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Goal
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• Compute a value based on a subarray of an array.
• Consider range [3, 6] below.

• sumq(3, 6) = 14, minq(3, 6) = 1, maxq(3, 6) = 6.



Goal
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• Compute a value based on a subarray of an array.
• Typical range queries:
• sumq(a,b): calculate the sum of values in range [a,b].
• minq(a,b): find the minimum value in range [a,b].
• maxq(a,b): find the maximum value in range [a,b].



Trivial Solution
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Trivial Solution
5 / 95

• Works in O(n) time, where n is the array size.
• We will make this fast!



Static Array Queries
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• Assume array is static: values never updated.
• We will handle sum queries and min/max queries 

in this setting.



Prefix Sum Array
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• Value at position k is sumq(0, k).
• Can be constructed in O(n) time. How?

Array:

Prefix Sum:



Prefix Sum Array
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• Value at position k is sumq(0, k).
• Can be constructed in O(n) time. How?

Array:

Prefix Sum:

• Dead simple application of dynamic programming.
• P[0]=A[0]; for(i=1 to n-1) P[i]=P[i-1]+A[i];



Prefix Sum Array
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• sumq(a,b) = sumq(0,b) − sumq(0,a−1)
• Define sumq(0,−1) = 0.

• O(n): sumq(3,6) = 8 + 6 + 1 + 4 = 19.
• O(1): sumq(3,6) = sumq(0,6) - sumq(0,2) = 27 – 8.



Prefix Sum Array
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• Can be generalized to higher dimensions.

• Sum of gray subarray: S(A) - S(B) - S(C) + S(D) 
where S(X) is the sum of values in a rectangular 
subarray from the upperleft corner to the pos. of X.



Sparse Table
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• Handles minimum (and similarly max) queries.
• O(nlogn) preprocessing, then all queries in O(1).



Sparse Table
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• Precompute all values of minq(a,b) where b - a +1 
(the length of the range) is a power of 2.



Sparse Table
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• Precompute all values of minq(a,b) where b - a +1 
(the length of the range) is a power of 2.

• How many precomputed values?



Sparse Table
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• Precompute all values of minq(a,b) where b - a +1 
(the length of the range) is a power of two.

• How many precomputed values?
• O(nlogn) because
• there’re O(logn) range lengths that are powers of 2.
• there’re O(n) values at each range, e.g., n values for 

range of length 1, n-1 vals for range of length -1, ..



Sparse Table
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• Precompute all values of minq(a,b) where b - a +1 
(the length of the range) is a power of two.

• Each of the O(nlogn) values will be computed in 
O(1) via the recursion (DP again!):
minq(a,b) = min( minq(a,a+w-1), minq(a+w,b) )
where b-a+1 is a power of two and w = (b-a+1)/2 //mid.



Sparse Table
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• Precompute all values of minq(a,b) where b - a +1 
(the length of the range) is a power of two.

• Each of the O(nlogn) values will be computed in 
O(1) via the recursion (DP again!):

• Hence the O(nlogn) preprocessing time.



Sparse Table
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• Query response in O(1) via
minq(a,b) = min( minq(a,a+k-1), minq(b-k+1,b) )

where k is the largest power of 2 that doesn’t exceed b-a+1, 
the range length.

Here, the range [a,b] is represented as the union of the   
ranges [a,a+k-1] and [b-k+1,b], both of length k.

Range length 6, the largest power 
of 2 that doesn’t exceed 6 is 4, k=4.

minq(1,4)=3

minq(3,6)=1



Dynamic Array Queries
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• Now we will enable updates on array, hence 
dynamic.

• We will handle sum queries, min/max queries, 
and update queries in this setting.



Binary Indexed Tree*
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• Dynamic variant of a Prefix Sum Array.
• Handles range sum queries in O(logn) time. //PSA O(1)
• Handles updating a values in O(logn) time. //PSA not★

• Using two BITs make min queries possible.
• This is more complex than using a Segment Tree (later).

