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Goal

* Compute a value based on a subarray of an array.

* Consider range [3, 6] below.

o 1 2 3 4 5 6 7
13846 |13 |4

* sum,(3, 6) = 14, min (3, 6) = 1, max (3, 6) = 6.



Goal

* Compute a value based on a subarray of an array.
* Typical range queries:
* sum,(a,b): calculate the sum of values in range [a,b].
* min,(a,b): find the minimum value in range [a,b].

* max, (a,b): tind the maximum value in range [a,b].



Trivial Solution
.

int sum(int a, int b) {
int s = 0;
for (int 1 = a; 1 <=b; i++) {
s += array[il;

}

return s;



Trivial Solution

int sum(int a, int b) {
int s = 0;
for (int 1 = a; 1 <=b; i++) {
s += array[i];

}

return s;

* Works in O(n) time, where n 1s the array size.
* We will make this fast!



Static Array Queries

* Assume array 1s static: values never updated.

* We will handle sum queries and min/max queries
in this setting.



Prefix Sum Array

* Value at position k 1s sum,(0, k).
* Can be constructed 1n O(n) time. How?

Array: 1348|6142

Prefix Sum: 1|4/]8/16[/22(23/27|29




Prefix Sum Array

* Value at position k 1s sum,(0, k).

* Can be constructed 1n O(n) time. How?

* Dead simple application of dynamic programming.
« P[0]=A[0]; for(i=1 to n-1) P[i]=P[i-1]+A[i];

0 2 5 6 7
Array: 1348|6142
0 1 3 4 5 6 7

Prefix Sum: 1|4/]8/16[/22(23/27|29




Prefix Sum Array

* sum,(a,b) = sum,(0,b) — sum (0,a—1)
* Define sum, (0,—1) =0.
* O(n): sum(3,60)=8+6+1+4=19.
* O(1): sum,(3,6) = sum,(0,6) - sum, (0,2) =27 — 8.

O 1 2 3 4 5 6 7
13,48 |6 1|4 2

o 1 2 3 4 5 6 7
1|48 16(22|23 |27 |29




Prefix Sum Array

* Can be generalized to higher dimensions.

D C

* Sum of gray subarray: S(4) - S(B) - S(C) + S(D)
where S(X) 1s the sum of values 1n a rectangular
subarray from the upperleft corner to the pos. of X.



Sparse Table

* Handles minimum (and similarly max) queries.

* O(nlogn) preprocessing, then all queries 1n O(1).



Sparse Table

* Precompute all values of min (a,b) where b - a +1
(the length of the range) 1s a power of 2.

O 1 2 3 4 5 6
1/3/4(8[6|1|4]|2
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Sparse Table

* Precompute all values of min (a,b) where b - a +1
(the length of the range) 1s a power of 2.

* How many precomputed values?

a b ming(a,b) a b minga,bd) a b ming(a,b)
0 0 1 0 1 1 0 3 1
113 1 2 3 1 4 3
0 2 3 4 5 6 2 2 4 2 3 4 2 5 1
3 3 8 3 4 6 3 6 1
113]4|8/6]1]4]2 4 4 6 4 5 1 4 7 1
5 5 1 5 6 1 0 7 1
6 6 4 6 7 2
77 2



Sparse Table

* Precompute all values of min (a,b) where b - a +1
(the length of the range) 1s a power of two.

* How many precomputed values?
* (O(nlogn) because
* there’re O(logn) range lengths that are powers of 2.

* there’re O(n) values at each range, e.g., n values for
range of length 1, n-1 vals for range of length -1, ..

ming(a,b) a b minga,bd) a b ming(a,b)
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Sparse Table

* Precompute all values of min (a,b) where b - a +1
(the length of the range) 1s a power of two.

* Each of the O(nlogn) values will be computed 1n
O(1) via the recursion (DP again!):
min,(a,b) = min( min (a,a+w-1), min (a+w,b) )
where b-a+1 1s a power of two and w = (b-a+1)/2 //mad.
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Sparse Table

* Precompute all values of min (a,b) where b - a +1
(the length of the range) 1s a power of two.

* Each of the O(nlogn) values will be computed 1n
O(1) via the recursion (DP again!):

* Hence the O(nlogn) preprocessing time.



Sparse Table

* Query response in O(/) via
min, (a,b) = min( min (a,atk-1), min (b-k+1,b) )
where £ 1s the largest power of 2 that doesn’t exceed b-a+1,
the range length.

