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Abstract—in early 1997, our group initiated a project to develop Increasingly, we have found our research agenda being
JUPITER, a conversational interface that allows users to obtain Shaped by a strong desire to deve|0p human |anguage tech-
worldwide weather forecast information over the telephone nologies and utilize them in a way that will enable universal

using spoken dialogue. It has served as the primary research . . . . .
platform for our group on many issues related to human language information access. This has led to our introduction of the

technology, including telephone-based speech recognition, robust GALAXY client-server architecture [3], [4], in which the client

language understanding, language generation, dialogue modeling,can be lightweight, relying on remote servers to perform the
and multilingual interfaces. Over a two year period since coming compute and knowledge intensive tasks. A logical outgrowth
on line in May 1997, JUPITER has received, via a toll-free number ot s research direction is to make use of the most lightweight

in North America, over 30000 calls (totaling over 180 000 utter- f all clients: the teleph Teleoh based inf i
ances), mostly from naive users. The purpose of this paper is to of all_ clients: the telephone. lelephone-based Information

describe our development effort in terms of the underlying human access and delivery is important because the telephone is so
language technologies as well as other system-related issues sucmuch more pervasive when compared to PC’s equipped with

as utterance rejection and content harvesting. We will also present |nternet access. By using the telephone as a means of accessing
some evaluation results on the system and its components. information, we can empower a much larger population. In the
Index Terms—Conversational interfaces, dialogue systems, scenario that we envision, a user can condirttial browsing
speech understanding, telephone-based speech recognition. in the information space without ever having to point or click,
or even be tethered to a PC.
Telephone-based interactions pose several research chal-
lenges. For example, telephone speech is often hard to recognize
|. INTRODUCTION and understand due to the reduced channel bandwidth and the
resence of noise. In additiodisplayless interactionelies on
) X ; ) ly the human auditory channel to receive the information,
in the developmen't cﬁonversgtlonal mterfacemtgrfaces and thus potentially increases the cognitive load. Such a setting
that enab!e a user to mteract' with a gomputer as if it were g -nds a high-quality verbal response. Perhaps even more
conversational partner. To realize such interfaces, several hurnﬁBortantly, the language generation and dialogue management

!angua_ge technologies mu_s_t be developed and mtegra_ted.OnC ponents of the system must work in concert to present
input side, speech recognition must be augmented with natyal tormation in digestible chunks, so that the user can

language processing, so that utterances cannkierstoodin easily absorb it. Furthermore, near real-time performance is

the context of the preceding dialogue. On the output side, Ia}?écessary, since prolonged delay over the phone can be quite

guage generation must be integrated with speech Synthes'saﬁﬂoying to users and render the system unusable.

that the information sought by the user, as well as any cIan-In 1997, we began to developRITER a conversational inter-

fication dlalogue generated by the system, can _be ve_rballz?agce that allows users to access and receive on-line weather fore-
!n 1989, we first demonstrated such .a cqnversaﬂonal mtgrfa&gst information for over 500 cities worldwide over the phone.
in the form of the \DYAGER urban navigation and eXplor""t'orULJPlTERutilizes the client-server architecture oAG\Xxy . It can
system [1]. In 1994, we infroduced=BAsUS a spoken lan- give aweather report for a particular day or several days, and an-

gzuage interface ;[0 t;? On'l'nmlf;?ﬁARE _retservallt!ofn systt_em swer specific questions about weather phenomena such as tem-
[2]. PEGASUSevolved from our air travet information erature, wind speed, precipitation, pressure, humidity, sunrise

service (ATs) common task system, butincluded a far more s Ime, advisories, etc. Over a two year period since coming on

phisticated dialogue model. line in May 1997, OPITER has received over 30000 calls (to-
taling over 180 000 utterances) via a toll-free number in North
America, mostly from naive users.
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JUPITER: | Hi! Welcome to JUPITER, the MIT Lab for Computer Science weather information system. This call is being recorded for
system development. You may hang up or ask for help at any time. How can I help you?

User: | CAN YOU TELL ME WHAT’S THE WEATHER LIKE IN BOSTON TODAY
JUPITER: | In Boston this afternoon. Partly sunny early. Then becoming cloudy with 30 percent chance of showers toward evening.
Tonight: rain. Possibly heavy at times. Near 100 percent chance of rain. Can I help you with something else?

User: | YES WHAT ABOUT SAN FRANCISCO
JUPITER: | In San Francisco today: patchy fog near the ocean morning. Otherwise mostly sunny. Tonight: areas of coastal fog and
low clouds. Otherwise fair. Is there something else I can do for you?

User: | YES HOW COLD IS IT IN DALLAS TEXAS TODAY
JupITER: | In Dallas today: high upper 40s. Tonight: lows near 32. What else would you like to know?

User: | I'D LIKE TO KNOW WHETHER IT’S SNOWING IN DETROIT
JUPITER: | I’'m sorry, I didn’t understand you. Please rephrase your query.

User: | WHAT IS THE WEATHER IN DETROIT
JupPITER: | In Detroit this afternoon: occasional light rain and drizzle. Tonight: rain showers likely. Becoming snow showers by late
tonight. 70 percent chance of precipitation.

Fig. 1. Example spoken dialogue betweemIJER and a user.

sampling, redundancy reduction, and semantic representatian.System Architecture
The linguistic information that exists online often contains the initial implementation of UPITER makes use of our

much more detail than the user would like. In the case @, axy conversational system architecture [3]. Since its

JUPITER, for example, the weather information for a giveRiroquction in 1994 as a client-server architecturay &y

city can be quite extensive, whereas the user may only Res served as the testbed for our research and development of
interested in the temperature. To be able to proiné&@mation 1\, man Janguage technologies, resulting in systems in different
on demandand deliver just the information that a user needgumains and languages, and with different access mechanisms.
JUPITER must fully unde_rstand the information it is presenting, 1996, we made our first significant architectural redesign
to the user, so that it will be able to select a subset relevantfpnermit universal access via any Web browser. The resulting
_the question and avoid boring the user with long and poss'kWebGalaxy system made use of a hub to mediate between a
irrelevant monologues. Furthermore)RITERs forecasts are ja5 GUI client and various compute and domain servers [4].
obtained from multiple sites on the World Wide Web, whose |, 1998 G axy was designated as the first reference ar-

information content complement one another. It must recogniggitacture of the newly launched DARPA Communicator ini-
when two sources are providing overlapping information, anfive in the US. As a result, we have developed a new ver-
select one or the other based on quality considerations. Finall,n of the GLaxy architecture, this time with the specific
by reprgsenting all linguistic dgta in a Iangqage—transparegrgms of promoting resource sharing and plug-and-play capa-
semantic frame format, the notion of translating the weathgiiyy across multiple sites [5]. To enable multiple system devel-
reports into other languages becomes far more feasible.  gners to experiment with different domains, components, and
The purpose of this paper is to describe our development Egntrol strategies, we made the hub “programmable,” i.e., a
fort, and to present some evaluation results on the system aafj,ing language controls the flow through each dialogue, such
its components. The paper is organized as follows. We first pigy; the same executable can be specialized to a variety of dif-

vide a system overview. This is followed by a discussion of therent system configurations. The hub communicates with the
human language technology development effort. We then dgyious servers via a standardized protocol.

