilities based
on BANNER and dictionary matching. We also varied the
minimum support for a predicted pair, that is, the
minimum number of extracted evidences discussing a pair
in the given document. For all five servers, we excluded
self-interactions.

. s01 used pattern-based extraction, relevance ranking,
and sentence simplification. Thresholds were set to
low confidence, but we required three occurrences
per interaction in an article before reporting it.
Overall, this setup was thought to yield the best
F-score performance, with more or less balanced
precision and recall, but also requiring the longest
processing time per full text.

. s02 extracted interactions based on sentence-level
cooccurrence, requiring high confidence predictions
for protein mentions, normalizations, and pairs. This
setup employed relevance ranking to filter out likely
false positives in terms of “novel interactions with
physical evidence.” At least three occurrences of an
interaction had to be found; otherwise, we did not
report it.

. s03 was set up similar to s02, with the addition of
figure caption cooccurrences; two proteins had to
cooccur within the same figure caption, not sentences
of a caption. The minimum number of evidences per
interaction was set to one, but we considered only
sentences that had exactly two proteins.

. s19 used essentially the same configuration as s01,
but without relevance ranking of sentences.

. s20 was set up as a “high recall” run: interaction pair
extraction was based on simple sentence level and
figure caption cooccurrence; the thresholds for
protein mentions, protein identification, and rele-
vance ranking were set to low values; minimum
support was one.

The high-recall run s20 yielded almost 52 percent recall at
11 percent precision for the IPT task; the best pattern-based
recall was 30 percent at 38 percent precision (s01). For
individual proteins, s20 achieved 64 percent recall, com-
pared to 55 percent for the best pattern-based configuration
(again s01); see Table 3.

3.2 Pattern Set from BC II and BC II.5 Training Data

We identified 1,409 snippets in the BC II.5 training data,
leading to 971 unique patterns; 200 of these patterns
occurred twice or more often in the training snippets. From
the BioCreative II training data, consisting of 700 full-text
articles, we extracted a total of 18,206 snippets, yielding
11,062 unique patterns; 4,608 of these patterns occurred two
or more times. We merged the two sets of patterns with
support two or more (200þ 4;608) into the final set we used
for our experiments; there were surprisingly few redun-
dancies (34; only 17 percent out of the 200), so the overall
number of unique patterns used was 4,774. The supple-
mentary information (see Appendix) contains each pattern
together with its support, including the ones that have a
single supporting evidence; note again that we did not use
those in our experiments, they are provided for complete-
ness only. Table 4 lists all patterns generated from the
reannotated BC II.5 training set that have a support of four
or more in this set (see supplementary data (see Appendix)
for whole set). These 24 patterns cover 15.3 percent of the
training examples. The patterns with a support of two or
more together cover 50.3 percent of the training data.

3.3 Where to Find Interactions

Annotation of the training data on a sentence level led to an
analysis as to where protein interactions are typically
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discussed in full-text articles. The bases for this analyses
were 3,794 sentences from the training set that contain two
or more proteins (but not necessarily interactions). We were
able to recover 93 out of the 223 protein pairs in the training
set. This means that per each of these pairs, we found at least
one evidence sentence that contains both proteins. Note that
these data refer to autoannotated sentences, as described in
Section 2.3.1; we skipped the disambiguation step by
reducing the sets of candidate UniProt identifiers to the
ones known in the gold standard for a particular document.
Missing protein pairs resulted from false negatives in the
NER step, missed assignment of candidate IDs, proteins of a
pair never occurring together in a single sentence, and pairs
discussed in tables, figures, or supplementary data (see
Appendix) (where we analyzed captions only).

These 93 interaction pairs cover 120 out of the 239 differ-
ent proteins in the gold standard. Counting individual
proteins, without the constraint that they have to be in the
same sentence as an interaction partner from the gold
standard, we found 134 of the 239 proteins somewhere in
the corresponding document. Twenty-eight of the pairs not
found contained an identifier that was not from UniProt/
SwissProt, concerning 41 individual proteins. Twenty-seven

(>10 percent) of the training pairs occurred in a single table
(document ID: 2008.02.82), but were never mentioned in
the full text (tables are not contained in the training data
except for captions), and thus, eluded our method. Other
pairs were mentioned only in figures (see training docu-
ment 2008.01.65, Figure 5, for an example) and never in
the full text, in some cases, even the figure caption did not
mention one or both proteins. The remaining pairs were
missed by NER or candidate assignment.

