Range Queries

(bonus: Sqrt Complexity and Computation)

CENG 213
METU/ODTÜ
Data Structures
Yusuf Sahillioğlu

Goal

- Compute a value based on a subarray of an array.
- Consider range [3, 6] below.

• $\operatorname{sum}_q(3, 6) = 14$, $\min_q(3, 6) = 1$, $\max_q(3, 6) = 6$.

Goal

- Compute a value based on a subarray of an array.
- Typical range queries:
 - $sum_q(a,b)$: calculate the sum of values in range [a,b].
 - $\min_{q}(a,b)$: find the minimum value in range [a,b].
 - $\max_{q}(a,b)$: find the maximum value in range [a,b].

Trivial Solution

```
int sum(int a, int b) {
    int s = 0;
    for (int i = a; i <= b; i++) {
        s += array[i];
    }
    return s;
}</pre>
```

Trivial Solution

```
int sum(int a, int b) {
    int s = 0;
    for (int i = a; i <= b; i++) {
        s += array[i];
    }
    return s;
}</pre>
```

- Works in O(n) time, where n is the array size.
- We will make this fast!

6/95

- Assume array is static: values never updated.
- We will handle sum queries and min/max queries in this setting.

- Value at position k is $sum_q(0, k)$.
- Can be constructed in O(n) time. How?

Array:

0	1	2	3	4	5	6	7
1	3	4	8	6	1	4	2

Prefix Sum:

0	1	2	3	4	5	6	7
1	4	8	16	22	23	27	29

- Value at position k is $sum_q(0, k)$.
- Can be constructed in O(n) time. How?
 - Dead simple application of dynamic programming.

Array:

0	1	2	3	4	5	6	7
1	3	4	8	6	1	4	2

Prefix Sum:

0	1	2	3	4	5	6	7
1	4	8	16	22	23	27	29

- $\operatorname{sum}_q(a,b) = \operatorname{sum}_q(0,b) \operatorname{sum}_q(0,a-1)$
 - Define $sum_{q}(0,-1) = 0$.
- O(n): sum_q(3,6) = 8 + 6 + 1 + 4 = 19.
- O(1): $sum_q(3,6) = sum_q(0,6) sum_q(0,2) = 27 8$.

• Can be generalized to higher dimensions.

• Sum of gray subarray: S(A) - S(B) - S(C) + S(D) where S(X) is the sum of values in a rectangular subarray from the upperleft corner to the pos. of X.

11 / 95

- Handles minimum (and similarly max) queries.
- $O(n\log n)$ preprocessing, then all queries in O(1).

• Precompute all values of $\min_{q}(a,b)$ where b - a + 1 (the length of the range) is a power of 2.

\boldsymbol{a}	\boldsymbol{b}	$min_q(a,b)$	\boldsymbol{a}	\boldsymbol{b}	$ exttt{min}_q(a,b)$	\boldsymbol{a}	\boldsymbol{b}	$\min_q(a,b)$
0	0	1	0	1	1	0	3	1
1	1	3	1	2	3	1	4	3
2	2	4	2	3	4	2	5	1
3	3	8	3	4	6	3	6	1
4	4	6	4	5	1	4	7	1
5	5	1	5	6	1	0	7	1
6	6	4	6	7	2			
7	7	2						

13 / 95

- Precompute all values of $\min_{q}(a,b)$ where b a + 1 (the length of the range) is a power of 2.
- How many precomputed values?

	1						
1	3	4	8	6	1	4	2

a	b	$\min_q(a,b)$	a	b	$\min_q(a,b)$	\boldsymbol{a}	b	$\min_q(a,b)$
0	0	1	0	1	1	0	3	1
1	1	3	1	2	3	1	4	3
2	2	4	2	3	4	2	5	1
3	3	8	3	4	6	3	6	1
4	4	6	4	5	1	4	7	1
5	5	1	5	6	1	0	7	1
6	6	4	6	7	2			
7	7	2						

- Precompute all values of $\min_{q}(a,b)$ where b a + 1 (the length of the range) is a power of two.
- How many precomputed values?
 - $O(n\log n)$ because
 - there're $O(\log n)$ range lengths that are powers of 2.
 - there're O(n) values at each range, e.g., n values for range of length 1, n-1 vals for range of length -1, ...

