
Range Queries
(bonus: Sqrt Complexity and Computation)

CENG 213
METU/ODTÜ

Data Structures
Yusuf Sahillioğlu

Goal
2 / 95

• Compute a value based on a subarray of an array.
• Consider range [3, 6] below.

• sumq(3, 6) = 14, minq(3, 6) = 1, maxq(3, 6) = 6.

Goal
3 / 95

• Compute a value based on a subarray of an array.
• Typical range queries:
• sumq(a,b): calculate the sum of values in range [a,b].
• minq(a,b): find the minimum value in range [a,b].
• maxq(a,b): find the maximum value in range [a,b].

Trivial Solution
4 / 95

Trivial Solution
5 / 95

• Works in O(n) time, where n is the array size.
• We will make this fast!

Static Array Queries
6 / 95

• Assume array is static: values never updated.
• We will handle sum queries and min/max queries

in this setting.

Prefix Sum Array
7 / 95

• Value at position k is sumq(0, k).
• Can be constructed in O(n) time. How?

Array:

Prefix Sum:

Prefix Sum Array
8 / 95

• Value at position k is sumq(0, k).
• Can be constructed in O(n) time. How?

Array:

Prefix Sum:

• Dead simple application of dynamic programming.
• P[0]=A[0]; for(i=1 to n-1) P[i]=P[i-1]+A[i];

Prefix Sum Array
9 / 95

• sumq(a,b) = sumq(0,b) − sumq(0,a−1)
• Define sumq(0,−1) = 0.

• O(n): sumq(3,6) = 8 + 6 + 1 + 4 = 19.
• O(1): sumq(3,6) = sumq(0,6) - sumq(0,2) = 27 – 8.

Prefix Sum Array
10 / 95

• Can be generalized to higher dimensions.

• Sum of gray subarray: S(A) - S(B) - S(C) + S(D)
where S(X) is the sum of values in a rectangular
subarray from the upperleft corner to the pos. of X.

Sparse Table
11 / 95

• Handles minimum (and similarly max) queries.
• O(nlogn) preprocessing, then all queries in O(1).

Sparse Table
12 / 95

• Precompute all values of minq(a,b) where b - a +1
(the length of the range) is a power of 2.

Sparse Table
13 / 95

• Precompute all values of minq(a,b) where b - a +1
(the length of the range) is a power of 2.

• How many precomputed values?

Sparse Table
14 / 95

• Precompute all values of minq(a,b) where b - a +1
(the length of the range) is a power of two.

• How many precomputed values?
• O(nlogn) because
• there’re O(logn) range lengths that are powers of 2.
• there’re O(n) values at each range, e.g., n values for

range of length 1, n-1 vals for range of length -1, ..

Sparse Table
15 / 95

• Precompute all values of minq(a,b) where b - a +1
(the length of the range) is a power of two.

• Each of the O(nlogn) values will be computed in
O(1) via the recursion (DP again!):
minq(a,b) = min(minq(a,a+w-1), minq(a+w,b))
where b-a+1 is a power of two and w = (b-a+1)/2 //mid.

Sparse Table
16 / 95

• Precompute all values of minq(a,b) where b - a +1
(the length of the range) is a power of two.

• Each of the O(nlogn) values will be computed in
O(1) via the recursion (DP again!):

• Hence the O(nlogn) preprocessing time.

Sparse Table
17 / 95

• Query response in O(1) via
minq(a,b) = min(minq(a,a+k-1), minq(b-k+1,b))

where k is the largest power of 2 that doesn’t exceed b-a+1,
the range length.

Here, the range [a,b] is represented as the union of the
ranges [a,a+k-1] and [b-k+1,b], both of length k.

Range length 6, the largest power
of 2 that doesn’t exceed 6 is 4, k=4.

minq(1,4)=3

minq(3,6)=1

Dynamic Array Queries
18 / 95

• Now we will enable updates on array, hence
dynamic.

• We will handle sum queries, min/max queries,
and update queries in this setting.

Binary Indexed Tree*
19 / 95

• Dynamic variant of a Prefix Sum Array.
• Handles range sum queries in O(logn) time. //PSA O(1)
• Handles updating a values in O(logn) time. //PSA not★

• Using two BITs make min queries possible.
• This is more complex than using a Segment Tree (later).

★ PSA can handle this but needs O(n) to rebuild PSA again.