★ PSA can handle this but needs O(n) to rebuild PSA again.

* BIT aka Fenwick Tree.



Binary Indexed Tree
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• Tree is conceptual; we actually maintain an array.
• Array is 1-indexed to make the implementation easier.



Binary Indexed Tree
21 / 95

• Let p(k) denote the largest pow of 2 that divides k. 
We store a BIT as an array such that

tree[k] = sumq(k - p(k)+1,k)
• That is, each position k contains the sum of values 

in a range of the original array whose length is p(k) 
and that ends at position k.
• See slides 30-31 for the BIT construction.

• Since p(6) = 2, tree[6] contains value of sumq(5,6).



Binary Indexed Tree
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• sumq(1,k) can be computed in O(logn) because a 
range [1,k] can always be divided into O(logn) 
ranges whose sums are stored in the tree.

At most 
lg8=3 ranges 
to be used.
[1,2a] for the biggest 2a< k  
solves half the problem, and so on 
w/ a--. (2a= k case solved in 1 shot.)

Array:

BIT:



Binary Indexed Tree
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• sumq(1,k) can be computed in O(logn) because a 
range [1,k] can always be divided into O(logn) 
ranges whose sums are stored in the tree.

Array:

BIT:



Binary Indexed Tree
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• sumq(1,7) = sumq(1,4) + sumq(5,6) + sumq(7,7)
= 16 + 7 + 4 = 27.

Array:

BIT:



Binary Indexed Tree
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• sumq(a,b) = sumq(1,b) - sumq(1,a-1) //PSA trick for a>1

• sumq(3,6) = sumq(1,6) - sumq(1,2) = 23 - 4 = 19.

Array:

BIT:



Binary Indexed Tree
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• After updating a value in the array, several values
in the BIT should be updated.

• If the value at position 3 changes, the sums of the
following ranges change:



Binary Indexed Tree
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• After updating a value in the array, several values
in the BIT should be updated.

• Each array element belongs to O(logn) ranges, 
hence update cost is O(logn).

At most
lg8=3 ranges
to be updated.
Last bar is definetely involved, then
either left or right side of it, and so on.



Binary Indexed Tree
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• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k.

• Computation of sumq(1,k):
• O(logn) values are accessed

and each move to the next
position takes O(1) time.

• Since p(6) = 2, tree[6] contains value of sumq(5,6) //length of range is 2.
• Since p(4) = 4, tree[4] contains value of sumq(1,4) //length of range is 4.

//zeroes all the bits except the last set one.
//p(6)=2: 0110 à 0010, p(7)=1: 0111 à 0001, ..



Binary Indexed Tree
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• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Addition of x to position k:
• O(logn) values are accessed

and each move to the next
position takes O(1) time.

• Since p(6) = 2, tree[6] contains value of sumq(5,6) //length of range is 2.
• Since p(8) = 8, tree[8] contains value of sumq(1,8) //length of range is 8.



Binary Indexed Tree
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• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Initial construction of a BIT is O(nlogn).
• Initialize all elements to 0.
• Fill all range sums (of length p(k)).
• Call add() n times using the input values: add(1..n,A[i]).



Binary Indexed Tree
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• Implementation made efficient via bit operations.
p(k) = k & -k //largest pow of 2 that divides k

• Initial construction of a BIT is O(n).
• Construct a PSA in O(n).
• Fill all range sums (of length p(k)).
• Use PSA lookups in O(1) time per sum.



Segment Tree
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• A more general data structure than BIT.
• BIT supports sum queries (min queries possible but 

complicated).
• ST supports sum, min, max, gcd, xor in O(logn) time.
• ST takes more memory and is harder to implement.



Segment Tree
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• Tree is conceptual; we actually maintain an array.
• Array is 0-indexd* to make the implementation easier.
• Array size is a power of 2 to make the implmtn easier.
• Append extra elements to get this property, if necessary.