0	1	2	3	4	5	6	7
1	3	4	8	6	1	4	2

\boldsymbol{a}	\boldsymbol{b}	$\min_q(a,b)$	\boldsymbol{a}	\boldsymbol{b}	$\min_q(a,b)$	\boldsymbol{a}	\boldsymbol{b}	$\min_q(a,b)$
0	0	1	0	1	1	0	3	1
1	1	3	1	2	3	1	4	3
2	2	4	2	3	4	2	5	1
3	3	8	3	4	6	3	6	1
4	4	6	4	5	1	4	7	1
5	5	1	5	6	1	0	7	1
6	6	4	6	7	2			
7	7	2						

- Precompute all values of $\min_{q}(a,b)$ where b a + 1 (the length of the range) is a power of two.
- Each of the $O(n\log n)$ values will be computed in O(1) via the recursion (DP again!):

 $\min_{q}(a,b) = \min(\min_{q}(a,a+w-1), \min_{q}(a+w,b))$ where b-a+1 is a power of two and w = (b-a+1)/2 //mid.

							l	
0	1	2	3	4	5	6	7	
1	3	4	8	6	1	4	2	

a	b	$min_q(a,b)$	a	\boldsymbol{b}	$\min_q(a,b)$	\boldsymbol{a}	b	$\min_q(a,b)$
0	0	1	0	1	1	0	3	1
1	1	3	1	2	3	1	4	3
2	2	4	2	3	4	2	5	1
3	3	8	3	4	6	3	6	1
4	4	6	4	5	1	4	7	1
5	5	1	5	6	1	0	7	1
6	6	4	6	7	2			
7	7	2						

16<u>/95</u>

- Precompute all values of $\min_{q}(a,b)$ where b a + 1 (the length of the range) is a power of two.
- Each of the $O(n\log n)$ values will be computed in O(1) via the recursion (DP again!):

• Hence the $O(n\log n)$ preprocessing time.

• Query response in O(1) via $\min_{q}(a,b) = \min(\min_{q}(a,a+k-1), \min_{q}(b-k+1,b))$ where k is the largest power of 2 that doesn't exceed b-a+1, the range length.

Here, the range [a,b] is represented as the union of the ranges [a,a+k-1] and [b-k+1,b], both of length k.

Range length 6, the largest power of 2 that doesn't exceed 6 is 4, k=4.

Dynamic Array Queries

18 / 95

- Now we will enable updates on array, hence dynamic.
- We will handle sum queries, min/max queries, and update queries in this setting.

- Dynamic variant of a Prefix Sum Array.
 - Handles range sum queries in $O(\log n)$ time. //PSA O(1)
 - Handles updating a values in O(logn) time. //PSA not*
 - Using two BITs make min queries possible.
 - This is more complex than using a Segment Tree (later).

- * PSA can handle this but needs O(n) to rebuild PSA again.
- * BIT aka Fenwick Tree.

20 / 95

- Tree is conceptual; we actually maintain an array.
 - Array is 1-indexed to make the implementation easier.

• Let p(k) denote the largest pow of 2 that divides k. We store a BIT as an array such that

$$tree[k] = sum_q(k - p(k) + 1,k)$$

- That is, each position k contains the sum of values in a range of the original array whose length is p(k) and that ends at position k.
 - See slides 30-31 for the BIT construction.
- Since p(6) = 2, tree[6] contains value of sum_q(5,6).

• $\operatorname{sum}_q(1,k)$ can be computed in $O(\log n)$ because a range [1,k] can always be divided into $O(\log n)$ ranges whose sums are stored in the tree.

Array:

BIT:

At most lg8=3 ranges to be used.

[1,2^a] for the biggest $2^a < k$ solves half the problem, and so on w/ a--. ($2^a = k$ case solved in 1 shot.)