Here, the range [a,b] 1s represented as the union of the
ranges [a,a+k-1] and [b-k+1,b], both of length k.

0 1 2 3 4 5 6 1 o 1 s s 4 sming1,4)=3
134|861 |42 1/3|4(8|/6|1/[4|2
Range length 6, the largest power 0 1 2 3 4 5 6 7
of 2 that doesn’t exceed 6 is 4, k4. 1/3]4]8]6|1]4) 2

min,(3,6)=1



Dynamic Array Queries

* Now we will enable updates on array, hence
dynamic.

* We will handle sum queries, min/max queries,
and update queries in this setting.



Binary Indexed Tree*

* Dynamic variant of a Prefix Sum Array.
* Handles range sum queries in O(logn) time. /PSA O(1)
* Handles updating a values in O(logn) time. //PSA not*

* Using two BITs make min queries possible.

* This 1s more complex than using a Segment Tree (later).

* PSA can handle this but needs O(n) to rebuild PSA again.

* BIT aka Fenwick Tree.



Binary Indexed Tree

* Tree 1s conceptual; we actually maintain an array.

* Array 1s 1-indexed to make the implementation easier.



Binary Indexed Tree

* Let p(k) denote the largest pow of 2 that divides £.
We store a BIT as an array such that
tree[k] = sum, (k - p(k)+1,k)
* That 1s, each position k contains the sum of values

in a range of the original array whose length 1s p(k)
and that ends at position &.

* See slides 30-31 for the BIT construction.
* Since p(6) = 2, tree[6] contains value of sum,(5,6).



Binary Indexed Tree

* sum,(1,k) can be computed in O(logn) because a
range [ 1,k] can always be divided into O(logn)

ranges whose sums are stored 1n the tree.
1 2 3 4 5 6 7 8

Array: 1/3|4/8/6|1/|4/|2
1 2 3 4 5 6 7 8
BIT: 1/4|416|6|7]4/29] At most
T 17 17 1 1 1g8=3 ranges
I I O I O O I
R - to be used.
| | [1,29] for the biggest 2¢< k
solves half the problem, and so on
|

| w/ a--. (2¢= k case solved in 1 shot.)




Binary Indexed Tree

* sum,(1,k) can be computed in O(logn) because a
range [ 1,k] can always be divided into O(logn)

ranges whose sums are stored 1n the tree.
1 2 3 4 5 6 7 8

Array: 1[3[4/8[6[1|4]2
1 2 3 4 5 6 7 8

BIT: 1|4|4/16/6|7]|4]29
T T T
L

i
H




Binary Indexed Tree

* sum,(1,7) =sum,(1,4) + sum, (5,6) + sum,(7,7)
=16+7+4=27.
1 3 4 5 6 7 8
Array: 1(3[4/8(6|1|4]2
1 2 3 4 5 6 7 8
BIT: 1|4 |4/(16/6|7|4 |29
T [ A [ T
AN I O N B O
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Binary Indexed Tree

25/95

° sumq(a, b) = sumq(l,b) - sumq(l,a-l) //PSA trick for a>1
* sum,(3,6) = sum,(1,6) - sum (1,2) =23 -4 =19.

Array: 1(3[4/8|6|1|4]2
1 2 3 4 5 6 7 8

BIT: 1|4 |4|16/6|7|4]|29
T T T
I I A o A O o

it
H




Binary Indexed Tree

* After updating a value 1n the array, several values
in the BIT should be updated.

* If the value at position 3 changes, the sums of the

following ranges change:
1 2 3 4

4 | 4|16

8
29
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Binary Indexed Tree

* After updating a value 1n the array, several values
in the BIT should be updated.

* Each array element belongs to O(logn) ranges,
hence update cost 1s O(logn).

1 2 3 4 &5 6 7 8

14 |4(16/6 |7 |4 |29

| T T I Atmost
— [ ] 1g8=3 ranges
|: |: to be updated.
|

| Last bar is definetely involved, then
either left or right side of it, and so on




Binary Indexed Tree

Implementation made efficient via bit operations.

p(k) =k & -k //largest pow of 2 that divides k.

//zeroes all the bits except the last set one.
/Ip(6)=2: 0110 = 0010, p(7)=1: 0111 = 0001, ..