* Query ranges are 0-based but the tree array 1-based.
(will be clear in Slide 41)



Segment Tree
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• Each internal tree node stores a value based on an 
array range whose length is a power of 2.

Range length is 22 = 4.

Array: goes to leaves.

ST (sumq):



Segment Tree
35 / 95

• Any range [a,b] can be divided into O(logn) 
ranges whose values are stored in tree nodes.

Array:

ST (sumq): sumq(2,7) = 9 + 17



Segment Tree
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• At most 2 nodes on each level needed è O(logn) 
nodes/ranges needed, so sumq complexity is O(logn).

Array:

ST (sumq): sumq(2,7) = 9 + 17



Segment Tree
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• After an update, update all nodes whose value
depends on the updated value. 

Array:

ST (sumq):



Segment Tree
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• Do this by traversing the path from the updated
element to root and updating nodes along the path.

Array:

ST (sumq):



Segment Tree
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• The path from bottom to top always consists of 
O(logn) nodes, so update complexity is O(logn).

Array:

ST (sumq):



Segment Tree
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• Implementation with an array of 2n elements where 
n is the size of the original array and a power of 2.



Segment Tree
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• Tree nodes stored from top to bottom.
• tree[1] is the root, tree[2] and tree[3] its children, .. 
• tree[n] to tree[2n-1], the bottom level, input values.



Segment Tree
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• Parent of tree[k] is tree[ ⌊k/2⌋ ].
• Children of tree[k] is tree[2k] and tree[2k+1].



Segment Tree
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• sumq(a,b) in O(logn) because ST has O(logn) 
levels and we move one level higher at each step.

sumq(2,7) = 9 + 17

//range initially [a+n,b+n].



Segment Tree
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• add() increases the array value at position k by x
in O(logn) because ST has O(logn) levels and we 
move one level higher at each step.

k=2
n=8



Segment Tree
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• ST can be constructed in O(n). How? 



Segment Tree
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• ST can be constructed in O(n). How? 
• Calling add n times on initially 0 array is not O(n); 

it’d be O(nlogn).



Segment Tree
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• Go from the last intermediate node to the first 
(root), fill their values by adding their children at 
indices 2k and 2k+1. Each visited once, hence O(n).



Segment Tree
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• ST can also be used for min queries.
• Divide a range into two parts, compute the answer 

separately for both parts and then combine answers.
• Already did this for the sum queries.
• Similarly, it handles max, gcd, bit op (xor) queries.



Segment Tree
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• ST can also be used for min queries.
• Every tree node contains the smallest value in the 

corresponding array range.
• Instead of sums, minima are computed.



2D Segment Tree
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• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):



2D Segment Tree
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• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Merge 2 rows (column-wise 
additions) into a new ST



2D Segment Tree
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• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Sum for gray region can be
obtained from the merged ranges



2D Segment Tree
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• Segment Tree of Segment Trees.
• Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sumq):

Sum for gray region can be
obtained from the merged ranges



Lazy Propagation
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• An optimization to make range updates faster.
• When there are many updates and updates are

done on a range, we can postpone some updates
and do those updates only when required.



Lazy Propagation
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• s/z: sum of values in the range / value of a lazy
update.



Lazy Propagation
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• ST after increasing all the elements in [a,b] by 2.

• When the elements in [a,b] are increased by u, we
walk from the root towards the leaves and modify
the nodes of the tree as follows.



Lazy Propagation
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• ST after increasing all the elements in [a,b] by 2.

• If [x,y] is partially inside [a,b], we increase the s
value of the node by hu, where h is the size of the
intersection of [a,b] and [x,y], and recur.



Lazy Propagation
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• ST after increasing all the elements in [a,b] by 2.

• If [x,y] is completely inside [a,b], we increase the 
z value of the node by u, and stop.



Lazy Propagation
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• ST after increasing all the elements in [a,b] by 2.