• $\operatorname{sum}_q(1,k)$ can be computed in $O(\log n)$ because a range [1,k] can always be divided into $O(\log n)$ ranges whose sums are stored in the tree.

Array:

BIT:

• $\operatorname{sum}_{q}(1,7) = \operatorname{sum}_{q}(1,4) + \operatorname{sum}_{q}(5,6) + \operatorname{sum}_{q}(7,7)$ = 16 + 7 + 4 = 27.

Array:

BIT:

- $sum_q(a,b) = sum_q(1,b) sum_q(1,a-1)$ //PSA trick for a>1
- $\operatorname{sum}_q(3,6) = \operatorname{sum}_q(1,6) \operatorname{sum}_q(1,2) = 23 4 = 19.$

Array:

BIT:

- After updating a value in the array, several values in the BIT should be updated.
- If the value at position 3 changes, the sums of the following ranges change:

- After updating a value in the array, several values in the BIT should be updated.
- Each array element belongs to $O(\log n)$ ranges, hence update cost is $O(\log n)$.

either left or right side of it, and so on.

```
p(k) = k \& -k \text{ //largest pow of 2 that divides } k.
//zeroes all the bits except the last set one.
//p(6)=2: 0110 \rightarrow 0010, p(7)=1: 0111 \rightarrow 0001, ...
```

- Computation of $\operatorname{sum}_q(1,k)$:
- $O(\log n)$ values are accessed and each move to the next position takes O(1) time.

```
int sum(int k) {
   int s = 0;
   while (k >= 1) {
      s += tree[k];
      k -= k&-k;
   }
   return s;
}
```

- Since p(6) = 2, tree[6] contains value of sum_q(5,6) //length of range is 2.
- Since p(4) = 4, tree[4] contains value of sum_q(1,4) //length of range is 4.

$$p(k) = k \& -k$$
 //largest pow of 2 that divides k

- Addition of *x* to position *k*:
- $O(\log n)$ values are accessed and each move to the next position takes O(1) time.

```
void add(int k, int x) {
    while (k <= n) {
        tree[k] += x;
        k += k&-k;
    }
}</pre>
```

- Since p(6) = 2, tree[6] contains value of sum_q(5,6) //length of range is 2.
- Since p(8) = 8, tree[8] contains value of sum_q(1,8) //length of range is 8.

$$p(k) = k \& -k$$
 //largest pow of 2 that divides k

- Initial construction of a BIT is $O(n\log n)$.
 - Initialize all elements to 0.
 - Fill all range sums (of length p(k)).
 - Call add() n times using the input values: add(1..n,A[i]).

$$p(k) = k \& -k$$
 //largest pow of 2 that divides k

- Initial construction of a BIT is O(n).
 - Construct a PSA in O(n).
 - Fill all range sums (of length p(k)).
 - Use PSA lookups in O(1) time per sum.

- A more general data structure than BIT.
 - BIT supports sum queries (min queries possible but complicated).
 - ST supports sum, min, max, gcd, xor in $O(\log n)$ time.
 - ST takes more memory and is harder to implement.

- Tree is conceptual; we actually maintain an array.
 - Array is 0-indexd* to make the implementation easier.
 - Array size is a power of 2 to make the implmtn easier.
 - Append extra elements to get this property, if necessary.

* Query ranges are 0-based but the tree array 1-based.

(will be clear in Slide 41)

• Each internal tree node stores a value based on an array range whose length is a power of 2.

Array:

0	1	2	3	4	5	6	7	
5	8	6	3	2	7	2	6	goes to leaves.

 $ST (sum_q)$:

• Any range [a,b] can be divided into $O(\log n)$ ranges whose values are stored in tree nodes.

Array:

 $ST (sum_q)$:

• At most 2 nodes on each level needed $\rightarrow O(\log n)$ nodes/ranges needed, so $\sup_q \operatorname{complexity}$ is $O(\log n)$.