scribe our data collection effort, and present some evaluation, January 1999, we switched®ITER to this new, config-

results. We conclude with a discussion of lessons learned adpje hub architecture, illustrated in Fig. 2. As illustrated in

future work. the figure, human language technology servers communicate
through the programmable hub using a scripting language. The
Il. SYSTEM OVERVIEW audio server interacts with the user over the phone line. The turn
To accessWPITER, a user calls a toll-free number in Northmanagement server interprets the user query and prepares the
Americal After a connection has been establishegpider  System response. The turn manager communicates with the ap-
speaks a greeting message. After the greeting, the user is freligation back-end via a module-to-module subdialogue medi-
engage in a conversation withRTER, inquiring about weather ated by the hub. The application back end server retrieves data-
forecasts for selected cities. The system signals the completR€ tuples from a relational database using SQL.
of its turn by playing a brief high tone, indicating its readiness ,
to accept new input. When the system detects that the user RadCreating the Content
stopped talking, it plays a brief low tone, indicating that it is JUPITER can provide weather forecast information for more
no longer recording. At this writing, users can only interrughan 500 cities worldwide. It currently obtains its information
JUPITER by pressing the “*" key;verbal barge-in has not yet from several complementary weather sources available either
been implemented. Fig. 1 gives an example of interactiofrem the Web, including CNN, the National Weather Service,
between UPITER and a real user. and USA Today or through direct satellite feeds from WSI.

.’ , _ Weather information from the Web is updated three times a
The number is 1-888-573-8255. For overseas calls, the number is 1-617-258-

0300. For more information about the system, users can also acresers 0@y, DY polling the various sources for any changes in predic-
home page at http://www.sls.Ics.mit.edu/jupiter. tions. Some web sites, such as CNN ai8A Today provide
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JuPITER currently has an out-of-vocabulary (OOV) rate of 1.9%
on a 2507 utterance test set (versus 1.3% on training data).

2) Phonological Modeling:In the current OPITER recog-
nizer, baseform pronunciations for words are represented using
62 different phonetic units. After drawing the pronunciations for
the LPITER vocabulary from the LDC RONLEX dictionary, al-
ternate pronunciations are explicitly provided for some waérds.
In addition to the standard pronunciations for single words pro-
vided byPRONLEX, the baseform file was also augmented with
common multi-word sequences which are often reduced, such
as “gonna,” “wanna,” etc.

A series of phonological rules were applied to the phonetic
baseforms to expand each word into a graph of alternate pronun-
ciations. These rules account for many different phonological
phenomena such as place assimilation, gemination, epenthetic
silence insertion, alveolar stop flapping, and schwa deletion.
These phonological rules primarily utilize phonetic context in-

formation when proposing alternate pronunciations, although
syllabification and stress information can also be used. We have
made extensive modification to these rules, based on our exam-

multiday weather related information on a large number dfation of tne OPITER data. o 4 with brob
domestic and international cities, although the information ~\r¢S In the pronunciation graph are augmented with proba-

is limited to general weather conditions (e.g., sunny, part?"ties that givg preference _to more likely pronunciations ar_1c_i
cloudy, etc.) and temperature ranges. The satellite feed p _g_nallze Ies; I|kely pronunciations. Currently, these proba_-b|||-
vides up-to-the-minute weather information on such things ggs are maximum likelihood estimates taken from fprqed align-
temperature and humidity. ments Qf Fhe training data. The addition of pronunciation graph
The National Weather Service provides detailed weathoPabilities reduced error rates by nearly 9% (1% absolute) on
forecasts for 279UPITER ities in unrestricted and unformatted? 2200 utterance development set.
text. Since they provide a rich description of the weather, !N @ddition to the basic set of 62 units, we have also explored
including predictions of amounts of precipitation, advisoried'® use ofIargermventones of units which Incorporate stress in-
for hurricanes, floods, etc., we feel it is worth the extra effort t{prmation, or which represent larger phonetic sequences which

process them. Extraction of the information is done using ofif¢ Nighly coarticulated (e.g., “or,” “all’). However, we have
natural language understanding componemtaTdescribed in thus far been unable to achieve consistent gains with these more
Section 11I-B2 " complex inventories. We plan to continue exploring alternative

representations in the future.
3) Language Modeling:The LPITER system makes use of
both class bigram and trigram language models. Nearly 200
In this section, we briefly describe8ITER's human language classes were defined to improve the robustness of the bigram.
technology servers shown in Fig. 2. These include speech recghen trained on a set of nearly 54 000 utterances and evalu-
nition, frame construction (i.e., language understanding), lagted on a test set of 2507 utterances, the word-class bigram and
guage generation, and turn managenient. trigram had perplexities of 20.8 and 18.7, respectively. These
are slightly lower than the respectiweord bigram and trigram
perplexities of 21.6 and 19.9. Note that the class bigram also
For speech recognition, we use theMMIT segment-based improved the speed of the recognizer, as it has 20% fewer con-
speech recognition system developed in our group [6], [7]. Somections to consider during the search.
of the relevant aspects of the recognizer are described below. During recognition, the class bigram language model is used
1) Vocabulary: JUPITERS vocabulary has evolved with ourin the forward Viterbi search. The class trigram language model
periodic analyses of the growing corpus. It currently contaimgas originally deployed in a second pass as part of a backward
1957 words, including 650 cities and 166 countries; nearly half* search which used the bigram scores as a look ahead es-
of the vocabulary contains geography-related words. The destgnate. However, we observed that tHé search was suscep-
of the geography vocabulary was based on the cities for whithle to severe thrashing when there were significant differences
we were able to provide weather information, as well as corbhetween the bigram and trigram language models. We subse-
monly asked cities. Other words were incorporated based on fgetently modified the search to first use the backward class bi-
guency of usage and whether or not the word could be used igram to produce an intermediate word graph representation.
query which the natural language component could understaitlis word graph is then rescored with class trigram language

Fig. 2. lllustration of thesALAXY -II architecture.