Computation of sum, (1,k):  int suncint o ¢

int s = 9;
O(logn) values are accessed while (k >= 1) {
s += treelk];
and each move to the next = hks
} risfafeiel1]e]z
position takes O(1) time. , e o
Since p(6) = 2, tree[6] contains value of sum,(5,6) //length of range is 2. — |

Since p(4) = 4, tree[4] contains value of sum,(1,4) //length of range is 4.



Binary Indexed Tree

* Implementation made efficient via bit operations.

p(k) =k & -k //largest pow of 2 that divides &

* Addition of x to position k:  void add(int k, int x) {
while (k <= n) {

* O(logn) values are accessed treelk] += x;
k += k&-k;
and eaCh move to the next } HERGORRE
}
position takes O(1) time. BRBEOHRE

|
) N Nl o

L L1

Since p(6) = 2, tree[6] contains value of sum,(5,6) //length of range is 2. ‘

Since p(8) = 8, tree[8] contains value of sum,(1,8) //length of range is 8.



Binary Indexed Tree

* Implementation made efficient via bit operations.

p(k) =k & -k //largest pow of 2 that divides &

* Initial construction of a BIT i1s O(nlogn).
e Initialize all elements to O.

 Fill all range sums (of length p(k)).
 Call add() » times using the mnput values: add(1..n,A[i]).



Binary Indexed Tree

* Implementation made efficient via bit operations.

p(k) =k & -k //largest pow of 2 that divides &

* Initial construction of a BIT 1s O(n).

* Construct a PSA in O(n).

 Fill all range sums (of length p(k)).
* Use PSA lookups in O(1) time per sum.



Segment Tree

* A more general data structure than BIT.

* BIT supports sum queries (min queries possible but
complicated).

* ST supports sum, min, max, gcd, xor in O(logn) time.

* ST takes more memory and 1s harder to implement.



Segment Tree

* Tree 1s conceptual; we actually maintain an array.
* Array 1s 0-indexd* to make the implementation easier.
* Array size is a power of 2 to make the implmtn easier.

* Append extra elements to get this property, if necessary.

* Query ranges are 0-based but the tree array 1-based.

(will be clear in Slide 41)



Segment Tree

 Each internal tree node stores a value based on an
array range whose length 1s a power of 2.

Array:
ST (sum,):

0

1

2

3

4

5

6

7

5

8

6

3

2

7

2

6

(39)
@ Q Range length is 22 =4,
(18) (9) (o) (8)

5]

8

6

3

2

7

2

6

goes to leaves.



Segment Tree

* Any range [a,b] can be divided into O(logn)

ranges whose values are stored 1n tree nodes.
O 1 2 3 4 5 6 7

Array: 5/8|6/3|2|7[2]6

ST (sum,): @ sum,(2,7) =9 + 17

5 (8|6 |32 |7|2|6




Segment Tree

* At most 2 nodes on each level needed = O(logn)

nodes/ranges needed, so sum, complexity 1s O(logn).
O 1 2 3 4 5 6 17
Array: 5/8|6/3|2|7[2]6

ST (sum,): @ sum,(2,7) =9 + 17

5 (8|6 |32 |7|2|6




Segment Tree

* After an update, update all nodes whose value
depends on the updated value.

o 1 2 3 4 5 6 7
Array: 5/8/6|/3[2|7[2]|6

ST (sum,): @
() (D




Segment Tree

* Do this by traversing the path from the updated

element to root and updating nodes along the path.
O 1 2 3 4 5 6 7

Array: 5/8/6|/3[2|7[2]|6

ST (sum,): @
() (D




Segment Tree

* The path from bottom to top always consists of
O(logn) nodes, so update complexity 1s O(logn).

o 1 2 3 4 5 6 7
Array: 5/8/6|/3[2|7[2]|6

ST (sum,): @
() (D




Segment Tree

* Implementation with an array of 2»n elements where
n 1s the size of the original array and a power of 2.



Segment Tree

* Tree nodes stored from top to bottom.
* tree[1] 1s the root, tree[2] and tree[3] its children, ..

* tree[n] to tree[2n-1], the bottom level, input values.

518632726

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
39122|17(13|{9 (9|8 |5 8|6 (3|2 7|26




Segment Tree

* Parent of tree[k] 1s tree[ |A/2] ].
* Children of tree[k] 1s tree[2k] and tree[2k+1].