* BIT aka Fenwick Tree.

Binary Indexed Tree
20 / 95

• Tree is conceptual; we actually maintain an array.
• Array is 1-indexed to make the implementation easier.

Binary Indexed Tree
21 / 95

• Let p(k) denote the largest pow of 2 that divides k.
We store a BIT as an array such that

tree[k] = sumq(k - p(k)+1,k)
• That is, each position k contains the sum of values

in a range of the original array whose length is p(k)
and that ends at position k.
• See slides 30-31 for the BIT construction.

• Since p(6) = 2, tree[6] contains value of sumq(5,6).

Binary Indexed Tree
22 / 95

• sumq(1,k) can be computed in O(logn) because a
range [1,k] can always be divided into O(logn)
ranges whose sums are stored in the tree.

At most
lg8=3 ranges
to be used.
[1,2a] for the biggest 2a< k
solves half the problem, and so on
w/ a--. (2a= k case solved in 1 shot.)

Array:

BIT:

Binary Indexed Tree
23 / 95

• sumq(1,k) can be computed in O(logn) because a
range [1,k] can always be divided into O(logn)
ranges whose sums are stored in the tree.

Array:

BIT:

Binary Indexed Tree
24 / 95

• sumq(1,7) = sumq(1,4) + sumq(5,6) + sumq(7,7)
= 16 + 7 + 4 = 27.

Array:

BIT:

Binary Indexed Tree
25 / 95

• sumq(a,b) = sumq(1,b) - sumq(1,a-1) //PSA trick for a>1

• sumq(3,6) = sumq(1,6) - sumq(1,2) = 23 - 4 = 19.

Array:

BIT:

Binary Indexed Tree
26 / 95

• After updating a value in the array, several values
in the BIT should be updated.

• If the value at position 3 changes, the sums of the
following ranges change:

Binary Indexed Tree
27 / 95

• After updating a value in the array, several values
in the BIT should be updated.

• Each array element belongs to O(logn) ranges,
hence update cost is O(logn).

At most
lg8=3 ranges
to be updated.
Last bar is definetely involved, then
either left or right side of it, and so on.

Binary Indexed Tree
28 / 95

• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k.

• Computation of sumq(1,k):
• O(logn) values are accessed

and each move to the next
position takes O(1) time.

• Since p(6) = 2, tree[6] contains value of sumq(5,6) //length of range is 2.
• Since p(4) = 4, tree[4] contains value of sumq(1,4) //length of range is 4.

//zeroes all the bits except the last set one.
//p(6)=2: 0110 à 0010, p(7)=1: 0111 à 0001, ..

Binary Indexed Tree
29 / 95

• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Addition of x to position k:
• O(logn) values are accessed

and each move to the next
position takes O(1) time.

• Since p(6) = 2, tree[6] contains value of sumq(5,6) //length of range is 2.
• Since p(8) = 8, tree[8] contains value of sumq(1,8) //length of range is 8.

Binary Indexed Tree
30 / 95

• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Initial construction of a BIT is O(nlogn).
• Initialize all elements to 0.
• Fill all range sums (of length p(k)).
• Call add() n times using the input values: add(1..n,A[i]).

Binary Indexed Tree
31 / 95

• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Initial construction of a BIT is O(n).
• Construct a PSA in O(n).
• Fill all range sums (of length p(k)).
• Use PSA lookups in O(1) time per sum.

Segment Tree
32 / 95

• A more general data structure than BIT.
• BIT supports sum queries (min queries possible but

complicated).
• ST supports sum, min, max, gcd, xor in O(logn) time.
• ST takes more memory and is harder to implement.

Segment Tree
33 / 95

• Tree is conceptual; we actually maintain an array.
• Array is 0-indexd* to make the implementation easier.
• Array size is a power of 2 to make the implmtn easier.
• Append extra elements to get this property, if necessary.

* Query ranges are 0-based but the tree array 1-based.
(will be clear in Slide 41)

Segment Tree
34 / 95

• Each internal tree node stores a value based on an
array range whose length is a power of 2.

Range length is 22 = 4.

Array: goes to leaves.

ST (sumq):

Segment Tree
35 / 95

• Any range [a,b] can be divided into O(logn)
ranges whose values are stored in tree nodes.