I1l. HUMAN LANGUAGE TECHNOLOGIES

A. Speech Recognition

2We omit text-to-speech generation, which is currently implemented using a3Vocabulary words missing from theRBNLEX dictionary were entered man-
commercially available text to speech system, DECtalk. ually.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 16:05 from IEEE Xplore. Restrictions apply.



88 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 1, JANUARY 2000

model scores and can be convertedtdest outputs if desired. have found that the system runs about 40% slower than for the
This strategy significantly reduced the worst-case latency ofly composed and optimized.

development set from 12 s to 2 s, with a median latency under
1s. B. Language Understanding

4) Acoustic Modeling:For acoustic modeling, the current Tina, a natural language understanding system developed in
JUPITER configuration makes use of context-dependent langur group, is used to transform the words into a meaning rep-
mark-based diphone models which require the training of botsentation [10]. INA is used in GPITER N two distinct ways.
transition andinternal diphone models [6]. Internal diphonesjt parses user queries into a semantic frame for interpretation
model the characteristics of landmarks occurring within th(j%/ the system, to performuery understandingt also parses
boundaries of a hypothesized phonetic segment, while trangeather reports into a meaning representation for purposes of
tion diphones model the characteristics of landmarks occurriggntent understanding
at the boundary of two hypothesized phonetic segments. Sincq) Query Understanding:For processing user queries, our
there is not enough data to compute acoustic models for @ha system selects the most promising candidate hypothesis
possible diphones, a set of equivalence classes are used to p@gh a recognizer word graph. It makes use of a manually con-
data. The current set of 715 classes was determined manuailiicted grammar that encodes both syntactic and semantic in-
since they perform slightly better than the automated metho@dsmation in the parse tree. The final selection process takes
we have explored. into account both the recognition and parse scores, as well as

For each landmark, 14 MFCC averages were computed f@& prior dialogue context. For example, if the system has just
eight different regions surrounding the landmark, creatingjigted a set of cities that it knows in California, it will prefer a
112-dimensional feature vector. This feature set was redugggbothesis that contains one of the cities on this list.
to 50 dimensions using principal component analysis. TheThe grammar attempts to cover all the legitimate ways people
715 class diphone models were trained with mixture Gaussigsuld ask questions about weather, but also supports robust
models, with up to 50 components per class. The current modggsing through a mechanism that allows unimportant words to
were trained on over 58 000 utterances, collected during SyStgmskipped and that can parse sequences of phrase-|eve| units
interactions with UPITER There are nearly 18000 GaussiaRyith full connectivity [11]. Probabilities for both the full parse
components in total. and robust parse solutions are jointly trained on a large corpus

5) Lexical Access:We have recently re-implemented thesf utterances from our data collection, using a completely
lexical access search components ofMBIT to use weighted automatic procedure. In our experience, the evidence of a
finite-state transducers with the goals of increasing recognitiggmplete well-formed sentence is a reliable cue, and therefore
speed while allowing more flexibility in the types of constraintsye have implemented the algorithm to prefer a full parse
We view recognition as finding the best path(s) through thglution over a robust parse candidate with a superior score.
compositiond o U, whereA represents the scored (on demandh some casesiWA is unable to produce a solution, even with
acoustic segment graph arld the complete model of an ropust parsing options. For these utterances, the system backs
utterance from acoustic model labels through the Ianguagﬁe to a keyword Spotting a|gorithm, which S|mp|y extracts all
model. We computd/ = C o P o L o G, whereC maps significant keywords that appear sufficiently often in the top
context-independent labels on its right to context-dependegh recognizer hypotheses derived from the word graph.
(diphone in the case ofuITER) labels on its left,P applies 2) Content UnderstandingThree times daily, TNA au-
phonological rules/ is the lexicon mapping pronunciations totomatically parses theontent i.e., the weather reports, into
words, and~ is the language model. Any of these transductionemantic frames. Most of our data sources produce outputs in
can be weighted. A big advantage of this formulation is that thehighly predictable format that are easily covered by a small
search components operate csiregletransducet/; the details  grammar. However, the National Weather Service reports are
of its composition are not a concern to the search. As slich,prepared manually by expert forecasters. As a consequence,
can be precomputed and optimized in various ways or it cgiey often contain complex linguistic forms. Some sample
be computed on demand as needed. This use of a cascadeeitences are given in Fig. 3. During the first few months of
weighted finite-state transducers is inspired by work at AT&eather harvesting, we invested considerable effort in writing
(81, [9l. parse rules to cover these constructs. Subsequently, our efforts

We have achieved our best recognition speed by precoRve dropped down to a maintenance level, with the rule base
puting/' = C' o minimize(determiniz¢(P’ o L) o &)) for G,  growing very slowly over time. As of this writing, the parse
a word-class bigram. This yields a deterministic (modulo heajlure rate has been reduced to a fraction of one percent, and
mophones), minimal transducer that incorporates all contextuglpredominantly due to spelling errors.
phonological, lexical, and language model constraints [9]. ForThe parsing process produces semantic frames, which are
the current version of theugITER recognizer,U' has 84 357 then sorted into categories based on the meaning. As illustrated
states and 562 361 arcs. in Fig. 4, each weather report is first converted to an indexed