518632726

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
39122|17(13|{9 (9|8 |5 8|6 (3|2 7|26




Segment Tree

* sum,(a,b) in O(logn) because ST has O(logn)

levels and we move one level higher at each step.

O 1 2 3 4 5 6 7
int sum(int a, int b) {

a += n; b += n;//range initially [a+n,b+n]. 5863|2726
int s = 9;
while (a <= b) { @

if (a%2 == 1) s += treela++];

if (b%2 == @) s += tree[b--];

= W
X

return s;

sum (2,7)=9+17 |58 |6 3|2 |7 |26




Segment Tree

* add() increases the array value at position k by x
in O(logn) because ST has O(logn) levels and we
move one level higher at each step.

void add(int k, int x) {
k += n;
treelk] += x;
for (k /=2; k> 1; k /=2) {
treelk] = tree[2xk]+tree[2*xk+1];
3

n==ag

39
&
\_
HRORORO
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[\
6132|726




Segment Tree
T

e ST can be constructed in O(n). How?

5863|2726

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3912217139 /9 /8|5 (8|6 (3|2|7|2]|6




Segment Tree

e ST can be constructed in O(n). How?

* Calling add » times on 1nitially 0 array 1s not O(n);
1it’d be O(nlogn).

518632726

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
39122|17(13|{9 (9|8 |5 8|6 (3|2 7|26




Segment Tree

* Go from the last intermediate node to the first
(root), fill their values by adding their children at
indices 2k and 2k+1. Each visited once, hence O(n).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
39122|17(13|{9 (9|8 |5 8|6 (3|2 7|26




Segment Tree

ST can also be used for min queries.

Divide a range into two parts, compute the answer
separately for both parts and then combine answers.

Already did this for the sum queries.

Similarly, 1t handles max, gcd, bit op (xor) queries.



Segment Tree

* ST can also be used for min queries.

* Every tree node contains the smallest value in the
corresponding array range.

* Instead of sums, minima are computed.




2D Segment Tree

* Segment Tree of Segment Trees.

* Supports rectangular subarray queries to a 2D array.

6)
A
Array: 2D ST (sum,)): | s
q
716|116
81715812 = 2
€4¥B Q.P
3191711 éﬁdh ﬁhdh
8|63 |8

20) @)
AWVA [\ [\ AWA [\ [\
[7[6]1]6]

8[7]5]2] [3[9]7]1] 8[5[3]s]




2D Segment Tree

* Segment Tree of Segment Trees.

* Supports rectangular subarray queries to a 2D array.

6)
@‘@
[\_/\

Array: 2D ST (sum,): | e
716|1]|6
8| 7|52 = (9
@'@ @'@
31971 RTeTS] RS
8/ 53| 8
Merge 2 rows (column-wise 2 2 @ @
addi%ions) into(a new ST ?'2 ?'? ?'? ?‘?
7 61 6] S5 ]3] EICIEIE STs]3]8]




2D Segment Tree

* Segment Tree of Segment Trees.

* Supports rectangular subarray queries to a 2D array.

&
il
Array: 2D ST (sum,): e
q
716 | 1] 6
81| 7.|5] 2 A A
b il
319 |71 i5Ta[8 ]3] GTafid]s]
8 5|38 g
Sum for gray region can be 2

: AWA A /\ AWA
obtained from the merged ranges FASIAS FARTAS Ly AT




2D Segment Tree

* Segment Tree of Segment Trees.

* Supports rectangular subarray queries to a 2D array.

&
il
Array: 2D ST (sum,): e
q
71616
8752 A A
il il
31971 MIE iafiols)
8 5|38 -
Sum for gray region can be 2

: AWA A /\ AWA
obtained from the merged ranges FASIAS FARTAS Ly AT




Lazy Propagation

* An optimization to make range updates faster.

* When there are many updates and updates are
done on a range, we can postpone some updates
and do those updates only when required.



Lazy Propagation

* s/z: sum of values 1n the range / value of a lazy

update. @
(o e
) () () (o
(0) (30) (s0) (30) (120) (w0) (s

586327267 1|7|5|6|2|3]|2




Lazy Propagation

* ST after increasing all the elements in [a,b] by 2.

586327267 1|7|5|6|2|3]|2

* When the elements 1n [a,b] are increased by u, we
walk from the root towards the leaves and modify
the nodes of the tree as follows.



