
IJDAR (2002) 5: 17–27

A hierarchical representation of form documents for identification
and retrieval

Pınar Duygulu, Volkan Atalay

Department of Computer Engineering, Middle East Technical University, Ankara, 06531 Turkey;
e-mail: {duygulu, volkan}@ceng.metu.edu.tr

Received: August 21, 2001 / Accepted: November 5, 2001

Abstract. In this paper, we present a logical representa-
tion for form documents to be used for identification and
retrieval. A hierarchical structure is proposed to repre-
sent the structure of a form by using lines and the XY-
tree approach. The approach is top-down and no domain
knowledge such as the preprinted data or filled-in data is
used. Geometrical modifications and slight variations are
handled by this representation. Logically identical forms
are associated to the same or similar hierarchical struc-
ture. Identification and the retrieval of similar forms are
performed by computing the edit distances between the
generated trees.

Keywords: Form document processing – Logical layout
extraction – Retrieval – Data processing

1 Introduction

With recent advances in multimedia technology, various
types of data become available to be processed by com-
puters as input to information systems. However, most of
the time, data has to be manipulated and extracted man-
ually. One of the challenges is to automate this informa-
tion extraction process from the raw data. Paper is still
one the most commonly used mediums for transferring
information. Among paper documents, forms are struc-
tured documents used for information gathering, storage,
retrieval, approval, and distribution which are very im-
portant processes in private and government business.
Traditional manual key entering of data on forms is te-
dious, time-consuming, and error-prone. Consequently, it
is highly desirable to automatize this task as much as
possible.
There are several challenging problems in form pro-

cessing such as layout extraction, retrieval, processing
heterogeneous batches, etc. For example, the last prob-
lem requires identifying the particular type of input form,
registering the input form with a reference model form,
extracting information from the input form, and storing
the extracted information.

In this section, we first give some of the basic defi-
nitions which are used in the frame of form document
processing and in this study.

Definition: A form is a structured document which is
composed of the following elements:
– horizontal and vertical layout lines: straight and con-
tinuous;

– preprinted data: machine printed characters, symbols,
and pictures;

– user filled-in data: machine typed, hand-printed or
handwritten characters.
Preprinted data and user filled-in data are located

at predefined locations which are called fields. A field is
enclosed by a rectangular box formed by two horizon-
tal and two vertical lines. Fields frequently have inter-
relationships where the data entered in one field vali-
dates the data entered in another field. Thus, on a form
the information is kept in tuples, the first element being
preprinted and the second user filled-in.
The main interest in form processing systems is to

extract user filled-in data and associate it with the corre-
sponding preprinted field. However, in order to perform
such a task, the structure of the form should be known
in advance. The form structure can be obtained by pro-
cessing a reference model form. A reference model form
can be, for example, a blank form on which no user filled-
in data exists. The reference model form can be used to
specify the fields on the form. The reference model form
may be stored in a form database and when an input in-
stance form is presented to the system, its type can be
identified by matching with one of the reference model
forms in the database. Required data can then be auto-
matically extracted following the specification given for
the reference model form.
To store a reference model form in the database and

also to match an input instance form with a stored ref-
erence model form, we need a representation. The most
straightforward way to represent a form document is by
its direct image. However, such physical information may
not be appropriate, since the form or its image risks

18 P. Duygulu, V. Atalay: A hierarchical representation of form documents

being modified geometrically (enlarged/shrunk, trans-
lated/rotated, etc.) or being distorted due to printing
or digitization. On the other hand, the logical structure
represents the semantics of the form and the same log-
ical structure can be formatted in a variety of physical
layouts. The geometrical structure should be mapped to
a logical structure by considering the logical relations.
Even multi-kinds of the same application-specific forms
(logically the same but physically different forms) can
then be represented by the same logical structure.
In this paper, we present a representation for the

structure of form documents to be used for identifica-
tion and retrieval purposes. We describe a heuristic al-
gorithm based on the XY-tree method [1,2] in order to
transform the geometric structure of a form document
into a hierarchical structure by using horizontal and ver-
tical layout lines which exist on the form. The structure
of a form document is represented by a tree. The hierar-
chy of the tree corresponds to the hierarchy of the blocks
in the form document. The proposed representation is
close to the human point of view for the form document
structure. Logically identical forms are expected to have
the same or similar hierarchical tree structures. In addi-
tion, geometrical modifications and slight variations on a
form are handled by the described representation. Identi-
fication and the retrieval of similar forms are performed
by computing the edit distances between the generated
trees.