For greater system flexibility, we can compute = (C o |ist of semantic frames, one for each sentence. The indices are
minimize(determinizéPoL)))oG, performing the composition then entered into the relational database under appropriate top-
with G “on the fly” during the search. For example, the use ofjgalized categories. To retrieve the answer to a particular user
dynamic language model that changes during a dialogue wow@uest, the system first retrieves the indices of the relevant sen-
require this approach. However, with on-the-fly composition Wences in the weather report via an SQL query, then orders them
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Very heavy rain likely where storms occur and there is a chance User: | WILL IT SNOW TODAY IN NORTH DAKOTA
1 or 2 storms may bring damaging wind or hail. SQL: | select distinct city from geo, event where
Mixing with or changing to rain or sleet before tapering off to event.apt_code = geo.apt_code and event.snowspk is
patchy light rain or snow this afternoon. not null
Near record low temperatures with a low from upper 20s north JUPITER: | The forecast indicates snow for the following places
portions to near 40 south sections near del Rio. in North Dakota: Bismarck, Dickinson, Devil’s
The national weather service continues the heat advisory for Lake, Fargo, Grand Forks, Williston, James-town,
heat index values 100 to 105 today and around 80 tonight. and Minot. Please select one.
Mainly east to southeast winds 10 to 20 mph and gusty this User: | HOW ABOUT FARGO
morning becoming west to northwest 5 to 15 mph this afternoon. SQL: | select distinct dayspk, snowspk from event, geo
where geo.city = ‘Fargo’ and event.apt_code =
Fig. 3. Example sentences obtained from National Weather Service weath igse(:lftp fl'lfﬁde and event.day = 0 and event.snowspk
reports. These sentences are all covered by our grammar. JUPITER: | In Fargo in North Dakota today: becoming windy
with light snow developing. Wind east increasing
Index | Sentences [ Categories to 20 to 30 miles per hour p.roducing drifting snow.
1 Wednesday date] Can I help you with something else?

2 Becoming very windy and | [weather| [snow] [wind]
turning colder with a 60 per-

cent chance of snow.

Fig. 5. Example of a short dialogue between a user ardrér, showing the
database query and the filtered responses.

3 Near blizzard conditions and | [weather] [snow]
ﬂ;?fg rous wind chills devel- | [temperature] are used to recursively construct phrases describing the topics,
4 High around 20 with tem- | [temperature] predicates, and clauses of a semantic frame. Finally, the rewrite
perature falling into the sin- rules are intended to capture surface phonotactic constraints and
gle digits by late afternoon. : contractions. In English, we use rewrite rules to generate the
5 Northwest winds increasing | [wind]

proper form of the indefinite articles “a” or “an,” or to merge
“a other” into “another.” JPITER utilizes a separate set of con-
Fig. 4. Extract from an online weather report maintained by the Nationtdol files for each of its three languages (i.e., English, SQL, and
Weather Service, indexed and annotated for categories. keyword-value).

The system response inATERIS typically composed from a
sequentially, and finally paraphrases each of the correspondiisgof frames, with each frame in the list corresponding to a part
semantic frames in turn, to compose a verbal response. Delafshe weather forecast that answers the specific user query. If
are minimal, since the system has preprocessed all currentthre user asked about rain, for example, what would then follow
formation into semantic frames in a local cache. are the clause frames from the weather database dealing with

The final step of processing occurs when the user requegtscipitation (including references to accumulation, rain mixed
information. At this time, the selected parse frames are comith snow, etc.). A phrase containing the reference city and
verted into natural English using oueGEsIslanguage genera- date is inserted prior to the list of frames, to provide contex-
tion system (next section). The response is then a paraphrastiaf grounding for the user. Thus, for example, the response to a
selected portions of the original weather report. query regarding New York City might start with “In New York

An example of selective database retrieval is given in Fig. Eity, tomorrow.” An example of a frame used to construct a user
The user first asked whether it would snow that day in Nortiesponse can be found in Fig. 6.

Dakota. The SQL query returned all the cities in North Dakota JurITER'S parsed weather forecast data are stored in a rela-
for which some mention of snow was made. A follow-up quergonal database. When theRITER turn manager is ready to
asks for the particular conditions in Fargo, and the systesmacess this database, it first sends a requestette@s for a
replies with all parts of that day’s weather report that mentiomell-formed SQL query. The semantic frame representing the
snow, which turns out to include a sentence mainly about theer input is included along with this request, as well as a key
wind speed. designating that the output language is SQIENEsIS treats
SQL as it does any other language, returning a paraphrase of
C. Language Generation the semantic frame in SQL, as it would in English or Chinese.

Language generation inUBITER makes use of ENESIS The turn manager makes use of one other language for pro-
MIT’s language generation module [12URITERuUses GNESIS Cessing user queries, a flattened representation of the keys and
for three very different types of output. In each, the input tyalues from the input semantic frame. Paraphrases in this “key-
GENESIS is a semantic frame, produced by eithenA, the Word-value” language are used by the dialogue control module
JUPITER turn manager (next section), or a combination of botff) the turn manager, as well as by the evaluation module to as-
The outputs are either a response to be spoken to a userS@ps understanding accuracy. Fig. 7 shows an example of the se-
SQL query for accessing the weather database, or a setTgntic frame constructed from user input and the corresponding
keyword-value pairs to aid in interpretation of user queries. English, SQL, and keyword-value representations for that query.

Control for GENESIsis configured into three distinct compo-
nents: a lexicon, a set of message templates, and a set of rewtite!"
rules. The lexicon’s main role is to specify the surface form By monitoring log files from our user interactions with
of a semantic frame entry, including the construction of infleduPITER, we have become increasingly aware of the benefits
tional endings (gender, case, number, etc.). Message templafeketting real users influence the design of the interaction.

to 25 to 45 mph.

urn Management
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{c weather_response
:continuant {c something_elsed }
:db_tlist ({c weather_event
rinput “saturday"
icity {p in
itopic {q city :name "new york city" }}
:pred {p month_date
:topic {q date :day "saturday" }}}
{c weather_event
:topic {q weather_act
:conditional "mostly"
iname "sunny"
:and {q iwind :name "brisk" }}
tinput "mostly sunny and brisk" }

{c weather_event
itopic {q weather_act
:pred {p temp_qual :topic "chilly" }}
:and {c weather_event
:conjn "with"
:topic {q lows
:pred {p from_value
:qualifier "around"
:topic {q value
:name 40 }}}}
rinput "chilly with a low around 40" })
:domain "Jupiter" }

Fig. 6. Excerpts from a response frame for the query “What is the weat
going to be like tomorrow in New York?” The response by the system was

you know about in the Caribbean?” This table is also used to
provide a means of summarizing a result that is too lengthy
to present fully. For example, if the user asks where it will be
showing in the United States, there may be a long list of cities
expecting snow. The system then climbs a geographical hier-
archy until the list is reduced to a readable size. For example,
JUPITER might list the states where it is snowing, or it might be
required to reduce the set even further to broad regions such as
“New England,” and “Northwest.” We try to restrict the size of
an enumerated list to under ten items, if possible.

