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ABSTRACT
Difficulty in TETRIS is adjusted by adapting the speed with
which blocks fall. In this contribution, we describe results of
an exploratory study in which we investigated relationships
between players’ performance and their subjective assessment
of difficulty and fun. We tested five different algorithms that,
instead of adjusting game speed, adjust difficulty by choosing
blocks based on the current game state. With our results, we
establish pile height and bumpiness as parameters that indicate
the performance of a player during a live game, discuss the
inherent difficulty of different block choosing algorithms and
show how the relationship between fun and perceived difficulty
varies for distinct player groups. With regard to adapting
difficulty, we argue that one can still teach an old dog such a
TETRIS a lot of new tricks.
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INTRODUCTION
In order to be able to test the viability of alternative ways of
adaptation in well known games, it is important to know how
they each relate to fun and difficulty (performance-related and
perceived). The micro-analysis of a well-known and beloved
game sheds more light on the ongoing debate on the role
of challenge for engagement in games (compare findings of
[1], where high challenge yielded high engagement and [17],
who report on the opposite effect). However, recent research
indicates that there is no one-way relationship as it also, for
example, matters how difficulty is adjusted [21].

For those readers who are unfamiliar with TETRIS, we will
start by providing a short explanation of the game. We will
then give an overview of parameters that can be suitably em-
ployed to describe individual TETRIS game states. Next,
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we will present a set of algorithms for choosing how blocks
are spawned. We will then describe our study, and ensuing
results, in which we asked about the perceived difficulty of
the different block choosing algorithms. Results of the study
show how suitable various game state parameters respectively
are as a basis for adapting the game to a user’s play. We will
conclude with a discussion of results and the more general
ramifications that they possess for games researchers and for
adapting gameplay.

RELATED WORK
Adaptivity is a big concern of game research in order to create
engaging games that are challenging for a range of different
skill levels [18]. The effects and effectiveness of adaptivity
are often investigated with games that target a limited group of
players (e.g., educational/serious games in [19]) or are new to
most participants in user studies (e.g., HEX in [25]). TETRIS
is familiar to a large range of age groups, skill levels, gender
populations and occupations. This means that there exist many
players who have specific expectations on the behaviour of the
game. When adapting the difficulty in TETRIS, this expected
behaviour should still occur, so that players are not disrupted
in their gameplay.

Figure 1. Illustration of a game of TETRIS in play (left) and the block
types that can fall down during the game (right). In the text, block types
are referenced by their corresponding letter.

TETRIS
Pajitnov and Gerasimov developed TETRIS in 1985 [24]. The
game is played on a field that is 20 rows high and 10 columns
wide. Small blocks – traditionally called tetrominoes – appear
on top of the game field and fall down stepwise (see Figure 1).
The time frame from the appearance of the block until it settles
in a place is called an episode. A player needs to arrange the
blocks in such a way that they create lines by filling a row; this
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increases the score and full lines are then removed from the
field. The more lines are removed in one episode, the higher
is the awarded score. Due to the setup of the blocks, at most
four rows can be cleared at once. Such an event is called a
TETRIS. When the pile reaches the top of the field, the player
loses. During gameplay, the speed at which blocks appear
and move down the field traditionally increases with every ten
rows cleared. Experienced TETRIS players tend to react with
boredom, if the game’s difficulty remains constant [6].

Game State Analysis
While TETRIS is played in real time, the game is divided into
distinct episodes, one for each block. Logging and analysing
a game is easy, because snapshots of the game state suffice to
extract meaningful parameters. This is important as ’the case
for dynamic difficulty adjustment’ [11] requires parameters
assessing player competency during a live game. In TETRIS,
this is particularly difficult as neither time played nor lines
made (or score for that matter) are good indicators of the
playing style of a player [14].