2 Related work

Rather than its direct image, a form document can be
represented by the physical features of its components
[15,17,16,18–26]. For example, length, width, and po-
sition of horizontal and vertical lines can be used [15].
However, this cannot handle variations on the physical
structure of the logically same form. Another feature re-
lated to the horizontal-vertical lines are line crossings.
Extracted line crossings on a given form can be classified
into one of various types and the form can be represented
by the set of type counts [16]. However, this approach will
not work even for slight variations, because the types
and counts of line crossings are prone to change. On a
form document, a block is defined as a rectangular area
which is surrounded by horizontal and vertical lines. In
this sense, it is a higher-level feature than the lines. For
form representation, the position and size of blocks or
their relationships can be used [17–20,22,24]. However,
multi-kinds of forms cannot be handled by such a scheme.
In a similar way, relations of the blocks which share lines
can be employed [19]. However, in such a scheme, hierar-
chical relationships of block groups are not represented.
There are also studies in which the main aim is to clas-
sify the form documents [24,23]. Liu et.al. [21] describe a
method using a very similar approach to ours in the sense
that the horizontal and vertical lines are used to extract
the blocks of a given form. However, they do not take
into account the relationship among the blocks. Further-
more, they do not give a representation scheme for the

extracted blocks such as a tree or a list. A more general
method is to use a bottom-up approach to form blocks.
In the work of Watanabe et al. [20], three binary trees
are constructed. Two of them are for the global and local
structure. The last one is for classification whose con-
struction is performed through a block division process
which is not given in detail in the paper. Registration
is performed by searching the classification tree. In ad-
dition to the horizontal and vertical lines, some of the
preprinted data are also used. Moreover, the described
method is mostly for table-form documents. In the lit-
erature, the method is also found to be hard to apply
to the analysis of filled-in forms, because it is considered
to be limited to empty fields [18]. Another recent study
by Ishitani [7] describes a hierarchical matching strategy
based on sub-graph matching which consists of global
matching stages by sub-form matching, local matching
stages by line matching, and the interactions between
them. Ishitani uses an association graph whose arc rep-
resents compatible correspondence between lines or be-
tween sub-blocks and an algorithm to obtain the best
correspondence by searching for the largest clique in the
association graph. The method seems to be rather theo-
retical though heuristics have been used for the solution
of some of the problems and the proposed similarity mea-
sure totally depends on the number of vertical and hor-
izontal lines. Furthermore, there is no explicit represen-
tation of a form document. A form document is directly
represented by its lines rather than having a more ab-
stract representation. Dengel [8] describes an algorithm
which establishes weighted syntactic representations from
detected layout features using position and dimension.

3 Definitions and approach

The physical structure of a form consists of horizontal
and vertical layout lines in addition to the preprinted
and filled-in data. We propose a hierarchical structure
to represent the logical layout of a form by using lines
which are considered as the separators among the sub-
blocks of a form. First, some definitions are given and
then we resume the approach.

3.1 Definitions

A block is a rectangular area on the form which is sur-
rounded by the longest horizontal and vertical lines at
any given instant. For example, the biggest block of a
form is the form itself. A cell is defined as the smallest
block which only consists of a block frame. A block frame
is the horizontal and vertical lines that surround a block
and the horizontal lines which have the same length as
the borders of a block frame are defined as the horizon-
tal separator lines. Vertical reference lines are the lines
which are orthogonal to the horizontal separator lines,
that start at any horizontal separator line and end at an-
other horizontal separator line. For the overlapping ver-
tical reference lines, the one with the maximum length

P. Duygulu, V. Atalay: A hierarchical representation of form documents 19

a b c

Fig. 1. An example form. a Thick black lines show the
preprinted areas, graphics or images. b An example block is
shown by the light gray area at the top along with the thick
black lines which indicate the block frame. A cell is demon-
strated with the dark gray area at the bottom left. c For the
form, horizontal separator lines and vertical reference lines
are given by the thick black lines and by the dashed lines,
respectively

is taken as the vertical reference line. A block frame is
defined to be ambiguous, if it includes only the lines of
length equal to the borders of the block frame.
In order to visualize the execution of the algorithm,

we proceed with the form shown in Fig. 1a where the thick
black lines show the preprinted areas, graphics or images
on the form. These areas are shown only for the visualiza-
tion of the form structure. Notice that preprinted data is
not used in the algorithm. In Fig. 1b, the light gray area
shows an example block, the thick black lines show the
block frame for this block, and the dark gray area at the
bottom shows a cell. In Fig. 1c, horizontal separator lines
for the form itself are shown by thick black lines and
vertical reference lines are shown by dashed lines.

3.2 Approach

The main aim is to partition the form into blocks which
can further be divided until cells are reached. The parti-
tioning results in a tree where the root node is the form it-
self and the leaf nodes correspond to the cells. The heuris-
tic behind the approach is that the blocks which contain
similar information are grouped together and these group
of blocks are separated by lines which are relatively longer
than the others. Such lines by definition are called hori-
zontal separator lines. Thus, the information about how
to partition a block is given by the horizontal separator
lines. However, not all horizontal separator lines provide
this information, but the vertical reference lines give clues
about which horizontal separator lines are separators.
In order to achieve a sequence of block partitioning,

a switching of horizontal and vertical divisions is used.
This idea, known as X-Y trees, has been proposed by
Nagy [1]. In document analysis, the XY-tree is a popu-
lar decomposition method for page and layout analysis.
In this method, the page is recursively split into rectan-
gular blocks by alternating horizontal and vertical cuts
along spaces [1] or lines [2]. The result of such a tree is
represented by an XY-tree in which the root node cor-

responds to the whole page and the leaf nodes represent
blocks of the page. Each level in the XY-tree alterna-
tively represents the results of the horizontal and verti-
cal segmentation. We use the XY-tree method along with
the switching lines to partition a form document into its
blocks. This exploits all of the information inherited by
the logical structure of the form via horizontal and ver-
tical lines. At a step, since only the information supplied
by a certain type of line is exploited for further parti-
tioning at the next step, the information provided by the
other types of lines is used.
Using the given definitions, the proposed approach

is implemented by an algorithm to extract a hierarchi-
cal representation of a given form document. The ap-
proach is top-down and no domain knowledge such as
the preprinted data or filled-in data is used. At the end,
two forms which have different physical structures but the
same logical structure are associated to the same repre-
sentation.