Lazy Propagation

* ST after increasing all the elements in [a,b] by 2.

o)
5/8(6 (32926 |7|1|7|5]6|2|3|2

* If [x,y] 1s partially inside [a,b], we increase the s
value of the node by /&u, where 4 1s the size of the
intersection of [a,b] and [x,y], and recur.



Lazy Propagation

* ST after increasing all the elements in [a,b] by 2.

N
) (o) W (w
58632926 |7 ,1|7|5|6|2]|3]|2

b

o If[x,y]1s completealy inside [a,'b: , We 1ncrease the
z value of the node by u, and stop.




Lazy Propagation

* ST after increasing all the elements in [a,b] by 2.

58632926 |7 ,1|7|5|6|2]|3]|2

a 4 b
* The 1dea 1s that updates will be propagated
downwards only when it 1s necessary, which
guarantees that the operations are always efficient.



Lazy Propagation

* ST after computing sum (a,b).

[\
715

[\
711

* Notice how the lazy update is apﬁﬁ_ied to 28, and
propagated below to 8 and 2 (blue part).



Additional Technique

* Increasing all the elements 1n [a,b] by x can also
be done via Difference Array — has nothing to do w/ ST.

2 3 4 5 6
Array: 3(3[1]1]1|5/|2]2

2 3 4 5 6
DA: 3[0(-2/0[0/4|-3]0

e DA indicates the differences between consecutive
values 1n the original array A.

* Thus, A 1s the prefix sum array of the DA.



Additional Technique

1 2 3 4 65 6 7
Array: 313[1|1|1|5|2]2

O 1 2 3 4 5 6 7
DA: 3(0|-2/0]0]|4/|-3]0

* We can update a range 1n A by changing just two
elements 1n DA: to increase A[1,4] by 5, 1t suffices
to 1ncrease DA[l] by 5 and decrease DA[S5] by 5.

3 4 5 6 7
3(5|-2/0|0|-1|-3|0

* General, [a,b] by x = DA[a]+=x and DA[b+1]-=
hence just 2 updates to update O(n)-range: O(1).




Segment Tree w/ DS Nodes

 Nodes contain data structures that maintain info
about the corresponding ranges.

e ST supporting “how many times does x appear in the range [a,b]?”.
Array: s [A]E e a]E] 1 |2

ST:

'




Segment Tree w/ DS Nodes

 Nodes contain data structures that maintain info
about the corresponding ranges.

e ST supporting “how many times does x appear in the range [a,b]?”.
Array: s [A]E e a]E] 1 |2

S. 1 2 3
I, 4 2 2
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Query answered by combining results from nodes that belong to the range.



Segment Tree w/ DS Nodes

 Nodes contain data structures that maintain info
about the corresponding ranges.

e ST supporting “how many times does x appear in the range [a,b]?”.
Array: s [A]E e a]E] 1 |2

S. 1 2 3
I, 4 2 2

-
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w
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* Answering takes O(f(n)logn), where f(n) 1s the time needed for processing
a single node during an operation. Linear search above.



Square Root Complexity
» Algorithm w/ a O(Nn) time complexity.

* Poor man’s logarithm.
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Square Root Complexity

* A familiar problem: sum (a,b) and update/add.

PSA O(1) O(n)
BIT O(logn) O(logn)
ST O(logn) O(logn)

o Let’s do it this way:  O(\Vn) O(1)



Square Root Complexity

» Divide the array into blocks of size \n so that
each block contains the sum of elements 1nside it.

21 17 20 13




Square Root Complexity

69 /95

* Update the sum of a single block after each
update, hence O(1).

21 15 20 13




Square Root Complexity

For sum, divide the range into 3 parts s.t. the sum
consists of values of single elements (3+6+2) and
sums of blocks between them (15+20).

21 15 20 13
58|63 |2|5|2|6|7|1|7|5|6|2|3]|2

# of single elements is O(\Nn) //block size is Vn.
# of blocks is O(Nn) //need Vn blocks to save n vals.

Hence, range sum in O(Vn) time. min,(a,b) similar.



Square Root Complexity

» The purpose of the block size Vn is that it balances
two things: the array is divided into Vn blocks,
each of which contains Vr elements.

* In practice, divide into &k blocks each of which
contains n/k elements.

* Optiml parameter depends on the problem & 1nput.