Array:

 $ST (sum_q)$:

• After an update, update all nodes whose value depends on the updated value.

Array:

 $ST (sum_q)$:

• Do this by traversing the path from the updated element to root and updating nodes along the path.

Array:

0	1	2	3	4	<u>5</u>	6	7
5	8	6	3	2	7	2	6

 $ST (sum_q)$:

• The path from bottom to top always consists of $O(\log n)$ nodes, so update complexity is $O(\log n)$.

Array:

 $ST (sum_q)$:

40 / 95

• Implementation with an array of 2n elements where n is the size of the original array and a power of 2.

- Tree nodes stored from top to bottom.
 - tree[1] is the root, tree[2] and tree[3] its children, ...
 - tree[n] to tree[2n-1], the bottom level, input values.

- Parent of tree[k] is tree[k/2].
- Children of tree[k] is tree[2k] and tree[2k+1].

• $sum_q(a,b)$ in O(log n) because ST has O(log n) levels and we move one level higher at each step.

```
int sum(int a, int b) {
    a += n; b += n; //range initially [a+n,b+n].
    int s = 0;
    while (a <= b) {
        if (a%2 == 1) s += tree[a++];
        if (b%2 == 0) s += tree[b--];
        a /= 2; b /= 2;
    }
    return s;
}</pre>
```

```
    0
    1
    2
    3
    4
    5
    6
    7

    5
    8
    6
    3
    2
    7
    2
    6
```


$$sum_q(2,7) = 9 + 17$$

• add() increases the array value at position *k* by *x* in $O(\log n)$ because ST has $O(\log n)$ levels and we move one level higher at each step.

k=2

```
void add(int k, int x) {
    k += n;
    tree[k] += x;
    for (k /= 2; k >= 1; k /= 2) {
        tree[k] = tree[2*k]+tree[2*k+1];
    }
}
```


• ST can be constructed in O(n). How?

- ST can be constructed in O(n). How?
 - Calling add n times on initially 0 array is not O(n); it'd be $O(n\log n)$.

• Go from the last intermediate node to the first (root), fill their values by adding their children at indices 2k and 2k+1. Each visited once, hence O(n).

48 / 9!

- ST can also be used for min queries.
- Divide a range into two parts, compute the answer separately for both parts and then combine answers.
- Already did this for the sum queries.
- Similarly, it handles max, gcd, bit op (xor) queries.

49 / 95

- ST can also be used for min queries.
- Every tree node contains the smallest value in the corresponding array range.
- Instead of sums, minima are computed.

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Sum for gray region can be obtained from the merged ranges

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Sum for gray region can be obtained from the merged ranges

54 / 9!

- An optimization to make range updates faster.
- When there are many updates and updates are done on a range, we can postpone some updates and do those updates only when required.

• s/z: sum of values in the range / value of a lazy update.

• ST after increasing *all* the elements in [a,b] by 2.

• When the elements in [a,b] are increased by u, we walk from the root towards the leaves and modify the nodes of the tree as follows.

• ST after increasing *all* the elements in [a,b] by 2.

• If [x,y] is partially inside [a,b], we increase the s value of the node by hu, where h is the size of the intersection of [a,b] and [x,y], and recur.

• ST after increasing *all* the elements in [a,b] by 2.

• If [x,y] is completely inside [a,b], we increase the z value of the node by u, and stop.

• ST after increasing *all* the elements in [a,b] by 2.

• The idea is that updates will be propagated downwards only when it is necessary, which guarantees that the operations are always efficient.

• ST after computing $sum_q(a,b)$.

• Notice how the lazy update is applied to 28, and propagated below to 8 and 2 (blue part).

Additional Technique

• Increasing *all* the elements in [a,b] by x can also be done via Difference Array – has nothing to do w/ ST.

Array:

0
1
2
3
4
5
6
7

3
3
1
1
1
5
2
2

0
1
2
3
4
5
6
7

DA:
3
0
-2
0
0
4
-3
0

- DA indicates the differences between consecutive values in the original array A.
- Thus, A is the prefix sum array of the DA.