4 The heuristic algorithm

The algorithm consists of three phases : initialization,
block finding (BlockFinding), and tree construction (Tree
Construction).

ALGORITHM
{
/* -- first phase-initialization -- */
/* current block is initialized to be the form */
block_curr = Form

/* initial processing direction */
block_curr.direction = horizontal

/* queue to store the extracted blocks */
BlockQ = CreateQueue

/* -- second phase -- */
/* partition the current block frame */
BlockFinding(BlockQ, block_curr)

/* -- third phase -- */
/* insert the extracted blocks to the queue */
TreeConstruction(BlockQ, block_curr)

}

The first phase is used to initialize the current block
frame (block curr) to the form frame and also to cre-
ate a queue for the blocks to be processed. Partition-
ing of the current block frame is performed at the sec-
ond phase. Extracted horizontal separator lines for the
current block frame are processed and a block is always
defined between the first-in terms of position-horizontal
separator line (s curr) and the corresponding ending hor-
izontal separator line (s end). The ending horizontal sep-
arator line is sought through vertical reference lines that
intersect with the other horizontal separator lines. The
partitioned blocks are stored in a queue data structure

20 P. Duygulu, V. Atalay: A hierarchical representation of form documents

to be inserted into the tree and in order to be further
divided into smaller blocks, if possible. The processing
order of the extracted blocks is maintained by the queue.
We give definitions of the terms that are used in the al-
gorithm as follows:

DEFINITIONS
block_curr : current block
S = s[i], i=1,...,n : extracted horizontal

separator lines for block_curr
n : number of horizontal separator lines

for block_curr
s_curr : first horizontal separator line

in S which has not been processed yet
s_end : ending horizontal separator line
R = r[i], i=1,...,m : vertical reference lines

starting at s_curr
R’= r’[i],i=1,...,k : vertical reference lines

starting at horizontal separator
lines succeeding s_curr

m : number of vertical reference lines
for s_curr

k : number of vertical reference lines for
the succeeding horizontal separator lines

BlockQ : queue of blocks

Defining a block, particularly determining the ending
horizontal separator line, is not a very straightforward
process. A basic algorithm for BlockFinding is given as
follows:

BlockFinding(BlockQ, block_curr)
{
/* horizontal separator lines of the

current block */
Construct S
i = 1
/* go through all of the horizontal

separator lines */
While (i<n) Do
{
s_curr = s[i]
/* horizontal separator line at which

the block terminates */
s_end = FindEndingHSL(s_curr)

/* block instance to be enqueued */
block = DefineBlock(s_curr,s_end)

/* enqueue the block for eventual
decomposition */

AddQueue(BlockQ,block)

/* if there are any skipped horizontal
separator lines during the extraction
of a block, do not consider them for
processing */

While (i<ord(s_end)) Do
i = i+1

}
}

Initially, the horizontal separator lines are found for
the given block. The process proceeds until all of these
horizontal separator lines are considered. The currently
processed horizontal separator line is assigned to be
s curr which means that it indicates the beginning of the
current block. Then, the corresponding ending horizon-
tal separator line is determined by FindEndingHSL(). A
block is simply defined by s curr and s end and the de-
fined block is inserted into the queue to be inserted into
the tree and for further processing, if possible. Then the
horizontal separator lines in-between the beginning one
(s curr) and the ending one (s end) are skipped and the
process continues if there are any more horizontal sepa-
rator lines.
After finding the blocks, each one is inserted into the

tree which will represent the logical structure of the form.
The TreeConstruction procedure performs the tree inser-
tion operation in addition to the process of the whole
algorithm until the cells are reached. If the processing
continues, than the direction is switched.

TreeConstruction(BlockQ, block_curr)
{
/* till all of blocks is processed */
While Not EmptyQueue(BlockQ)
{
/* process the subsequent extracted block */
block = DeQueue(BlockQ)

/* insert the block to the tree */
InsertTree(block_curr, block)

/* if the current block is not a cell
then continue */

If Not Cell(block) Then
{
/* for subsequent processing

change direction */
block_curr.direction =

NOT(block_curr.direction)

BlockFinding(BlockQ, block)

/* recursive call */
TreeConstruction(BlockQ, block)

}
}

}

4.1 A basic algorithm for finding the ending horizontal
separator line

A basic algorithm to determine the ending horizontal sep-
arator line for a block is given below and is explained in
this section. If there are only borders of the block frame
orthogonal to the horizontal separator lines (i.e., m=2),
then each horizontal separator line defines a block. Oth-
erwise, the shortest vertical reference line that starts at
the current horizontal separator line defines the ending
horizontal separator line.