During our data collection sessions, we noticed considerable
frustration among users seeking information about sunrise and
sunset times, when such information did not exist for the cities
they requested. We realized that the system needs to distin-
guish between the general set of cities it knows, and the par-
ticular knowledge associated with each of those cities. Based
on these observations, we decided to augment the system with
the capability of suggesting a list of alternative cities in the
same geographic region for which the requested diatavail-
able. This even applies for cities that are completely unknown
to JUPITER, as long as the user has given additional information

rlf'[at can be used to infer a neighborhood. Thus, if the user asks

New York City Saturday, mostly sunny and brisk, chilly with lows around for the weather in an incompatibleity) (stat¢ pair (e.g., due

40. What other information can | give you?” Note: “c. =" clause, “p... ="

predicate, and “q.. =" quantified noun phrase.

SEMANTIC FRAME:
{c wh_query
:topic {q weather
:quantifier "which_def"
:pred {p month_date
:topic {q date
:name "tomorrow” }}
:pred {p in
:topic {q city
:name "new york city" }}}
:domain "Jupiter" }

ENGLISH: what is the weather in New York tomorrow?

SQL: select distinct geo.apt_code, source, day, dayspk,
city, state, country, region, weathrspk, tempspk from
weather, geo where geo.city = ‘New York City’ and weathrspk
is not null and day = 1 and weather.apt_code = geo.apt_code

KEYWORD-VALUE:
TOPIC: weather CITY: New York City DATE: tomorrow

Fig. 7.
is the weather going to be like tomorrow in New York?”

Example semantic frame and various paraphrases for the query

to an out-of-vocabulary word or misrecognitionyPITER will
respond with a list of the cities thatdbesknow for that state.

In addition to these general considerations, several phe-
nomena required special attention. For example, we had calls
after midnight when users, asking for “tomorrow’s” weather,
really wanted “today’s” weather, defined from midnight to
midnight. We also had foreign callers who wanted temperature
information presented in degrees Celsius rather than Fahren-
heit. We have augmented the system to take these issues into
account. Converting temperature to Celsius turned out to be a
fairly complex process for the frequent cases where temperature
was expressed in qualitative terms such as “highs mid to upper
80’'s.” Finally, to encourage the user to continue the dialogue
after each exchange, we implemented a simple mechanism to
alternate among a set of continuation phrases, such as “Can |
help you with something else?” Fig. 1 shows an actual dialogue
between a user an@BITER, illustrating this behavior.

At the highest level,UrPITER's dialogue module is controlled
by a “dialogue control table,” which is external to the code. This

swigchanism is used by all of ounGxy domains, and we have

found it to be very effective in helping system developers to
visualize the program flow in the turn manager. The strategy first
evolved out of our experience in developing thesRsusflight

We have discovered several interesting issues with regardrégervation system [2], where it quickly became apparent that
appropriate response planning to accommodate users’ requasisplex nestings of subroutine calls led to intractable systems.
One of the critical aspects of any conversational interface is tiibe mechanism is intended to accomplish two major goals: 1)
need to inform the user of the scope of the system’s knowledge transform the hierarchical, organization of nested subroutine
For example, UPITER has information about a small subsetalls into a linear sequence of operation calls and 2) to provide
(approximately 500) of the cities in the world, and users needaanechanism to succinctly outline the entire system’s activities
be directed to select relevant available data when their explititone or two pages of text.
request yields no information. Even for the cities it knows, Each of our turn managers is controlled by a dialogue con-
JUPITER does not necessarily have the same knowledge for bl table, which specifies a sequence of operations that will fire
cities. whenever the specified conditions are met. The conditions con-
JUPITER has a separate geography table organized hierarcsist of arithmetic, string, and logical tests on variables. Upon
cally, enabling users to ask questions such as “What cities filing, each operation typically alters the state of one or more
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variables, and can return one of three possible outcomes: “cono carry out this research [13], we first developed a proce-
tinue,” “stop,” and “restart.” Typically, the early rules in thedure that automatically tags an utterance as eitAecépt or
table concern verification that the query is complete and weflReject’ based on a semantic-frame comparison between the
formed. Once a query is prepared, a database call produces@gnized and transcribed orthographies. On an evaluation set
result table. The latter half of the dialogue control table is thesf more than 2000 utterances, our automatic algorithm achieved
concerned with interpreting the table and preparing a user eebetter than 90% agreement with manual annotation.
sponse frame. Once a sufficient number of utterances has been correctly
JUPITER invokes the “restart” action whenever it determinetagged, we can investigate the usefulness of various features
that the query may be over-specified. For example, when tfur utterance rejection. We have thus far concentrated on ut-
user asks, “Are there any advisories?” the discourse compongmance-level features, because such features are easily com-
assumes any region specified in a preceding query. Once fheged and can alleviate the need to combine individual word
query is evaluated and no advisories are foun@*ER drops confidence scores into a meaningful rejection score for the en-
the region constraint and reissues the request, by returning giee utterance. In addition to recognition-based features (e.g.,
gram control to the top of the dialogue control tablePIFJER the acoustic and language model scores, the number of words
would then summarize advisories found anywhere in the Unitadd phones in the hypotheses, and the numbéy -tiest hy-
States. Similarly, if the user asks for sunrise time in a partipotheses), we also investigated the use of linguistic and applica-
ular city, and OPITER discovers that it does not have that intion-specific features (e.g., parse probability, and the quality of
formation, it restarts with a request for sunrise time in the statee parse), as well as semantic features (e.g., the relative weights
associated with that city, after adding to the response framefahe word classes).
comment about the missing information. The resulting responseNext, a Fisher linear discriminant analysis (LDA) classifier
string would be “I have no sunrise information f@ity). | have was used iteratively to select the best feature set for the classi-
sunrise information for the following cities ifstate: (list of fication task. On each iteration, the tdpfeature sets from the
cities with sunrise information” previous iteration were each augmented with one additional fea-
ture from the set oM unused features. ThE « A new feature
sets were scored using LDA classification on a development set,
and the topV feature sets were retained for the next iteration.