 If an algo often goes through the blocks but rarely
inspects single elements inside the blocks, it may be a
good 1dea to increase block sizes: divide the array into
k < \n blocks, each of which contains n/k > \n elments.



Optional Part

* Remaining slides are optional for Data Structure
purposes.

* We dig more into square root complexity with
examples from number theory.

* We also present a binary search algorithm for
square root computation.



Square Root Complexity

* Some basic things related to prime numbers®.
* Prime or not?
* Euler’s totient function.

* Prime number: natural number greater than 1 that
has no divisors other than 1 and itself: 2, 3, 5, 7, ..



Square Root Complexity

* Is n prime?



Square Root Complexity

* Is n prime? iterate through all numbers from 2 to
n-1. Return false 1f division successful. O(n).



Square Root Complexity

* Is n prime? iterate through all numbers from 2 to
Vn. Return false if division successful. O(\n).

» If a number has a factor larger than Vn, then it

surely has a factor less than Vn (already checked);
o/w their multiplication would be >n, contradction.

e Contradiction: Vn * Vn+e > n.
36
2*%18 3*12 4*9 6*6



Square Root Complexity

* Is n prime? iterate through all numbers from 2 to
Vn. Return false if division successful. O(\n).

* A larger-than-Vn factor of n must be multiplied by
a smaller factor that has already been checked.

36
2*18
3%12
4*9
6*6



Square Root Complexity

* Is n prime? So, we will go up to Vn. But 6 by 6
instead of 1 by 1. Still O(Nr) but cOO! (me wserinpmciee

* All primes (>3) are of the form 6kx1. Why?



Square Root Complexity

Is n prime? So, we will go up to V. But 6 by 6
instead of 1 by 1. Still O(Nr) but cOO! (me wserinpmciee

All primes (>3) are of the form 6k%1 ‘cos all
numbers are of the form 64+i for i=0..5.

6k+0, 6k+2, 6k+4 are even (not prime). 6k+3
divisible by 3 (not prime).
So, 6k+1 and 6k+5 can be prime. Write as: 6k%1.

With this 1n mind, write the primality test code
with increments of 6. *see siide 89 for another cool pattern.



Square Root Complexity
015 |

bool 1sPrime(int n) {
1f(n<=1l) ret false; 1f(n<=3) ret true;
1f (n%2== || n%¥3==0) ret false;
for (1=5;1i*1<=n; 1+=0)
1f(n%S1== || n%(1+2)==0) ret false;
ret true; //6k-1 6k+1
}



Square Root Complexity

* Prime factorization: every number can
be broken down into prime factors, 1.e.,

prime numbers are the basic building
blocks of all numbers: 12 =2 * 2 * 3,




Square Root Complexity

* Prime factorization of n requires a search for prime
factors in the range [2,Vn], hence O(\n)*.

* There may be at most 1 prime factor in the range

[\/n,n] ‘cos o/w 2 factors’ multiplication would be >#n, contradiction.

* We can find the unique prime factors in O(\n) by
this search but cannot decide their multiplicity.
That’s why prime factorization 1s very slow to
solve for big numbers — foundation of cryptgraphy.



Square Root Complexity

* A simple prime factorization algo 1s Trial Division.

At least 2x more efficient (+=2):

1 def trial division(n):

1
2
3
4
5
6
7
8
9
0
1

def trial division(n):

"""Return a list of the prime factors for a natural number.""" 2 a =[]
a =[] #Prepare an empty list. 3 while n%2 ==
f =2 #The first possible factor. 4 a.append(2)
while n > 1: #While n still has remaining factors... 5 n/=2
if (n 8 £ == 0): #The remainder of n divided by f might 6 £=3
a.append(f) #If so, it divides n. Add f to the 7 while £ * f <= n:
n /= f #Divide that factor out of n. 8 if (n % £ == 0):
else: #But if f is not a factor of n, 9 a.append(f)
f+=1 #Add one to f and try again. 10 n /= £
return a #Prime factors may be repeated: 12 factors 11 else:
12 f += 2
13 If n<>1: a.append(n)
14 #0nly odd number is possible
15 return a
Some prime factorizations:
108 | 22.33 || 128 | 27 148 | 22.37 | 168 | 23:3-7 | 188 | 2247
109 | 109 129 | 3-43 149 | 149 169 | 132 189 | 33.7
110 | 2511 || 130 | 2:5:13 || 150 | 2:3-52 || 170 | 2:5-17 || 190 | 2:5-19




Square Root Complexity

* For a base-2 m-digit number #n, 1f we go from 3 to
only Vi, T(2"2) = 22 | (M/2)IN2) 1 wet oo svisiontn

2 a=1]

divisions are required. ¢ eemwenaa
m(n): prime counting function, o a2
9 a.append(f)

. 10 n /= f

# of primes less than . R U
(n) " 13 If n<>1: a.append(n)

...... 14 #0nly odd number is possible
...... 15 return a

000000



Square Root Complexity

* 1(2™7?) is exponential in m, the problem size.