Additional Technique

 O
 1
 2
 3
 4
 5
 6
 7

 3
 3
 1
 1
 1
 5
 2
 2

 0
 1
 2
 3
 4
 5
 6
 7

 DA:
 3
 0
 -2
 0
 0
 4
 -3
 0

• We can update a range in A by changing just two elements in DA: to increase A[1,4] by 5, it suffices to increase DA[1] by 5 and decrease DA[5] by 5.

• General, [a,b] by $x \to DA[a] += x$ and DA[b+1] -= x, hence just 2 updates to update O(n)-range: O(1).

Segment Tree w/ DS Nodes

- Nodes contain data structures that maintain info about the corresponding ranges.
- ST supporting "how many times does x appear in the range [a,b]?".

Segment Tree w/ DS Nodes

- Nodes contain data structures that maintain info about the corresponding ranges.
- ST supporting "how many times does x appear in the range [a,b]?".

• Query answered by combining results from nodes that belong to the range.

Segment Tree w/ DS Nodes

- Nodes contain data structures that maintain info about the corresponding ranges.
- ST supporting "how many times does x appear in the range [a,b]?".

• Answering takes $O(f(n)\log n)$, where f(n) is the time needed for processing a single node during an operation. Linear search above.

- Algorithm w/ a $O(\sqrt{n})$ time complexity.
 - Poor man's logarithm.

67 / 95

• A familiar problem: $sum_q(a,b)$ and update/add.

PSA O(1) O(n)

BIT $O(\log n)$ $O(\log n)$

ST $O(\log n)$ $O(\log n)$

• Let's do it this way: $O(\sqrt{n})$ O(1)

• Divide the array into blocks of size \sqrt{n} so that each block contains the sum of elements inside it.

21					1	7			2	0		13				
5	8	6	3	2	7	2	6	7	1	7	5	6	2	3	2	

• Update the sum of a *single* block after each update, hence O(1).

21					1	5			2	0		13			
5	8	6	3	2	5	2	6	7	1	7	5	6	2	3	2

• For sum, divide the range into 3 parts s.t. the sum consists of values of single elements (3+6+2) and sums of blocks between them (15+20).

21					1	5			2	0		13			
5	8	6	3	2	5	2	6	7	1	7	5	6	2	3	2

- # of single elements is $O(\sqrt{n})$ //block size is \sqrt{n} .
- # of blocks is $O(\sqrt{n})$ //need \sqrt{n} blocks to save n vals.
- Hence, range sum in $O(\sqrt{n})$ time. $\min_{a}(a,b)$ similar.

71 / 95

Square Root Complexity

- The purpose of the block size \sqrt{n} is that it balances two things: the array is divided into \sqrt{n} blocks, each of which contains \sqrt{n} elements.
- In practice, divide into k blocks each of which contains n/k elements.
- Optiml parameter depends on the problem & input.
 - If an algo often goes through the blocks but rarely inspects single elements inside the blocks, it may be a good idea to increase block sizes: divide the array into $k < \sqrt{n}$ blocks, each of which contains $n/k > \sqrt{n}$ elments.

Optional Part

- Remaining slides are optional for Data Structure purposes.
- We dig more into square root complexity with examples from number theory.
- We also present a binary search algorithm for square root computation.

- Some basic things related to prime numbers*.
 - Prime or not?
 - Euler's totient function.

* Prime number: natural number greater than 1 that has no divisors other than 1 and itself: 2, 3, 5, 7, ...

74 / 95

• Is *n* prime?

75 / 95

• Is *n* prime? iterate through all numbers from 2 to n-1. Return false if division successful. O(n).

- Is *n* prime? iterate through all numbers from 2 to \sqrt{n} . Return false if division successful. $O(\sqrt{n})$.
- If a number has a factor larger than \sqrt{n} , then it surely has a factor less than \sqrt{n} (already checked); o/w their multiplication would be >n, contradction.
- Contradiction: $\sqrt{n} * \sqrt{n+\epsilon} > n$.