A deployed system can produce many unanticipated cond&e LDA threshold for each classifier was set to maintain a false
quences. In examining thedITERcorpus, we were surprised torejection rate of 2% on a development set. The procedure termi-
find that users sometimes asked questions that were complet#ed when no additional improvement was found. Using this
outside of the weather domain, such as “What is today’s lottefijyethod, we selected a set of 14 features for utterance rejection,
number?” and “Are there any restaurants in Cambridge?” Weich had a correct rejection rate of 60%.
decided to augment the vocabulary with support for the most
frequently asked out-of-domain queries, replying with a spe-
cific apology. It became clear, however, that we also needed a IV. THE JuPITER CORPUS
sophisticated form of rejection of misunderstood or unantic}_{ Data Collection
pated out-of-domain utterances. This would be far preferable'to
providing a possibly lengthy, incorrect response. To this end,Several different methods have been employed to collect
we developed a confidence scoring algorithm, with the goal data for UPITER We created an initial corpus of approximately
providing a mechanism to eliminate incorrectly understood seB500 read utterances collected from a variety of local tele-
tences as much as possible, while continuing to accept as mphgne handsets and recording environments. This data set was
as possible utterances which were correctly understood.  augmented with over 1000 utterances collected in a wizard

Different system components can reject a user utterance. Bmwironment [14]. These data were used to create an initial
speech recognition component can make use of the likelihoegrsion of IPITER, which naive users could then call via a
of the acoustic models for a hypothesized word sequence. Ptud-free number to ask for weather information. The benefit
nomena such as out-of-vocabulary or partial words, extraneafghis eventual setup is that it provides us with a continuous
noise, and poor signal-to-noise ratio are often mismatched witburce of data from interested users. Over the past two years,
the acoustic models and can be a source of recognition erm@e have collected over 180000 utterances from over 30 000
A poor acoustic score can therefore potentially signal an uniells, all without widely advertising the availability of the
liable recognizer hypotheseis. Another indicator of an unrebystem. At this writing, we average over 100 calls per day.
able hypothesis can be provided by the language model scdfig. 8 shows the amount of data collected each month over a
Often, when confronted by out-of-vocabulary items, the retao year period starting from May 1997.
ognizer will hypothesize an unlikely sequence of words in an Tools have been developed so that incoming data can be tran-
attempt to match at the acoustic-phonetic level. Finally, wheeribed on a daily basis [15]. The transcriber starts with the or-
N-best outputs are computed, the relative scores of successhagraphy hypothesized by the recognizer during the call, and
hypotheses can be an indication of recognizer confidence.nrakes corrections by listening to the waveform file. The tran-
addition to the speech recognizer, the natural language comperibed data are also marked for obvious nonspeech sounds,
nent can also provide valuable information. For example, it §pontaneous speech artifacts, speaker type (male, female, child),
extremely useful to know if the utterance can be parsed. and other characteristics as appropriate (e.g., speaker phone,

E. Confidence Scoring
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Fig. 8. Plot of the amount ofuPITER data collected from naive users via a
toll-free number each month over a two year period starting from May 1997 Fig. 9. Detailed analysis of the speech recognition results. €Vin
vocabulary).

) ) V. PERFORMANCEEVALUATION
heavily accented speech). The transcribed calls are then bun-

dled into sets containing approximately 500 utterances and ardUP'TERiS a system thatis under constant development. From

added to the training corpus as they become available (with sifae o time, we evaluate its performance on unseen test sets. In
periodically set aside for testing). this section, we will report a snapshot oRITER's performance

both at the component and system level.

B. Data Analysis A. Speech Recognition

Data analysis is based on approximately 59000 utteranceghe recognition test data, consisting of 2507 utterances, rep-
from over 10000 calls. A breakdown of the live data showgsents a collection of calls randomly selected over our data
that just over 70% of callers are males and approximately 21%jlection period. Of these, 2003 were free of artifacts such
females. The remainder of the utterances in the corpus Wekepartial words, cross-talk, etc., and a further subset of 1793
spoken by children. A portion of the utterances was from nogere considered to be “in vocabulary” in that they contained
native speakers, although the system performs adequately @noyt-of-vocabulary words. The 504 utterances containing an
speakers whose dialect or accent does not differ too much fragmifact and the other 210 utterances containing an out-of-vo-
general American English. Callers with strong accents consthbulary word were combined to create a 714 utterance “out of
tuted approximately 7% of the calls and 14% of the utterances,Acab” set. About 72% of the in-vocabulary utterances (1298)
small fraction (0.1%) of the utterances included talkers speakijj@&re from male speakers, about 21% (380) were from females,
in a foreign language (e.g., Spanish, French, German, or Chitg 794 (115) from children.
nese). Fig. 9detailsUPITERsrecognition performance onthetestset.

The signal quality of the data varied substantially dependiRtheordandsentenceerrorrates(WERand SER)fortheentiretest
on the handset, line conditions, and background noise. Itis cle@tare 20.4%and40.2%, respectively. Theerrorratesdecreased by
that speaker phones were used in approximately 5% of the calisyroximately 25% when utterances containing crosstalk or other
due to the presence of multiple talkers in an utterance. Less t'?ﬁihspeech artifacts were removed. For the in-vocabulary subset,
0.5% of the calls was estimated to be from cellular or car phon§§ER and SER arereducedto 10.4and 24.8%, respectively. Closer

Over 11% of the utterances contained significant noisegaminationofthein-vocabularyutterancesrevealsthaterrorrates
About half of this noise was due to cross-talk from othepyfemalesare somewhathigherthanthoseformales,andtheerror
speakers, while the other half was due to nonspeech nois@gesforchildrenare significantlyworse. Thisis probably areflec-
The most common identifiable nonspeech noise was causediBy, of the lack of training material for females and children, al-
the user hanging up the phone at the end of a recording (etﬁoughthere may be other factors.
after saying goodbye). Other distinguishable sources of noiseperformance on speakers judged to have a strong foreign
included (in descending order of occurrence) television, musigcent is more than twice as bad as that for male speakers.
phone rings, touch tones, etc. Finally, the system has considerable trouble (57.3% WER) with