Figure 2. Parameters for TETRIS game state analysis

In order to enable artificially intelligent agents to play
TETRIS, Fahey suggested two parameters, among others:
pile height, which describes the height of the highest point of
the contour and number of closed holes, which counts the num-
ber of unreachable areas with size 1x1 under the contour [9].
Incidentally, minimising the pile height has been described as
a successful strategy in playing TETRIS [8]. Flom and Robin-
son [10] added bumpiness, a measure accumulating the sum
of height differences along the contour (see Figure 2 for illus-
trations). Other parameters that were put forth for AIs playing
TETRIS (e.g., [4], [23] or [16]) are essentially derivations of
the parameters discussed above. They help an AI to judge its
performance in a game and change strategies. We investigate
what they can tell about a human player’s performance during
gameplay in order to be able to adapt the difficulty in TETRIS
during a live game. All of the discussed parameters depend
on the current state of the game or, for lines cleared, on its
past, so that they only have to be calculated once per episode.
This not only allows for an episode-wise analysis of a game,
but also for a comparatively fine-grained adjustment without
disrupting single episodes. Since players expect a change of
difficulty only after they have cleared a row, it might be con-
fusing for players who already know the original game if the
game reacts to anything else than to placing a block.

CHOOSING BLOCKS
The heart of any TETRIS game is the algorithm that chooses
which blocks are spawned. The following paragraphs give
an overview over traditionally used algorithms and a set of
algorithms that we developed.

Traditional Algorithms
A commonly used algorithm for choosing blocks is TRUE
RANDOM. The piece selection is random and independent.
Very easy and very difficult series of blocks are equally likely.

GRAB BAG is the original TETRIS algorithm [13]. One
instance each of all possible blocks are put into a bag and then
drawn randomly from it without replacement, until the bag is
empty. This is supposed to create a fair random game. With
this algorithm, there are at most twelve pieces between two I
blocks, and a maximum of four S or Z pieces can come in a
row. That way, the chances of encountering a run of the same
pieces are lowered (e.g., when compared to TRUE RANDOM).

Additional Algorithms
In order to be able to increase and decrease difficulty in more
fine grained ways, we developed three additional algorithms.
The conceptual aim of NICETRIS is to play the game with a
minimal challenge. Through contour analysis this approach
ensures that players always have a convenient option to place
the current block and, hence, are able to clear rows quickly.
The algorithm creates an array containing all shapes that fit
into the current pile. If the contour is not fitting for any piece in
particular, a generally well fitting block (O, I, or L) is chosen.

In order to increase the likelihood for an unbeatable game
consisting of only S and Z pieces [5], SKEWED RANDOM
assigns a 50% chance to either of the set of S or Z pieces,
instead of 2/7 = 28.57% as is the case for TRUE RANDOM.

The BUST HEAD algorithm is inspired by BASTET [20], which
relies on the analysis of relative heights of neighbouring
columns. Whenever a deep hole is established, effectively
no I blocks will be given anymore. Our version uses the in-
verted principles of the NICETRIS algorithm above. First, the
algorithm checks which pieces do not fit the current contour.
Then, a bag of these pieces plus the O piece is used to ran-
domly choose the next block. If every possible block could fit
the contour, the undesirable combination of O, S and Z pieces
is used as the pool for drawing the next element.

STUDY
We conducted an exploratory study to establish the actual
and perceived difficulty as well as associated reported fun
when these algorithms are used. Additionally, we recorded
indicators for performance during a live game.

Our hypotheses were:

1. Algorithms

(a) The difficulty of algorithms can be established through
the performance measure of ’lines made’ to be in the
following order:
1. NICETRIS→ 2. GRAB BAG→ 3. TRUE RANDOM
→ 4. SKEWED RANDOM → 5. BUST HEAD. This
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order is based on assumptions about difficulty that
went into designing the algorithms.

(b) Players overall report the most fun for GRAB BAG and
TRUE RANDOM algorithms.

2. Difficulty and Fun

(a) The better a player performs, the lower their perceived
difficulty.

(b) The easier a player rates a game, the more fun they
report.

(c) The better a player performs, the more fun they report.

3. Performance Indicators

(a) The better a player is, the lower their pile height,
bumpiness and number of closed holes.

(b) Pile height is the strongest indicator of a player’s per-
formance during the game.