The BioCreative II.5 IPS training data consist of 61 full-
text documents, with 9,750 sentences in total. Our automated
sentence-level annotation of the training data (see Sec-
tion 2.3.1) revealed that 2,291 sentences contain exactly one
protein, and 3,794 sentences contain two or more proteins
(23 and 39 percent, respectively). Among the 3,794 sentences
with at least two proteins, we found 784 sentences that
contain one or more protein pairs known to interact from the
gold standard. We provide these sentences as supplemen-
tary information (see Appendix), with markup for proteins
(including UniProt ID), pairs, and source of the evidence
regarding document and position with the document. As
mentioned above, we could not find all gold standard pairs
in single sentences of the training data. Some pairs would be
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TABLE 3
Composition and Performance of Individual Servers

Average processing time in minutes per article, based on the full set of 595 test documents, 61 of which contained interactions, F1-score in percent
for raw and ortholog-mapped data; for detailed results see Tables 1 and 2. Note the large processing time in the co-occurence-based configuration
s02, which was due to a server outage and should be similar to s03.

TABLE 4
Patterns with Highest Support (�4) in the Training Data

See Section 2.3.2 for explanations of the markup. DASH and COMMA are placeholders for a single dash/hyphen and a comma, respectively.



mentioned only in tables (which are not part of the training
data except for table captions), or only in figures (such as in a
blot); the evidence is spread across multiple sentences
(maybe using anaphora), our NER step missed one or both
protein mentions, or our EMN step failed to assign the
correct UniProt ID(s).

We analyzed the 784 sentences regarding their position
within each document to get an idea of where interactions
can typically be found in a full-text publication (also cmp.
Ding et al. [37]). Fig. 3 shows these data, distinguishing
between the two aspects “section” (Title, Abstract, Introduc-
tion, Methods, Results, Results and Discussion, Discussion,
Conclusions, Figure, Table, and three types of Supplementary
data (see Appendix)) and position within a subsection/
paragraph (heading, first sentence of a paragraph, sentence
in the middle, and last sentence). Note that data from figures
and tables stem from their captions only, not the actual
figure or table. Note also that Results and Discussion refers to
a frequently occurring main section heading, and not data
joined from two different sections. Values used in Fig. 3
include duplicates, that is, sentences that contain more than
one interacting pair are counted multiple times. Thus, the
total number of evidences we obtained from the 784 sen-
tences was 1,784. Thirty-eight percent (682 out of 1,784)
interaction pairs occurred in Results sections, 19 percent in
Figure captions, and 17 percent (308) in Discussion sections.
Abstracts contained 6 percent of the sentences that discuss
interactions. Grouping sentences by their position within a
subsection/paragraph, it showed that 45 percent of all
headings that contain two or more proteins discuss one or
more interactions; for first, middle, and last sentences the
percentages are 28, 28, and 32 percent, respectively.

On average, each full-text article in the training set
contained 3.65 interactions, possibly with multiple men-
tions anywhere in the text. Looking into the coverage of the
interaction pairs by each section, we found that 77 percent
of the interaction pairs were mentioned (once or multiple
times) in Results, 57 percent were mentioned in Introductions
and Figures, 56 percent in Discussions, 50 percent in
Abstracts, and 27 percent in Titles. Results and Discussions
contained 5 percent, and Methods only 2 percent. Though,

we were able to recover evidences for only 42 percent of the
gold standard interactions from the training set, these
numbers can be seen as rough estimates for occurrences of
interactions in full-text articles; this holds in particular
because a large number of the missing pairs might be
discussed in tables and figures only, and thus, not be
accessible by our methods (see beginning of this section).

3.4 INT- and IPT-Independent Analysis of Modules

3.4.1 Sentence Simplification

We used PIE [38], a machine learning PPI extraction tool
that uses parse trees generated from Stanford parses, for
evaluation on the AIMed corpus [39]. The results are shown
in Table 5. The results of evaluation and error analysis allow
us to conclude that sentence simplification, although still
needing improvements, leads to improved PPI extraction
results using PIE. This indicates sentence simplification
used as a preprocessing step for NLP-based systems could
improve PPI extraction. In particular, we observed that
simplification can largely increase the recall, while main-
taining or also increasing precision, depending on the
setup. We tested the combination of predictions from
sentence before simplification with predictions extracted
after simplification, using AND or OR semantics, as
detailed in Table 5. Not surprisingly, the highest recall
thus results from an OR combination, but highest precision
was obtained after simplification.

3.4.2 Protein Named Entity Recognition

To evaluate the performance of our NER component, we
previously experimented with BANNER on the BioCreative 2
Gene Mention (GM) data set. In its latest version, we
obtained an f-score of 86.4 percent (88.7 percent precision at
84.3 percent recall) on the BC2 GM test set; the model was
computed from the entire BC 2 GM training set. BC2 GM
consists of 15,000/5,000 sentences from PubMed abstracts
(fixed split for training/testing), with 18,285/6,331 men-
tions of genes and gene products.