There were a number of spontaneous speech effects preggirances containing out-of-vocabulary words and artifacts.
in the recorded data. Over 6% of the utterances included fillggis rate may be artificially high, however, due to the nature
pauses (“uh,” “um,” etc.) which were explicitly modeled agf the alignment procedure with reference orthographiks.
words in the recognizer, since they had consistent pronyg-reassuring, however, to observe that the system performs
ciations, and occurred in predictable places in utteranc@giremely well on “expert” callers (i.e., mainly staff in our

although approximately two thirds of these were due to clip-

ping at the beginning or end of an utterance. The remaining
artifacts were contained in less than 2% of the utterances antbartial words always caused an error due to the nature of our mark-up

included phenomena such as (in descending order of occgffileme. Noise artifacts may or may not have caused an error since they
were excluded from the alignment transcription (making perfect sentence

rence).laUther_’ throat cle.aring, mumbling, ShOUting' CoU(‘:Jhir}ge:ognition possible). They typically produced one or more insertion errors
breathing, sighing, sneezing, etc. however (e.g., during cross-talk).
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system, but were not used for training or testing. This behavior TABLE |

H - i : PERFORMANCE SUMMARY FOR WORD

IS typl.c.a.l of users who become, familiar with the ISyStem(WER), SFENTENCE (SER), KEYWoRD (KER), AND UNDERSTANDING (UER)

capabilities (a case of users adapting to the computer!). ERRORRATES (IN PERCENT) FOR THE2507 UrTERANCE TEST SET. WER AND
SER ARE FORRECOGNITIONONLY. KER IS BASED ON THEKEYWORD-V ALUE

EVALUATION , WHILE UER MEASURESUNDERSTANDING ERROR AT

B. Language Understanding THE UTTERANCE LEVEL

Language understanding was evaluated using two measures [ # Utts [ WER | SER | KER | UER
analogous to word and sentence error rates, which we have  Accept 1,755 | 13.1 | 339 | 145 | 21.2
called keywordand understanding error ratesKeyword error Reject 105 | 271 | 724 | 30.0 | 41.9
rate (KER) was designed to be similar to word error rate and ~ NoRef. | 378 | 56.0 | 934 | N/A | N/A

uses the same metrics of substitution, insertion, and deletion.

Keyword error rate is computed on a set of keyword-value

pairs that are automatically generated for each utterance watheference parse, and thus are not “evaluable” using the auto-
a parsable orthographic transcription. We have developguitic procedure that we developed. Some of these utterances
a special language within EBIESIS for evaluation, one that may have been answered correctly, but we have no automatic
captures the salient semantic concepts from an utterance iway of evaluating them. The word and sentence error rates were
flattened representation using the formaywoRD: VALUE. Very high on these data however.

For example, the utterance, “Will it rain tomorrow in Boston?”

would be paraphrased into the stringoPIiC. rain; DATE: C. Content Understanding

tomorrow; CITY: Boston” for evaluation. The recognition

gySicr)r:nerISar\g"Llrtarsagn \}v?trﬁoc:;cézwsll:]bétlijtittlir(])ﬁ Vgﬁmd prck)guce 20 000sentencesfromthe NationalWeather Service. Shortly after
parap o . ’ Y- we began parsing these weather reports, we decided to maintain
The KER reported in this paper is computed by summin ;
. . ) o . careful record of parse coverage over time so that we could
insertions, deletions, and substitutions, and dividing that o ; . -
etermine if the system was reaching convergence in its ability
number by the total number of keys generated from the parse . :
) ’ .-t0 process content. From an initial parse coverage of 89% during
utterances. An utterance is considered to be understood if all .. . :
. : the first week, the system rapidly achieved a parse coverage of
the keyword-value pairs between the hypothesis and reference

0,
agree. This is measured by the understanding error rate (UE\% o 99% by the eleventh week. Due to the seasonal nature of

g L . atherevents (e.g., summerhurricanes, winter snow storms), we
Numbers for understanding error are divided into three cate- _ . .
. ccasionally encountered previously unseen weather forecasts
gories, based on how the utterance was treated at data coIIecﬁon ' -
! S . uring the first year of JPITER development, requiring new
time and the parse status of the transcription string. Utterances
. - . grammar rulestoaccommodate them. Inrecentmonths, however,
that were answered at run-time and whose transcription strings
arse are scored fully for understanding. These utterances may number of sentences that cannot be parsed hovers around 40
P Y 9. ) UD Yday, or0.2%. These sentences are typically set aside and dealt
include out-of-domain words or other nonspeech artifacts, u?[ .
. . ) . e with by the system developers onamonthly basis.
they are included here if their orthographic transcription parses.
Utterances that were rejected by the confidence-scoring module
are scored separately. The understanding score of these ufter
ances is irrelevant for overall system performance, since theltterance rejection was evaluated using 25000 utterances
JuPITERtUrn manager did not generate an answer, but it is uset@dllected from naive users during the first part of 1998. Our
as a way of evaluating the confidence-scoring module. Finallytterance rejection algorithm incorrectly rejected 2.8% and
utterances whose transcriptions do not parse cannot be autoroatrectly rejected 63.3% of all utterances, for a total of 82.7%
ically evaluated for understanding since there is no way to acerrectAccept/Rejeatecision. Table Il shows the classification
tomatically create a reference meaning representation. results in greater detail. Closer examination of incorrectly
Table | shows the speech understanding evaluation perfornaetepted utterances reveals that there were often misrecognized
on the same evaluation test set that was used for speech recity- names contained in the recognizer hypothesis, or the
nition. Out of a total of 2507 recorded utterances, 269 containetferance contained out-of-vocabulary city names, nonspeech
no speech, and were eliminated from further consideration fevents, or out-of-domain requests.
this evaluation. JPITER was able to answer nearly 80% (1755 The system responses to rejection are conditioned on the pre-
out of 2238) of the remaining utterances. The word and senternagling dialogue’s rejection pattern. The response to afirst rejec-
recognition error rates for this subset were 13.1% and 33.986n is simply, “I'm sorry | didn’t understand you.” Subsequent
respectively. Keyword error rate for this subset is 14.5%, améjections elicit increasingly detailed “help” messages, intended
the corresponding utterance understanding error rate is 21.28@ncourage the user to speak sentences within the domain. We
Note that many utterances containing recognition errors wedrave analyzed a corpus of over 6500 queries to see what ef-
correctly understood. Approximately 5% (105 out of 2238) dtct the prior rejection pattern has on the likelihood of rejection
the utterances were rejected, and these utterances have nmictubsequent utterances. As might be anticipated, the system
higher error rates. Had these utterances not been rejected,igshgignificantly more likely to accept an utterance subsequent
understanding error rate for them would have been 41.9%. Tioea previously correctly accepted utterance (80%) rather than

remaining utterances (17%, or 378 out of 2238) did not hasebsequent to a single correctly rejected utterance (56%). After

On a typical day, our natural language systemiAT parses

Utterance Rejection
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TABLE I 45 T 100
EVALUATION RESULTS FORJUPITER'S UTTERANCE REJECTIONALGORITHM. 40 7 = Word ’8“
CONFIDENCE SCORING RESULTS THE CORRECTDECISION WAS MADE IN 9 35 7 " Data g
82.7%0F THE CASES ((14 075 + 6879)/25 346) ST &
g% — "t B
Reference g fg o — 2
- c
System Accept |  Reject Total ¥ 0 R &

Accept 14,075 (97.2%) 3,980 (36.7%) | 18,055 5T .