Procedure
Participants were recruited on a voluntary basis through a pub-
lic notice. They were free to choose between a lab setting
with a university owned computer or their own computer and a
home setting on their own computers. The diversity of settings
was intentional, since test participants were encouraged to cre-
ate a pleasant gaming context for them in order to counteract
effects that might occur when gaming in laboratory settings
(for a discussion of this issue, see [15]).

After giving their consent to an anonymous use of their data in
subsequent analyses, participants first completed a question-
naire asking for demographic data. They then started playing
ten TETRIS games (two games each per algorithm, in a ran-
dom order). After every game, there was a short questionnaire
asking how players rated fun and difficulty of the game they
had just played. We refrained from using an established ques-
tionnaire such as PENS (Player Experience of Needs Satisfac-
tion, [22]) or the GEQ (Game Experience Questionnaire, [12])
after each game, because even in shortened versions, those
take quite some time to be filled in and would have interrupted
the game flow. Players also had to play too many games to be
able to differentiate them properly afterwards; this ruled out
administering questionnaires only after all games had been
played. Pauses between games were self-paced; however, it
was suggested that after five games, test participants take a
longer pause.

Results
In total, 16 participants took part in the study, resulting in 160
games played, 32 per algorithm. Eight participants identified
as male, eight as female. Participants’ ages ranged from 22
to 34 years (mean: 26 years). We initially planned with a
lower number of participants as the number of games played
would have been sufficient to answer most of our questions.
However, due to the popularity of TETRIS it was remarkably
easy to acquire additional voluntary test participants.

Eleven of the participants studied or worked in Computer Sci-
ence, five had other occupations. All of them knew TETRIS

and had played it before, albeit with different intensities. On a
Likert scale from 1-10, test participants rated their expertise
in playing TETRIS on average as 5.9 (selected range: [3..9],
median: 6).

Algorithms
Table 1 shows how players performed in the study according
to the number of lines cleared during the game. We chose
this measure of performance, because there is no consistent
mode in which to calculate points in a given TETRIS game.
The difference between NICETRIS and GRAB BAG appears
to be negligible. Between TRUE RANDOM and SKEWED
RANDOM there is a larger difference than between the other
algorithms. The performance distribution for each algorithm is
significantly different from each other with a large effect of the
algorithm on performance (p< 0.001, Spearman’s ρ = 0.524).
Hypothesis 1 (a) can be accepted in slightly modified form in
that the actual order is:
1. NICETRIS = 1. GRAB BAG→ 2. TRUE RANDOM
→ 3. SKEWED RANDOM → 4. BUST HEAD. Importantly,
these findings are replicated by perceived difficulty rankings
(see Figure 3).

Algorithm Mean Med. sd
NICETRIS 34.19 32 13.585
GRAB BAG 34.22 32 14.524
TRUE R. 31.97 35 14.901
SKEWED R. 21.66 19.5 12.936
BUST HEAD 13.38 10.5 9.366
TOTAL 27.05 27 15.55

Table 1. Lines cleared for each block choosing algorithm.

NICETRIS and GRAB BAG received the highest fun ratings –
contrary to hypothesis 1 (b), which predicted a focus towards
the algorithms providing slightly more difficulty according to
our formal analysis.

Difficulty and Fun
Over all games and results, performance-related and perceived
difficulty show a negative weak correlation (r =−.27). This
follows exactly what we predicted in hypothesis 2 (a). Per-
ceived difficulty and fun also show a weak, negative correla-
tion (Spearman’s ρ =−.255, p < .01): players tended to have
more fun in TETRIS the easier they perceived the game to be
(in alignment with hypothesis 2 (b)).

Interestingly though, individually, only eleven out of the six-
teen players found the game more fun when it was perceived
as less difficult. The others attributed more fun to algorithms
they perceived as more difficult, indicating that engagement
and enjoyment are linked differently for different types of
players (cf. [3]).

Measured performance and fun show a weak, positive correla-
tion (Spearman’s ρ = .193, p < .001), indicating players had
more fun when they performed better (in line with hypothesis
2 (c)).