- Is *n* prime? iterate through all numbers from 2 to \sqrt{n} . Return false if division successful. $O(\sqrt{n})$.
- A larger-than- \sqrt{n} factor of n must be multiplied by a smaller factor that has already been checked.

```
36
2 * 18
3 * 12
4 * 9
6 * 6
```

- Is *n* prime? So, we will go up to \sqrt{n} . But 6 by 6 instead of 1 by 1. Still $O(\sqrt{n})$ but cool (6 times faster in practice).
- All primes (>3) are of the form $6k\pm 1$. Why?

- Is *n* prime? So, we will go up to \sqrt{n} . But 6 by 6 instead of 1 by 1. Still $O(\sqrt{n})$ but cool (6 times faster in practice).
- All primes (>3) are of the form $6k\pm1$ 'cos all numbers are of the form 6k+i for i=0..5.
- 6k+0, 6k+2, 6k+4 are even (not prime). 6k+3 divisible by 3 (not prime).
- So, 6k+1 and 6k+5 can be prime. Write as: $6k\pm1$.
- With this in mind, write the primality test code with increments of 6. *see slide 89 for another cool pattern.

```
bool isPrime(int n) {
 if(n<=1) ret false; if(n<=3) ret true;
 if (n%2==0 | n%3==0) ret false;
 for (i=5; i*i <=n; i+=6)
  if(n\%i==0 | | n\%(i+2)==0) ret false;
 ret true; \frac{1}{6k-1} 6k+1
```

81 / 9<u>5</u>

• Prime factorization: every number can be broken down into prime factors, i.e., prime numbers are the basic building blocks of all numbers: 12 = 2 * 2 * 3.

- Prime factorization of n requires a search for prime factors in the range $[2, \sqrt{n}]$, hence $O(\sqrt{n})^*$.
- There may be at most 1 prime factor in the range $[\sqrt{n},n]$ 'cos o/w 2 factors' multiplication would be >n, contradiction.

* We can find the unique prime factors in $O(\sqrt{n})$ by this search but cannot decide their multiplicity. That's why prime factorization is very slow to solve for big numbers – foundation of cryptgraphy.

A simple prime factorization algo is Trial Division.

```
1 def trial division(n):
      """Return a list of the prime factors for a natural number."""
      a = []
                        #Prepare an empty list.
      f = 2
                       #The first possible factor.
      while n > 1: #While n still has remaining factors...
          if (n % f == 0):
                             #The remainder of n divided by f might
                              #If so, it divides n. Add f to the
             a.append(f)
             n /= f
                               #Divide that factor out of n.
                          #But if f is not a factor of n,
          else:
              f += 1
                                #Add one to f and try again.
11
                     #Prime factors may be repeated: 12 factors
      return a
```

```
At least 2x more efficient (+=2):
 1 def trial division(n):
       a = []
       while n%2 == 0:
           a.append(2)
           n/=2
       f=3
       while f * f <= n:
           if (n % f == 0):
 9
                a.append(f)
                n /= f
10
11
           else:
12
                f += 2
13
       If n<>1: a.append(n)
14
       #Only odd number is possible
15
       return a
```

Some prime factorizations:

108	2 ² ·3 ³	128	2 ⁷	148	2 ² ·37	168	2 ³ ·3·7	188	2 ² ·47
109	109	129	3.43	149	149	169	13 ²	189	3 ³ ·7
110	2.5.11	130	2.5.13	150	2·3·5 ²	170	2.5.17	190	2.5.19

• For a base-2 m-digit number n, if we go from 3 to only \sqrt{n} , $\pi(2^{m/2}) \approx 2^{m/2} / ((m/2) \ln 2)$

divisions are required.