Array:

ST (sumq): sumq(2,7) = 9 + 17

Segment Tree
36 / 95

• At most 2 nodes on each level needed è O(logn)
nodes/ranges needed, so sumq complexity is O(logn).

Array:

ST (sumq): sumq(2,7) = 9 + 17

Segment Tree
37 / 95

• After an update, update all nodes whose value
depends on the updated value.

Array:

ST (sumq):

Segment Tree
38 / 95

• Do this by traversing the path from the updated
element to root and updating nodes along the path.

Array:

ST (sumq):

Segment Tree
39 / 95

• The path from bottom to top always consists of
O(logn) nodes, so update complexity is O(logn).

Array:

ST (sumq):

Segment Tree
40 / 95

• Implementation with an array of 2n elements where
n is the size of the original array and a power of 2.

Segment Tree
41 / 95

• Tree nodes stored from top to bottom.
• tree[1] is the root, tree[2] and tree[3] its children, ..
• tree[n] to tree[2n-1], the bottom level, input values.

Segment Tree
42 / 95

• Parent of tree[k] is tree[⌊k/2⌋].
• Children of tree[k] is tree[2k] and tree[2k+1].

Segment Tree
43 / 95

• sumq(a,b) in O(logn) because ST has O(logn)
levels and we move one level higher at each step.

sumq(2,7) = 9 + 17

//range initially [a+n,b+n].

Segment Tree
44 / 95

• add() increases the array value at position k by x
in O(logn) because ST has O(logn) levels and we
move one level higher at each step.

k=2
n=8

Segment Tree
45 / 95

• ST can be constructed in O(n). How?

Segment Tree
46 / 95

• ST can be constructed in O(n). How?
• Calling add n times on initially 0 array is not O(n);

it’d be O(nlogn).

Segment Tree
47 / 95

• Go from the last intermediate node to the first
(root), fill their values by adding their children at
indices 2k and 2k+1. Each visited once, hence O(n).

Segment Tree
48 / 95

• ST can also be used for min queries.
• Divide a range into two parts, compute the answer

separately for both parts and then combine answers.
• Already did this for the sum queries.
• Similarly, it handles max, gcd, bit op (xor) queries.

Segment Tree
49 / 95

• ST can also be used for min queries.
• Every tree node contains the smallest value in the

corresponding array range.
• Instead of sums, minima are computed.

2D Segment Tree
50 / 95

• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

2D Segment Tree
51 / 95

• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Merge 2 rows (column-wise
additions) into a new ST

2D Segment Tree
52 / 95

• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Sum for gray region can be
obtained from the merged ranges

2D Segment Tree
53 / 95

• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Sum for gray region can be
obtained from the merged ranges

Lazy Propagation
54 / 95

• An optimization to make range updates faster.
• When there are many updates and updates are

done on a range, we can postpone some updates
and do those updates only when required.

Lazy Propagation
55 / 95

• s/z: sum of values in the range / value of a lazy
update.

Lazy Propagation
56 / 95

• ST after increasing all the elements in [a,b] by 2.

• When the elements in [a,b] are increased by u, we
walk from the root towards the leaves and modify
the nodes of the tree as follows.

Lazy Propagation
57 / 95

• ST after increasing all the elements in [a,b] by 2.

• If [x,y] is partially inside [a,b], we increase the s
value of the node by hu, where h is the size of the
intersection of [a,b] and [x,y], and recur.

Lazy Propagation
58 / 95

• ST after increasing all the elements in [a,b] by 2.

• If [x,y] is completely inside [a,b], we increase the
z value of the node by u, and stop.

Lazy Propagation
59 / 95

• ST after increasing all the elements in [a,b] by 2.

• The idea is that updates will be propagated
downwards only when it is necessary, which
guarantees that the operations are always efficient.

Lazy Propagation
60 / 95

• ST after computing sumq(a,b).

• Notice how the lazy update is applied to 28, and
propagated below to 8 and 2 (blue part).

Additional Technique
61 / 95

• Increasing all the elements in [a,b] by x can also
be done via Difference Array – has nothing to do w/ ST.

• DA indicates the differences between consecutive
values in the original array A.

• Thus, A is the prefix sum array of the DA.

Array:

DA:

Additional Technique
62 / 95

• We can update a range in A by changing just two
elements in DA: to increase A[1,4] by 5, it suffices
to increase DA[1] by 5 and decrease DA[5] by 5.