Performance Indicators
In order to adapt TETRIS dynamically, it is vital to not only
know how to adapt, but also which parameters are indicative of
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Figure 3. Perceived Fun and Perceived Difficulty for Different Types of
Algorithms for Choosing Blocks in TETRIS as Reported in the Ques-
tionnaires. The level of significance is denoted as *p < 0.05,**p < 0.01
and ***p < 0.001. Significance of difference was tested using U-tests.
Error bars indicate one standard deviation.

player competency in order to make informed decisions about
appropriate adaptation procedures. In order to understand
this relationship we analysed different potential performance
indicators, namely pile height, bumpiness and closed holes,
and their predictive power towards final lines made.

Table 2 details the relationship between total lines made in a
game and the overall values for pile height, bumpiness and
closed holes. A good game with many lines made is expected
to be on a low average pile height, show a low value of bumpi-
ness and a lack of closed holes. The strong to moderate nega-
tive correlations let us confirm hypothesis 3 (a) – predicting
that all of these parameters will be low when a player performs
well in a game. Since pile height shows the strongest nega-
tive correlation it is also the strongest indicator of a player’s
performance (agreeing with hypothesis 3 (b)). It should be
noted, though, that bumpiness is the most fine-grained value
representing the overall look of the contour. Even if the pile
height is high, a low bumpiness value indicates that this could
be resolved within the next couple of blocks falling down.

Indicator Mean std r p
Pile Height 7.86 1.94 -.61 < .001
Bumpiness 18.14 2.97 -.54 < .001
Closed Holes 3.75 1.97 -.52 < .001

Table 2. Performance indicators as averages over a game in relation to
the classical static measure of lines made (after the game). Significance
of differences established through Student’s t-test.

DISCUSSION
One of the two core results to be drawn from our exploratory
study is that the block choosing algorithms differ from each
other with respect to how difficult the ensuing games are.
While the performance measures confirm this, we showed that

the effect also holds for perceived difficulty. The effective
differences between NICETRIS and GRAB BAG appear to be
non-existent, but we identified a gap between TRUE RANDOM
and SKEWED RANDOM. An in-between version like MILD
SKEWED RANDOM that sets the likelihood of S or Z pieces at
39% can smooth the transition between TRUE RANDOM and
SKEWED RANDOM during a live game.

NICETRIS does not perform as hypothesised. Since making
a game easier than expected can create a situation in which
players are under-challenged and their expert strategies are not
suitable to what happens, they might perform less well than
in more difficult games (see also the conceptual discussion
of ’flow’ [7]). Players who performed better tended to have
more fun, but the more difficult players perceived the game,
the less fun they reported – with large individual differences.
This indicates that there might not be one single way players
deal with challenge, but rather that there are types of players
who attribute challenges more or less fun. Future work will
tell whether this generalises to other games as well, but there
is an indication in the work of [2] discussing player types and
different sources of enjoyment for Multi User Dungeons.

The second core result of the study is that pile height is the
most suitable parameter to capture player performance dur-
ing a live TETRIS game, with bumpiness being a more fine
grained, but slightly less indicative measure. Hence, these two
methods for analysis can be used to adapt a live game to a
player’s current performance without relying on a past history
of played games. These measurements enable a dynamically
adapted version of TETRIS, since it answers the questions of
how we can establish player competency in a live game.

CONCLUSION
We set out to give TETRIS – a well known game for which
there are players of different skill levels easily available – a
new twist and find out how to set different difficulty levels
without relying on speed adaptation. By implementing five
different block choosing algorithms and testing them in a
user study with different parameters, we found that GRAB
BAG, TRUE RANDOM, SKEWED RANDOM and BUST HEAD
are sufficiently different from each other. With the addition
of MILD SKEWED RANDOM we expect smooth transition
between difficulty levels.

Also, we were able to establish pile height and bumpiness as
suitable parameters to check for the performance of a player
during a live game. This enables researchers to conduct double-
blind comparative adaptivity studies in which players cannot
easily guess whether they are playing an adaptive game or not.

Looking at the individual differences regarding the effect of
an increased challenge on fun, we propose further research
into different player types: those who engage more with an
increased challenge (as in [1]) and those who engage less with
an increased challenge (as in [17]).
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