3.4.3 Protein Mention Normalization

To normalize proteins names to UniProt identifiers, we use an
adapted version of GNAT [20]. GNAT was evaluated on data
derived from the BioCreative 1 and 2 test sets, thus mapping
genes to their respective EntrezGene entry. The derived data
consists of 100 annotated abstracts and contains 320 genes
from 13 species. Due to the origin of the data set, 295 genes
refer to either mouse, human, yeast, or fruit fly. In a cross-
species evaluation, GNAT achieves an f-score of 81.4 percent
for human, mouse, fly, and yeast; individual f-scores are 85.4,
81.0, 75.3, and 89.6 percent, respectively.
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Fig. 3. Positions within full-text articles, where interacting proteins are
discussed. Horizontal axis: number of sentences per main section (Title,
Introduction, Methods, etc.) and vertical axis: number of sentences
grouped by position within a paragraph (heading of a section or
subsection, first sentence of a paragraph, sentence in the middle, and
last sentence). Figures and Tables are not distinguished by the section
they occur in. The last column and row indicate totals per section and
position, respectively.

TABLE 5
Evaluation of Sentence Simplification on AIMed

“And” means we count a PPI only if it was predicted by both systems,
with and without simplification, and for “or” combination, the PPI was
predicted by at least one. P/R/F1 in percent.



3.4.4 Sentence Ranking by Relevance

We performed a fivefold cross validation of the sentence
relevance ranking module on the entire sentence-level
training set, independent of actual pairs and their UniProt
identifiers; averaged accuracy for this module was 94 percent.

4 DISCUSSION AND CONCLUSIONS

We presented here a system for extracting PPIs from full-
text and mapping each protein to a UniProt identifier. We
showed how to derive a sentence-level training set from a
document-level gold standard to generate patterns, which
we use in the OpenDMAP framework to analyze new text.
We rank sentences by relevance containing novel interac-
tions and evidence for physical interactions. Sentence
simplification helps to rid of unnecessary information (filler
words) in both patterns and new text. Using this approach,
we achieve an f-score of 22.1 percent for finding protein
interactions, and 42.9 percent for mapping proteins to
UniProt IDs, as evaluated during the BioCreative II.5
community challenge. It shows that our method outper-
forms other approaches for the relation extraction task and
is on par (�0:1 percent) with the best system for protein
mention normalization. Disregarding the species in the
normalization task, thus finding the matching group of
orthologuous proteins only, we can outperform all other
systems, obtaining an F-score of 30.1 percent.

As our system largely benefits from the homonym-
ortholog mapping (HOF;þ8 percent in F-score), the jump
results from an increase in precision (þ16:3 percent), while
recall remains the same (29.6 percent), due to the nature of
the mapping. This leads to the conclusion that while our
system often can identify the group of orthologuous
proteins correctly, it lacks in mapping proteins to the
correct species, as shown by the large gain in precision.

In future work, we also aim to identify “negative
patterns” to filter false positives. In the same manner, we
experiment with ranking patterns and/or sorting them by
largest spans covered whenever multiple patterns match
the same sentence. As an example, consider the partial
sentence “protein A binds to B and C to D” and a pattern
“P1 binds P2 and P3,” which can easily be found in all
training sets, would lead to the wrong conclusion, namely A
binding to C, while in reality C binds to D.

Another interesting perspective would be to encode parse
information (shallow parse, constituents, and/or dependen-
cies) in our patterns; see, for instance, [40], which assesses the
usage of several deep parsers in extracting PPIs. One
drawback with respect to the online scenario we are focusing
on in this paper would be the added overhead in parsing
individual sentences (possibly filtered by a prior ranking
step). Depending on sentence, parser, and parameters,
parsing can take between 10 and 30 seconds to obtain useful
parse trees, by far exceeding the time constraints we envision
for our system.

APPENDIX A

SUPPLEMENTARY INFORMATION

A.1 Annotated Training Data

BC II.5 training data annotated for individual interactions
on the sentence level.

A.2 OpenDMAP Patterns

Autogenerated patterns for protein interactions, based on

BC II.5 training data, to be used with OpenDMAP [21].

A.3 Additional Classes for OpenDMAP

Class files that demonstrate the extension of OpenDMAP

[21] to use our pattern files.

A.4 List of Cell Lines Mapped to Species

In addition to species’ names from the NCBI Taxonomy, we

compiled a list of 1,390 names of cells and cell lines that can

each be mapped to an individual origin species.
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