• General, [a,b] by x à DA[a]+=x and DA[b+1]-=x,
hence just 2 updates to update O(n)-range: O(1).

Array:

DA:

Segment Tree w/ DS Nodes
63 / 95

• Nodes contain data structures that maintain info
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

Array:
ST:

Segment Tree w/ DS Nodes
64 / 95

• Nodes contain data structures that maintain info
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

• Query answered by combining results from nodes that belong to the range.

Array:
ST:

Segment Tree w/ DS Nodes
65 / 95

• Nodes contain data structures that maintain info
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

• Answering takes O(f(n)logn), where f(n) is the time needed for processing
a single node during an operation. Linear search above.

Array:
ST:

Square Root Complexity
66 / 95

• Algorithm w/ a O(√n) time complexity.
• Poor man’s logarithm.

Square Root Complexity
67 / 95

• A familiar problem: sumq(a,b) and update/add.
PSA O(1) O(n)
BIT O(logn) O(logn)
ST O(logn) O(logn)

• Let’s do it this way: O(√n) O(1)

Square Root Complexity
68 / 95

• Divide the array into blocks of size √n so that
each block contains the sum of elements inside it.

Square Root Complexity
69 / 95

• Update the sum of a single block after each
update, hence O(1).

Square Root Complexity
70 / 95

• For sum, divide the range into 3 parts s.t. the sum
consists of values of single elements (3+6+2) and
sums of blocks between them (15+20).

• # of single elements is O(√n) //block size is √n.
• # of blocks is O(√n) //need √n blocks to save n vals.
• Hence, range sum in O(√n) time. minq(a,b) similar.

Square Root Complexity
71 / 95

• The purpose of the block size √n is that it balances
two things: the array is divided into √n blocks,
each of which contains √n elements.

• In practice, divide into k blocks each of which
contains n/k elements.

• Optiml parameter depends on the problem & input.
• If an algo often goes through the blocks but rarely

inspects single elements inside the blocks, it may be a
good idea to increase block sizes: divide the array into
k < √n blocks, each of which contains n/k > √n elments.

Optional Part
72 / 95

• Remaining slides are optional for Data Structure
purposes.

• We dig more into square root complexity with
examples from number theory.

• We also present a binary search algorithm for
square root computation.

Square Root Complexity
73 / 95

• Some basic things related to prime numbers*.
• Prime or not?
• Euler’s totient function.

* Prime number: natural number greater than 1 that
has no divisors other than 1 and itself: 2, 3, 5, 7, ..

Square Root Complexity
74 / 95

• Is n prime?

Square Root Complexity
75 / 95

• Is n prime? iterate through all numbers from 2 to
n-1. Return false if division successful. O(n).

Square Root Complexity
76 / 95

• Is n prime? iterate through all numbers from 2 to
√n. Return false if division successful. O(√n).

• If a number has a factor larger than √n, then it
surely has a factor less than √n (already checked);
o/w their multiplication would be >n, contradction.

• Contradiction: √n * √n+⍷ > n.
36

2 * 18 3 * 12 4 * 9 6 * 6

Square Root Complexity
77 / 95

• Is n prime? iterate through all numbers from 2 to
√n. Return false if division successful. O(√n).

• A larger-than-√n factor of n must be multiplied by
a smaller factor that has already been checked.

36
2 * 18
3 * 12
4 * 9
6 * 6

Square Root Complexity
78 / 95

• Is n prime? So, we will go up to √n. But 6 by 6
instead of 1 by 1. Still O(√n) but cool (6 times faster in practice).

• All primes (>3) are of the form 6k±1. Why?

Square Root Complexity
79 / 95

• Is n prime? So, we will go up to √n. But 6 by 6
instead of 1 by 1. Still O(√n) but cool (6 times faster in practice).

• All primes (>3) are of the form 6k±1 ‘cos all
numbers are of the form 6k+i for i=0..5.

• 6k+0, 6k+2, 6k+4 are even (not prime). 6k+3
divisible by 3 (not prime).

• So, 6k+1 and 6k+5 can be prime. Write as: 6k±1.
• With this in mind, write the primality test code

with increments of 6. *see slide 89 for another cool pattern.