* Problem size is not n as we’re dealing with 1 number
whose value 1s .



Square Root Complexity

* Euler’s totient function ¢(n): # of +ve integers less
than » that are relatively prime to n.
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4 °®
o” . o ®
'... .. ’ d L] *
./ .o' °® ° . ° .0
600 /..'.. o® . o .
d'/: '. o ° i % o . °
AT T et .
, c.-..- %o .o.' e . wxcn‘
. L . L) °
400 e . PR ol
. » . 4 . oo L)
‘:/.:c.o. . o™ .o.o o 0000 ..o:. o.o. Y
: - '.-.... o’ “.o:d.".‘ *c 'o:o..- o- -
‘ -’ - 0 ° "‘/. % .’..' o o
.*. ..‘. ... ...0 -'. ) ... Ll
:o..v”:o. o = .

400 600 800 1000 T
n

* ¢(n) =n-1 1t n 1s prime (top line). Makes sense!



Square Root Complexity

* Euler’s totient function ¢(n): # of +ve integers less
than » that are relatively prime to n.

* App: aregular n-gon can be constructed w/ ruler-
and-compass technique 1f ¢(n) 1s a power of 2.

* 6-gon creation:


http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif

Square Root Complexity

* Euler’s totient function ¢(n): # of +ve integers less
than » that are relatively prime to n.

* To compute ¢(n), don’t need the proper prime
factorization since the exponents o, aren’t required.

J U

!
x

« ol -
7]" w fo‘ | TLL - cbb"
f

l"’ , 9 | \ [ L\
# \ ' 'l [ s , ,_ _,—-) 11D LA 9 ‘ )
p(n) = m(1- (1 #{5 ( =3 LG

= 7

» Hence, O(Nn) time required (slide 82), no
multiplicity (o) 1s required.



Square Root Complexity

* A cool pattern for
primes: square of a
prime 1s always one

more than a multiple
of 24.

Either p-1 or p+1 must be a multiple of 4: 4n.
Hence (p-1)(p+1) must be a multiple of 8: 8h.

Either (p-1) or (p+1) must be a multiple of 3: 3r.
Hence (p-1)(p+1) must be a multiple of 3: 3i.

Being multiples of 8 & 3, (p-1)(p+1) is multiple of 24



Square Root Computation

» \n computation algorithm in O(logn + p), where p
is the # digits in fractional part: V10 = 3.162 if p=3.



Square Root Computation

» \n computation algorithm in O(logn + p).

* Integer part 1s found via binary search (7=10):
12345678910 5°>10 so go to left. //e=m-1.
S m e

I

1234 2°<10 so go to right. //s=m+1.
S m e

o N

32<10 so go to right. //s=m+1.

SEW



Square Root Computation

» \n computation algorithm in O(logn + p).
* Integer part 1s found via binary search (7=10):
4 4°>10 so go to left. //e=m-1.
m
e
Break ‘cos e<s.

e S
3 vs. 4, 3 wins ‘cos 4°>10 and no recovery then.

* O(logn) time for the integer part.



Square Root Computation

» \n computation algorithm in O(logn + p).

* Fractional part 1s found via linear search (p=3):
3.77=10

3.12<10

3.22 > 10 //stop,
keep 1.




Square Root Computation

» \n computation algorithm in O(logn + p).

* Fractional part is found via linear search (p=2):

3.77=10
3.1°< 10 3.11°< 10
3.22 > 10 //stop, 3.122 <10
keep 1. :
3.15° <10
3.16°< 10

3.174 > 10 //stop. keep 6.



Square Root Computation

\n computation algorithm in O(logn + p).

Fractional part 1s found via linear search (p=3):
At most 9 checks for each of p digits: O(p).

Overall, O(logn + p) = O(logn) as p 1nsignificant.