T 0 t t
Reject 412 (2.8%) 6,879 (63.3%) | 7,291 Aor May dn di Aw Nov Apr Nov May

) o Fig. 10. Comparison of recognition performance and the number of utterances
the second contiguous rejection, the system recovers somewtditicted from real users over time. Note that thexis has a nonlinear time

but to 0n|y a 64% acceptance rate, still far short of the perfojc_ale, reflecting the time when new versions of the recognizer were released.
mance after a correct acceptance. This is in spite of the detailed

“help” message that has been provided at this point. In gener
system performance is the worst (in terms of recognition a
understanding) after multiple failures—if the system is havin
trouble understanding the user, it continues to have trouble
example of useraot adapting to the system!).

aﬁ, our recognizer. Before we made the system accessible
rough a toll-free number, the WER was about 10% for labo-
ory collected data. The WER more than tripled during the
irst week of data collection. As more data were collected, we
were able to build better lexical, language, and acoustic models.
As a result, the WER continued to decrease over time. This
negative correlation suggests that making the system available
JUPITERis an example of a new generation of speech-bastxreal users is a crucial aspect of system development. If the
interfaces that combines several human language technologies/gtem can provide real and useful information to users, they
help users access information using a conversational paradigviil continue to call, thus providing us with a constant supply
Many speech-based interfaces can be considered conversatiohalseful data. These data have provided a fertile playground
(e.g.,[16]-[19]),andtheydiffer primarilyinthe degree withwhictior our staff and students to explore different aspects of spoken
the system maintains an active role in the conversation. For miastguage research [20]-[23].
of the conversational interfaces deployed commercially today,Fig. 10 suggests that domain-specific data are crucial for
the computer takes control of the interaction by requiring that tigeod recognition performance. This is also the case for other
user answer a set of prescribed questions, much like the DTM&mponents, such as language understanding. Until we can
implementation of interactive voice responses (IVR) systemmake language technology components domain-independent,
In contrast, systems likey®ITER can deal withmixed-initiative or the knowledge acquisition process automatic, building
goal-oriented dialogue, in which both the user and the computamversational systems for real-world applications will con-
participate to solve aprobleminteractively. tinue to be labor intensive. The development of tools that
JUPITER'S content is more complex than data stored in redacilitate knowledge acquisition is an important aspect of the
ularized tables. The original weather reports are linguisticaltgsearch infrastructure. Even if we can solve these problems,
diverse, and therefore natural language processing is an iriteere are a myriad of issues that needs attention, including
gral part of content creation. Besides, the information is dgontent processing (e.g., dealing with changes in the format of
namic, requiring frequency updates. Finally, the knowledge baese HTML document), audio capture (e.g., enabling multiple
of the weather domain (e.g., humidity, temperature, weather adidio streams), and keeping the system constantly available.
visories, etc.) is conceptually rich and can potentially lead toMany of these issues have little to do with the development of
wide variety of ways users can query the system. human language technologies. Nonetheless, they represent a
JUPITER is a manifestation of our ongoing research strategygnificant part of the system development overhead.
of developing human language technologies witleial appli- Over the past year, we have begun to utilipeIiJer as the
cations rather than relying on mock-ups, however realistic theyomain in which to conduct research on multi-lingual conver-
might be. We believe that this strategy will force us to confrorational interfaces, including German, Japanese, Mandarin Chi-
critical technical issues that may otherwise not require our attarese, and Spanish. Our approach is predicated on the assump-
tion, such as dialogue modeling, new word detection/learnirtipn that the users’ queries in different languages can be rep-
confidence scoring, robust recognition of accented speech, aasented using a common semantic frame [24]. In the case of
portability across domains and languages. We also believe tha®ITER, this appears to be the case. We have begun an effort
working on real applications has the potential benefit of shottb paraphrase the weather responses in English into these other
ening the interval between technology demonstration and its d@aguages. For each of these languages, a native speaker who is
ployment. Above all, real applications that can help people solaéso fluent in English is preparing the correspondirgnesis
problems will be used by real users, thus providing us with a rigfeneration rules. In addition, we are also incorporating weather
and continuing source of useful data. These data are far mogports in foreign languages, so that region-specific information
useful than anything we could collect in a laboratory envirorfe.g., typhoons) can be made available. There were a few in-
ment. stances in which the same word in English had to be given a
Fig. 10 shows, over a two-year period, the cumulative amouttitferent translation depending on the context. For example, the
of data collected from real users and the corresponding WERVsrd “light,” translates differently into Mandarin for the two

VI. DISCUSSION
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phrases, “light wind” (“qinql feng1”) and “light rain” (“xiao3 [12]
yu3”). GENESIshandles this situation using a semantic grammar
that can categorize the two cases into different adjective typegqg

To address the issue of portability, we are in the process of
developing other, similar online services as natural extensions
to UPITER There are a number of similar domains for which
the information is dynamic and the vocabulary is sufficiently
limited to support practical conversational interfaces. These ini5]
clude flight status information, traffic information, and naviga-
tion information. Having multiple application domains will also [16]
provide us with the opportunity to explore strategies to navigate
seamlessly from one domain to another. We have had some suyg,
cess in building recognizers in these domains usvRJTER'S
acoustic models. (18]

Finally, UPITER represents our first attempt at building con-
versational interfaces to serve real-world users. While it adf9]
dressed several important research issues such as telephone-
based speech recognition/understanding, virtual browsing, ang]
information on demand, the weather information domain simply
does not require extensive dialogue managerm@antsupport
dialogue research, we have recently started the development%i”
MERCURY, a conversational interface for travel planning, which
requires tens of turns to accomplish a typical task of making &2
round-trip flight reservation [25].
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