 $\pi(n)$: prime counting function,

of primes less than n.

```
π(n)

16

14

12

10

8

6

4

2

10

20

30

40

50

60

7
```

```
1 def trial division(n):
       while n%2 == 0:
            a.append(2)
           n/=2
       f=3
       while f * f <= n:
           if (n % f == 0):
                a.append(f)
10
                n /= f
           else:
12
                f += 2
13
       If n<>1: a.append(n)
       #Only odd number is possible
14
15
       return a
```

85 / 95

- $\pi(2^{m/2})$ is exponential in m, the problem size.
 - Problem size is not *n* as we're dealing with 1 number whose value is *n*.

• Euler's totient function $\phi(n)$: # of +ve integers less than n that are relatively prime to n.

• $\phi(n) = n-1$ if *n* is prime (top line). Makes sense!

- Euler's totient function $\phi(n)$: # of +ve integers less than n that are relatively prime to n.
- App: a regular n-gon can be constructed w/ ruler-and-compass technique if $\phi(n)$ is a power of 2.

• 6-gon creation:

- Euler's totient function $\phi(n)$: # of +ve integers less than n that are relatively prime to n.
- To compute $\phi(n)$, don't need the proper prime factorization since the exponents α_i aren't required.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

$$\phi(n) = n \left(1 - \frac{1}{P_1}\right) \left(1 - \frac{1}{P_2}\right) \dots \left(1 - \frac{1}{P_k}\right)$$

$$20 = 2 \times 2 \times 5$$

$$= 2^{2} \times 5$$

$$\phi(20) = 20 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$= 20 \times \frac{1}{2} \times \frac{4}{5} = 8$$

• Hence, $O(\sqrt{n})$ time required (slide 82), no multiplicity (α_i) is required.

• A cool pattern for primes: square of a prime is always one more than a multiple of 24.

Either p-1 or p+1 must be a multiple of 4: 4n. Hence (p-1)(p+1) must be a multiple of 8: 8h.

Either (p-1) or (p+1) must be a multiple of 3: 3r. Hence (p-1)(p+1) must be a multiple of 3: 3i.

Being multiples of 8 & 3, (p-1)(p+1) is multiple of 24.

90 / 95

• \sqrt{n} computation algorithm in $O(\log n + p)$, where p is the # digits in fractional part: $\sqrt{10} = 3.162$ if p=3.

91 / 95

- \sqrt{n} computation algorithm in $O(\log n + p)$.
- Integer part is found via binary search (n=10):

$$\frac{1}{s}$$
 2 3 4 5 6 7 8 9 $\frac{10}{e}$ 5²>10 so go to left. $\frac{1}{e}m-1$.

```
1 \atop s \atop m

2^{2} < 10
 so go to right. //s = m+1.
```

1 2 3 4 5 6 7 8 9 10
$$3^2 < 10$$
 so go to right. $\frac{1}{s} = m+1$.

- \sqrt{n} computation algorithm in $O(\log n + p)$.
- Integer part is found via binary search (n=10):
- 1 2 3 4 5 6 7 8 9 10 $4^2 > 10$ so go to left. $\frac{1}{e} = m-1$.
- 1 2 3 4 5 6 7 8 9 10 Break 'cos e < s.
- 3 vs. 4, 3 wins ' $\cos 4^2 > 10$ and no recovery then.

• $O(\log n)$ time for the integer part.

- \sqrt{n} computation algorithm in $O(\log n + p)$.
- Fractional part is found via linear search (p=3):

$$3.?? = 10$$
 $3.1^2 < 10$
 $3.2^2 > 10 //stop,$
keep 1.

- \sqrt{n} computation algorithm in $O(\log n + p)$.
- Fractional part is found via linear search (p=2):

$$3.?? = 10$$

$$3.1^2 < 10$$

$$3.2^2 > 10 //\text{stop}$$
, keep 1.

 $3.11^2 < 10$

$$3.12^2 < 10$$

$$3.15^2 < 10$$

$$3.16^2 < 10$$

$$3.17^2 > 10$$
 //stop, keep 6.

- \sqrt{n} computation algorithm in $O(\log n + p)$.
- Fractional part is found via linear search (p=3):
- At most 9 checks for each of p digits: O(p).

• Overall, $O(\log n + p) \approx O(\log n)$ as p insignificant.