P. Duygulu, V. Atalay: A hierarchical representation of form documents 21

a b

Fig. 2. a Initial horizontal separator lines (drawn as thick
black lines) and vertical reference lines (drawn as dashed lines)
of the form shown in Fig. 1a. b Initial tree when the current
frame is the form frame

FindEndingBaseline(b_curr)
{
/* if there are only borders of the

block frame orthogonal to the
horizontal separator lines then
next horizontal separator line
is the ending line */

If (m=2) Then
s_end = s_curr.next

/* otherwise, the end of the shortest
vertical reference line that starts
at the current horizontal separator
line defines the ending line */

Else
{
v_shortest = FindShortestVRL
s_end = v_shortest.end

}
return s_end

}

4.2 An example for the basic algorithm

In order to visualize the algorithm and particularly the
block-finding part, the steps are demonstrated on the
form shown in Fig. 2. At the first level where the cur-
rent frame is the form frame, horizontal lines are defined
as the separator lines and five separator lines, which are
shown with thick black lines in Fig. 2a are found. The ver-
tical reference lines for the form frame are also shown in
Fig. 2a with dashed lines. Initially, the current separator
line is the top border of the form. Since there is only one
vertical reference line starting from the current separa-
tor line, the first block is defined till the third horizontal
separator line.
In defining the next block, there are two vertical refer-

ence lines and the block is then defined by the shorter one.
The second block is thus between the third and fourth
horizontal separator lines. The last block is defined be-
tween the fourth and the fifth horizontal separator lines

a b

c d

Fig. 3. a,b Horizontal separator lines (drawn as thick black
lines) and vertical reference lines (drawn as dashed lines) for
the current frames. c,d Hierarchical trees after the process of
the current frames

since there is a single vertical reference line which have
the same length as the borders of the current block frame.
Whenever execution comes to the third phase, the initial
tree which is shown in Fig. 2b is constructed. In the rest
of the algorithm, all of the blocks are further partitioned
since none of them is a cell. However, this time, divisions
by vertical lines are performed. The algorithm is recur-
sively applied on each of the three blocks extracted at
the first pass of the algorithm. When the first block is
taken as the current block, the horizontal separator lines
and the vertical reference lines which are shown in Fig. 3a
are obtained. At this time, separator lines are the verti-
cal lines which are shown with thick black lines and the
reference lines are the dashed horizontal lines. The first
block is then defined between the first and the second
separator lines according to the shortest reference line,
while the second block is defined between the second and
the third separator lines. Corresponding nodes for these
blocks are shown in Fig. 3b. If the algorithm is again ap-
plied to the first block, the horizontal lines are taken as
the separator lines as shown in Fig. 3c and since there is
no reference line between the first and the second sepa-
rator lines, these two separator lines define a new block.
The other block is defined between the second and the
fourth separator lines since the only vertical line lies be-
tween them. The first block is a cell and the execution of
the algorithm stops for this block making it a leaf node in
the tree. However, the execution continues for the other
blocks recursively until the cells are reached.

22 P. Duygulu, V. Atalay: A hierarchical representation of form documents

b

b b b

b

b

b b

b

b
b

31
321

322

22 232

231211

212

121

122

111

b

b11221

b
b

b
11213

11222
11212

11211

b b b b b

b

b b

b

b b
111 121 122 211 212

22

231 232

31

321 322

b b11221 1122211212bb11211 b11213

a b

Fig. 4. a The example form shown in Fig. 1a. b Its represen-
tation as a tree

The other blocks are similarly processed and finally,
when the algorithm terminates, the tree presented in
Fig. 4b is constructed. The cells, which correspond to the
preprinted or user filled-in areas on the form, are labeled
to show the corresponding nodes in the tree (see Fig. 4a).

4.3 Improved algorithm for finding ending baseline

With the algorithm given in the previous two sections,
blocks are defined by the shortest vertical reference line
that starts at the current horizontal separator line. How-
ever, the other vertical lines become important when the
forms are more complex: if there are horizontal separator
lines shared among several vertical reference lines, then
the ending separator line cannot be found by the infor-
mation simply coming only from a single vertical refer-
ence line, since in this case the vertical reference lines
are not independent from each other. Therefore, infor-
mation from all of the vertical reference lines should be
combined to solve the complex set of relations. For exam-
ple, if there is no grouping mechanism, such as all of the
vertical reference lines not starting or not ending at the
same horizontal separator lines, then the block should be
taken as a whole. For other cases, we have to check the
ending of the vertical reference lines that are in the same
current block but that start from horizontal separator
line other than the current one. If at least one of these
other existing vertical reference lines does not end at the
same horizontal separator line as the shortest vertical ref-
erence line, then the ending horizontal separator line is
taken as the one at which the longest vertical reference
line ends. On the other hand, if there is any other verti-
cal line which ends at the same horizontal separator line
as the shortest vertical reference line, then this vertical
line defines a block and its starting horizontal separator
line should indicate the ending of the current block. Tak-
ing into account the above, we improve the algorithm to
determine the ending baseline for a block as follows:

FindEndingBaseline(b_curr) /* improved */
{
/* if there are only borders of the block

frame orthogonal to the horizontal

separator lines */
If (m=2) Then
lines = 0

Else
{
/* if there is no complex situation, the end

of the shortest vertical reference line
indicates the ending separating line */

v_shortest = FindShortestVRL()
lines = 1

for i=1 to k do
/* check all vertical lines to see if there

is any complex situation */
if (v_shortest.end > v’[i].start) and

(v_shortest.end < v’[i].end)
Then
{
v_longest = FindLongestVRL()
lines = 2
break

}
Else
{
tmp = v’[i]
lines = 3

}
}

case lines
/* assign the ending separator line according

to the above decisions */
{

0: s_end = s_curr.next
1: s_end = v_shortest.end
2: s_end = v_longest.end
3: s_end = temp.start

}
return(s_end)

}

If the improved algorithm is applied to the form
shown in Fig. 5a, then the ending horizontal separator
line is assigned to the line where the longest vertical line
ends (as shown in Fig. 5b) since the other vertical line
shown by dashed line does not end at the same line where
the shortest vertical line ends.

4.4 Ambiguity

As a special case, the current block may consist of only
the vertical lines with the same length equal to the length
of the borders of the block frame and there may be no
other line parallel to the horizontal separator lines. In
such a case, there is an ambiguity in defining blocks in
the sense that only the vertical and horizontal lines do not
give enough information about the type of division. If we
consider the example in Fig. 6a, without preprinted data,
it may represent both blocks shown in Fig. 6b and shown

P. Duygulu, V. Atalay: A hierarchical representation of form documents 23

(a) (b)

Fig. 5. a A complex situation in which a vertical line (shown
by the dashed line) in the current block does not end at the
same line where the shortest vertical line (shown by thick
black line) ends. b In this case, the ending horizontal separator
line is assigned to the line where the longest vertical line ends
(thick black lines indicate the borders of the current block)

a b c

d e f

Fig. 6. a A block without preprinted data. b,c Alternatives
for preprinted data. d Corresponding subtree black node
shows the ambiguity. e,f Two subtrees interpretations
represented by a single ambiguous subtree

in Fig. 6c. This ambiguity can be handled by defining the
current block as ambiguous and forming new blocks be-
tween each horizontal line. In the tree construction part,
a flag is used to define the ambiguity for the node which
represents the current block. The rest of the tree is con-
structed in a usual manner. The tree for Fig. 6a is shown
in Fig. 6d. An ambiguous branch corresponds to two dif-
ferent subtrees. Possible subtrees for Fig. 6a are shown in
Fig. 6e and Fig. 6f. The ambiguity flag in the tree brings
flexibility to the registration process. Without knowing
anything about preprinted or user filled-in data, by us-
ing only horizontal and vertical lines, the forms can be
registered even if they have slight variations.

5 Retrieval of form documents via hierarchical
representation

The described hierarchical structure may be used for
identification, i.e., search for the reference model form
corresponding to an input instance form and for retrieval,
i.e., retrieving similar forms. Both identification and re-
trieval can be realized by comparing hierarchical struc-
tures.

5.1 Retrieval of a reference model form for registration
and Parsing

In order to extract the user filled-in data, the input in-
stance form should be registered with one of the refer-
ence model forms in the database. An input instance
form is registered with one of the model forms in the
form database if their structures are identical. In our ap-
proach, the identification of forms are simplified by iden-
tification of trees. However, since there may be ambigu-
ous branches in one of the trees, sometimes unification is
performed instead of direct identification. Unifiability is
possible, if one of the trees has an ambiguous subtree and
the other has the corresponding non-ambiguous subtree.
If the representations of hierarchical trees can directly be
matched, then the trees are defined as identical. Other-
wise, if there exists an ambiguity in any of the trees, the
number of the nodes of two subtrees should be equal in
order to be defined as unifiable.
Registration of trees (identification or unification) is

performed by level order. Since the hierarchy of the tree
corresponds to the hierarchy of the blocks in the form,
lower levels carry more information than the higher levels
(note that the root corresponds to level 0). Thus, if the
trees are not matched at lower levels, then the registra-
tion process stops.
After the registration of forms, the information is ob-

tained from the input instance form by using a parser as
shown in Fig. 7. Leaf nodes of the reference model form
correspond to the locations that carry the information,
preprinted data or user filled-in data. Since the input in-
stance form and the reference model form should have the
same hierarchical structure, corresponding leaf nodes rep-
resent the same fields in the forms. The parser is used to
extract the corresponding fields. The information about
the field is taken from the reference model form and the
user filled-in data is taken from the input instance form
to process further. Both the reference model form and
input instance form keep the information about the lines
that surround cells at the leaf nodes. Since the approach
is top-down, there is no need for an extra process to get
the locations of the lines. The information is carried from
the form frame to the cell frames. Each tree can keep
its corresponding physical coordinates and this handles
problems due to scaling or translation.
After parsing the tree, only leaf nodes that correspond

to the locations where the user filled-in data exists are
extracted. The extracted areas are processed further in
order to be given as an input to an Optical Character
Recognizer (OCR).