Square Root Complexity
80 / 95

bool isPrime(int n){
if(n<=1) ret false; if(n<=3) ret true;

if(n%2==0 || n%3==0) ret false;

for(i=5;i*i<=n;i+=6)

if(n%i==0 || n%(i+2)==0) ret false;
ret true; //6k-1 6k+1

}

Square Root Complexity
81 / 95

• Prime factorization: every number can
be broken down into prime factors, i.e.,
prime numbers are the basic building
blocks of all numbers: 12 = 2 * 2 * 3.

Square Root Complexity
82 / 95

• Prime factorization of n requires a search for prime
factors in the range [2,√n], hence O(√n)*.

• There may be at most 1 prime factor in the range
[√n,n] ‘cos o/w 2 factors’ multiplication would be >n, contradiction.

* We can find the unique prime factors in O(√n) by
this search but cannot decide their multiplicity.
That’s why prime factorization is very slow to
solve for big numbers – foundation of cryptgraphy.

Square Root Complexity
83 / 95

• A simple prime factorization algo is Trial Division.
At least 2x more efficient (+=2):

Some prime factorizations:

Square Root Complexity
84 / 95

• For a base-2 m-digit number n, if we go from 3 to
only √n, π(2m/2) ≈ 2m/2 / ((m/2)ln2)
divisions are required.
π(n): prime counting function,

of primes less than n.

Square Root Complexity
85 / 95

• π(2m/2) is exponential in m, the problem size.
• Problem size is not n as we’re dealing with 1 number

whose value is n.

Square Root Complexity
86 / 95

• Euler’s totient function ɸ(n): # of +ve integers less
than n that are relatively prime to n.

• ɸ(n) = n-1 if n is prime (top line). Makes sense!

Square Root Complexity
87 / 95

• Euler’s totient function ɸ(n): # of +ve integers less
than n that are relatively prime to n.

• App: a regular n-gon can be constructed w/ ruler-
and-compass technique if ɸ(n) is a power of 2.

• 6-gon creation:

http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif

http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif

Square Root Complexity
88 / 95

• Euler’s totient function ɸ(n): # of +ve integers less
than n that are relatively prime to n.

• To compute ɸ(n), don’t need the proper prime
factorization since the exponents αi aren’t required.

• Hence, O(√n) time required (slide 82), no
multiplicity (αi) is required.

Square Root Complexity
89 / 95

• A cool pattern for
primes: square of a
prime is always one
more than a multiple
of 24.

Either p-1 or p+1 must be a multiple of 4: 4n.
Hence (p-1)(p+1) must be a multiple of 8: 8h.

Either (p-1) or (p+1) must be a multiple of 3: 3r.
Hence (p-1)(p+1) must be a multiple of 3: 3i.

Being multiples of 8 & 3, (p-1)(p+1) is multiple of 24.

Square Root Computation
90 / 95

• √n computation algorithm in O(logn + p), where p
is the # digits in fractional part: √10 = 3.162 if p=3.

Square Root Computation
91 / 95

• √n computation algorithm in O(logn + p).
• Integer part is found via binary search (n=10):
1 2 3 4 5 6 7 8 9 10 52>10 so go to left. //e=m-1.

1 2 3 4 5 6 7 8 9 10 22<10 so go to right. //s=m+1.

1 2 3 4 5 6 7 8 9 10 32<10 so go to right. //s=m+1.

s m e

s m e

s e
m

Square Root Computation
92 / 95

• √n computation algorithm in O(logn + p).
• Integer part is found via binary search (n=10):
1 2 3 4 5 6 7 8 9 10 42>10 so go to left. //e=m-1.

1 2 3 4 5 6 7 8 9 10 Break ‘cos e<s.
3 vs. 4, 3 wins ‘cos 42>10 and no recovery then.

• O(logn) time for the integer part.

s
me

e s

Square Root Computation
93 / 95

• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=3):
3.?? = 10
3.12 < 10
3.22 > 10 //stop,

keep 1.

Square Root Computation
94 / 95

• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=2):
3.?? = 10
3.12 < 10 3.112 < 10
3.22 > 10 //stop, 3.122 < 10

.
3.152 < 10
3.162 < 10
3.172 > 10 //stop, keep 6.

keep 1. .

Square Root Computation
95 / 95

• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=3):
• At most 9 checks for each of p digits: O(p).

• Overall, O(logn + p) ≈ O(logn) as p insignificant.