5.2 Retrieval of similar forms

The retrieval problem can be stated as follows [24]:
“Given a form in image database and a query image, how
do we retrieve form images in the database with the same
or similar layout structure as the query?”. There may be
several motivations for retrieval: the same forms at differ-
ent scales (resolutions), minor physical variations which

24 P. Duygulu, V. Atalay: A hierarchical representation of form documents

a

b

Fig. 7. a Part of a form. b Its hierarchical structure with
field names and the corresponding extracted fields

occur over the years, etc. In the case of scale change, the
hierarchical structure remains the same. However, minor
variations are reflected as additional subtrees.
In this study, the extracted tree hierarchy is used for

retrieval of similar forms. The similarity of two forms is
computed by the distance between the corresponding two
trees. The computation of distance of two trees is known
as the tree editing problem [9,13] and is a generalization
of the problem of computing the distance between two
strings to labeled trees [10–12]. If the trees under con-
sideration are unordered, then the tree editing problem
becomes NP-complete [13]. The operations in the tree
editing problem are changing, deleting, and inserting a
node. Since, the generated trees are unordered and not
labeled in our case, we have only delete and insert op-
erations and no label change operation. The problem is
to find a sequence of such operations transforming a tree
T1 into a tree T2 with minimum cost. The distance be-
tween the trees T1 and T2 is then defined to be the cost
of such a sequence. The insert operation is weighted with
respect to the level of the node. A generated tree cor-
responding to a particular for document is stored as a
matrix M . The indices Mij of the matrix M represent
the number of nodes having i children at level j. For ex-
ample, the form in Fig. 4 can be represented in matrix
form as shown below. In this study, we choose the maxi-
mum possible number of children of a node as 20 and the
maximum possible level as 10.

1 2 3 4 5 6 7 8 9 10
2 0 2 5 1 1 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0

This matrix representation shows that, the form has
1 node having 3 children at level 1, 2 nodes having 2
children and 1 node having 3 children at level 2, 5 nodes
having 2 children at level 3, 1 node having 2 children at
level 4, and 1 node having 2 children and 1 node having
3 children at level 5. Then, the similar forms are found
by defining a cost for the node deletion and node inser-
tion. The hierarchy of the form is reflected by assigning
higher priorities to the higher levels in the tree (the high-
est priority is given to the root node). Thus, the distance
between two matrices Mm and Mn is found as follows:

d(Mm, Mn) =
∑

1≤j≤10(Lj ∗ ∑
1≤i≤20(Mmij − Mnij))

where Lj is the number showing the priority of level j.

For each ambiguous branch in the tree, a different ma-
trix representation is needed, since an ambiguous branch
can be represented in two ways: M nodes at level i and
M*N nodes at level i+1 or N nodes at level i and N*M
nodes at level i+1. Thus, for each form, more than one
matrix representation can be needed. Then, the similarity
between two forms Fm and Fn is found as follows:

D(Fm, Fn) = argmink,ld(F k
m, F l

n)

where F k
m represents the kth matrix of the form Fm and

F l
n represents lth matrix of the form Fn. Then, the sim-
ilarity of the forms are found by computing D(Fi,Fj) for
each form pair.

6 Experimental results

The database that is used to assess the performance of
the described algorithm for identification and retrieval
contains 33 different types of form documents. These

P. Duygulu, V. Atalay: A hierarchical representation of form documents 25

form documents are collected either from local insti-
tutions or from the studies already published in the
literature [20]. The details of our work, form documents
used, and an interactive form document browser are
presented on a website at:
http://www.ceng.metu.edu.tr/˜duygulu/form/index.html

Subjective evaluation of the described algorithm can
be performed via the results presented at the given url
address and by the use of the interactive browser at the
same address. On the other hand, for the quantitative
analysis, we have used ten different types of form doc-
uments selected among our database. For each type of
form document, we have generated three new subtypes :

1. Exactly the same document, but the generated tree
is different because of ambiguity.

2. A new form document which is logically the same but
has some geometrical modifications.

3. A new form document which is similar but has im-
portant geometrical modifications.

Figure 8a shows a sample form document which is one
of those ten form types selected to be used for quan-
titative assessment. Its subtypes are given in Fig. 8b,
Fig. 8c,d, and Fig. 8e–g as examples to the first, second,
and third subtypes, respectively. For each form docu-
ment type, we manually derive new form documents of
the same type (logically) which may have different geo-
metrical structures. The physical difference is obtained
by slight changes in the position and length of the lines.
For example, in the form document given in Fig. 8c, the
first vertical line is no more a long vertical line as it is in
the original form document shown in Fig. 8a, but it has
been divided into three smaller vertical lines. The other
form documents given in Fig. 8d also have similar mod-
ifications. In addition to these, there are also new form
documents which are expected to be similar to the form
type, i.e., the original form document. For example, in
the form document demonstrated in Fig. 8e the first ver-
tical line has totally disappeared with respect to the form
type.
We have conducted three types of experiments to

assess the performance of the proposed method for re-
trieval. The results are given in terms of the retrieval
rate in each experiment. In the first experiment, the set
of form documents contains the ten form documents and
their ambiguous versions. Therefore, we have a total of
20 form documents which means two examples per form
type. The purpose in this experiment is to assess the ef-
fect of different interpretations of the same physical form
document on the retrieval rate. Table 1 shows the re-
trieval rate versus the number of retrieved documents for
this experiment. The results demonstrate that if the am-
biguity is at a lower level, i.e., in the sub-blocks, then
the form documents can be retrieved among the first few
candidates. The decrease in the retrieval rate is because
of the fact that the ambiguity is at a level close to the
root node.
The second experiment is performed with the form

documents of ambiguous subtypes and of the same logical

a

b c

d e

f g

Fig. 8. a One of the ten form document types (original form
document) and its representation. b The same form docu-
ment, but the tree representation in the ambiguous part is
different. c,d New form documents (subtypes) which are log-
ically the same but have some geometrical modifications and
their representations. e–g New form documents (subtypes)
which are similar but have important geometrical modifica-
tions and their representations

Table 1. Retrieval rate when the form documents with am-
biguous blocks are considered

No. of retrieved Retrieval rate
documents (%)

2 77.5
3 90.0
4 100

structure but having geometrical modifications. In this
experiment, we have a total of 51 form documents and
at least two examples per form type. As can be observed
from the sample form documents shown in Fig. 8c,d, even
if there is a slight geometrical change, the human inter-
pretation varies drastically. Table 2 shows the retrieval
rate versus the number of retrieved documents for this
experiment. The retrieval rate is around 70%.

26 P. Duygulu, V. Atalay: A hierarchical representation of form documents

Table 2. Retrieval rate versus the number of retrieved doc-
uments when the set contains form documents of ambiguous
subtypes and of the same logical structure but with geomet-
rical modifications

No. of retrieved Retrieval rate
documents (%)

2 86.3
4 71.5
5 63.7
8 72.9
10 80.5
15 87.7
20 91.3
25 92.4

Table 3. Retrieval rate versus the number of retrieved docu-
ments when all of the form documents are used, but especially
the subtypes which are similar but which have important ge-
ometrical modifications

No. of retrieved Retrieval rate
documents (%)

2 75.4
4 53.6
5 48.2
8 38.4
10 35.4
15 41.7
20 51.3
25 59.4

In the third and final experiment, we have used all
the different subtypes of form documents which seems to
be a rather difficult retrieval problem. One hundred and
twelve example form documents are employed in this ex-
periment and there are at least ten examples for each
form document type. Table 3 shows the retrieval rate
versus the number of retrieved documents for this exper-
iment.
Since higher nodes are given higher priorities during

the coding scheme, the level of detail is an important cri-
teria regarding similarity. Forms having a complex struc-
ture are closer to each other, rather than the simpler
forms, and vice versa. Forms designed for the same ap-
plication, but having some slight differences, are found
to be the most similar ones among the others. The re-
sults show that the retrieval of form documents is rather
a difficult problem in the sense that we still need a better
representation scheme for a form document.

7 Conclusion

Identification and retrieval is an essential process even for
a single type of form, since there may be modifications
on the physical structure of the form or there may be
more than one design for the same application-specific
form. Most of the current studies use physical features
and can handle only some translation or scaling problems.

However, there is a need for more logical features if the
forms have several different physical structures and if the
number of forms to be compared is large.
In this study, the logical structure of the forms is rep-

resented by an XY-tree which corresponds to the hier-
archy of the blocks on the form. Since the forms are
designed in a hierarchical manner – that is, the blocks
which contain similar information are grouped together
and separated from the other groups – this representation
is also close to the human point of view. The described
hierarchical structure is used both for identification and
retrieval. A coding scheme along with a well-known tree
editing method is used for the comparison of hierarchical
structures. Several experiments are conducted to assess
the performance of the described method. However, it is
still necessary to perform extensive experimental work to
further test the ideas described in this study in a com-
parative manner with respect to the other existing algo-
rithms in the literature.
One of the most similar studies in the literature is that

of Watanabe et al. However, their method is more suit-
able for tabular documents rather than form documents.
Furthermore, regarding the relations among the docu-
ment elements, i.e., horizontal and vertical lines, blocks
are represented in two different trees and the registra-
tion or identification is performed in a rather complicated
manner. On the other hand, the method described in this
paper is particularly useful for form documents and the
output is a single tree from which identification and re-
trieval is directly possible through popular existing algo-
rithms. The second closest study is that of Ishitani [7]
in which the ideas and the results are very impressive.
However, all of the proposed processes and, particularly,
the representation depend on the horizontal and vertical
lines. There is no abstract representation of the form doc-
ument. A form document is represented by its physical
features-horizontal and vertical lines. On the other hand,
we generate a tree whose hierarchy corresponds to the
layout in a form document. The tree is an abstract repre-
sentation of the input form document. One advantage of
representing a form document by a tree is that in the liter-
ature, there are several available algorithms to compare
trees; therefore we do not need to include heuristics to
determine similarities among the form documents. How-
ever, the disadvantage of using an abstraction is that we
lose some of the low-level details of the structures of the
form documents and this causes a certain degradation in
the retrieval rate. In this context, Ishitani’s method may
give better results.

Acknowledgements. We thank Ali İnce for his help with pro-
gramming.

References

1. G.Nagy, S.Seth Hierarchical representation of optically
scanned documents. Proc. ICPR, pp. 347–349 (1984)

P. Duygulu, V. Atalay: A hierarchical representation of form documents 27

2. F.Cesarini, M.Gori, S.Marinai, G.Soda: Structured doc-
ument segmentation and representation by the modified
X-Y tree. Proc. 5th ICDAR, pp. 563–566 (1999)

3. Y. Y. Tang, C. D.Yan, M.Cheriet, C. Y.Suen: Automatic
analysis and understanding of documents. In: Handbook
of pattern recognition and computer vision, pp. 625–654
(1993)

4. D.Niyogi, S.Srihar: Using domain knowledge to derive the
logical structure of documents. SPIE, pp. 114–125 (1996)

5. B.Yu, A. K.Jain: A form dropout system. Proc. 13th Int.
Conf. on Pattern Recognition, ICPR’96, Vienna, Austria,
August, 1996, pp. 701–705

6. D. Wang, S. N.Srihari: Analysis of form images. Proc.
1st Int. Conf. on Document Analysis and Recognition,
ICDAR’91, Saint-Malo, France, Sept., 1991, pp. 181–191

7. Y. Ishitani: Flexible and robust model matching based on
association graph for form image understanding. Pattern
Anal Appl 3:104-119 (2000)

8. F. Dubiel, A. Dengel: FormClass: a System for OCR free
identification of forms. Document Analysis Systems II,
World Scientific, pp. 189–209 (1998)

9. T. Richter: A new measure of the distance between or-
dered trees and its applications. Technical Report 85166,
Dept. of Computer Science, Uni. of Bonn (1997)

10. V.I. Levenshtein: Binary codes capable of correcting dele-
tions. Soviet Phys Dokl 6:707–710 (1966)

11. P.H. Sellers: On the theory and computation of evolu-
tionary distances. SIAM J Appl Math 26:787–793 (1974)

12. R.A. Wagner, M.J. Fischer: The string-to-string correc-
tion problem. JACM 21:168–173 (1974)

13. K. Zhang, R. Statman, D.Shasha: On the editing distance
between unordored labeled trees. IPL 42:133–139 (1992)

14. R. Casey, D. Ferguson, K. Mohiuddin, E. Walach: In-
telligent forms processing system. Mach Vision Appl
5(3):143–155 (1992)

15. J. Mao, M. Abayan, K. Mohiuddin: A Model-based form
processing sub-system. Proc. 13th Int. Conf. on Pattern
Recognition, ICPR’96, Vienna, Austria, August, 1996,
pp. 691–695

16. S. Taylor, R. Fritzson, J. Pastor: Extraction of data from
preprinted forms. Mach Vision Appl 5:211–222 (1992)

17. J. Lin, C. Lee, Z. Chen: Identification of business forms
using relationships between adjacent frames. Mach Vision
Appl 9:56–64 (1996)

18. S. Shimotsuji, M. Asano: Form identification based on cell
structure. Proc. 13th Int. Conf. on Pattern Recognition,
ICPR’96, Vienna, Austria, August, 1996, pp. 793–797

19. Y. Hirayama: Analyzing form images by using line-
shared-adjacent cell relations. Proc. 13th Int. Conf. on
Pattern Recognition, ICPR’96, Vienna, Austria, August,
1996, pp. 768–772

20. T. Watanabe, Q. Luo, N. Sugie: Layout recognition of
multi-kinds of table-form documents. IEEE Trans Pattern
Anal Mach Intell 17(4):432–445 (1995)

21. J. Liu, X. Ding, Y. Wu: Description and recognition
of form and automated form data entry. Proc. Third
Int. Conf. on Document Analysis and Recognition, IC-
DAR’95, 1995, pp. 579–582

22. O. Hori, D.S. Doermann: Robust table-form structure
analysis based on box-driven reasoning. Proc. Third
Int. Conf. on Document Analysis and Recognition, IC-
DAR’95, 1995, pp. 218–221

23. P. Heroux, S. Diana, A. Ribert, E. Trupin: Classifica-
tion method study for automatic form class identification.
Proc. 14th Int. Conf. on Pattern Recognition, ICPR’98,
Brisbane, Australia, August (1998)

24. J. Liu, A.K. Jain: Image-based form document retrieval.
Proc. 14th Int. Conf. on Pattern Recognition, ICPR’98,
Brisbane, Australia, August (1998)

25. P. Duygulu, V. Atalay, E. Dincel: A heuristic algorithm
for hierarchical representation of form documents. Proc.
14th Int. Conf. on Pattern Recognition, ICPR’98, Bris-
bane, Australia, August (1998)

26. P. Duygulu, V. Atalay: A hierarchical representation of
form documents for identification and retrieval. SPIE,
Electronic Imaging 2000, Document Recognition and Re-
trieval VII, San Jose, USA, January (2000)