• The idea is that updates will be propagated
downwards only when it is necessary, which
guarantees that the operations are always efficient.



Lazy Propagation
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• ST after computing sumq(a,b).

• Notice how the lazy update is applied to 28, and
propagated below to 8 and 2 (blue part).



Additional Technique
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• Increasing all the elements in [a,b] by x can also 
be done via Difference Array – has nothing to do w/ ST.

• DA indicates the differences between consecutive 
values in the original array A.

• Thus, A is the prefix sum array of the DA.

Array:

DA:



Additional Technique
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• We can update a range in A by changing just two
elements in DA: to increase A[1,4] by 5, it suffices
to increase DA[1] by 5 and decrease DA[5] by 5. 

• General, [a,b] by x à DA[a]+=x and DA[b+1]-=x, 
hence just 2 updates to update O(n)-range: O(1).

Array:

DA:



Segment Tree w/ DS Nodes
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• Nodes contain data structures that maintain info 
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

Array:
ST:



Segment Tree w/ DS Nodes
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• Nodes contain data structures that maintain info 
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

• Query answered by combining results from nodes that belong to the range.

Array:
ST:



Segment Tree w/ DS Nodes
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• Nodes contain data structures that maintain info 
about the corresponding ranges.

• ST supporting “how many times does x appear in the range [a,b]?”.

• Answering takes O(f(n)logn), where f(n) is the time needed for processing 
a single node during an operation. Linear search above.

Array:
ST:



Square Root Complexity
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• Algorithm w/ a O(√n) time complexity.
• Poor man’s logarithm.



Square Root Complexity
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• A familiar problem: sumq(a,b) and update/add.
PSA O(1) O(n)
BIT O(logn) O(logn)
ST O(logn) O(logn)

• Let’s do it this way:      O(√n) O(1)



Square Root Complexity
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• Divide the array into blocks of size √n so that 
each block contains the sum of elements inside it.



Square Root Complexity
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• Update the sum of a single block after each
update, hence O(1).



Square Root Complexity
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• For sum, divide the range into 3 parts s.t. the sum 
consists of values of single elements (3+6+2) and 
sums of blocks between them (15+20).

• # of single elements is O(√n) //block size is √n.
• # of blocks is O(√n) //need √n blocks to save n vals.
• Hence, range sum in O(√n) time. minq(a,b) similar.



Square Root Complexity
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• The purpose of the block size √n is that it balances 
two things: the array is divided into √n blocks, 
each of which contains √n elements.

• In practice, divide into k blocks each of which 
contains n/k elements.

• Optiml parameter depends on the problem & input.
• If an algo often goes through the blocks but rarely 

inspects single elements inside the blocks, it may be a 
good idea to increase block sizes: divide the array into 
k < √n blocks, each of which contains n/k > √n elments.



Optional Part 
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• Remaining slides are optional for Data Structure 
purposes.

• We dig more into square root complexity with 
examples from number theory.

• We also present a binary search algorithm for 
square root computation.



Square Root Complexity
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• Some basic things related to prime numbers*.
• Prime or not?
• Euler’s totient function.

* Prime number: natural number greater than 1 that 
has no divisors other than 1 and itself: 2, 3, 5, 7, ..



Square Root Complexity
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• Is n prime? 



Square Root Complexity
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• Is n prime? iterate through all numbers from 2 to 
n-1. Return false if division successful. O(n).



Square Root Complexity
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• Is n prime? iterate through all numbers from 2 to 
√n. Return false if division successful. O(√n).

• If a number has a factor larger than √n, then it 
surely has a factor less than √n (already checked); 
o/w their multiplication would be >n, contradction.

• Contradiction: √n * √n+⍷ > n.
36

2 * 18    3 * 12    4 * 9    6 * 6



Square Root Complexity
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• Is n prime? iterate through all numbers from 2 to 
√n. Return false if division successful. O(√n).

• A larger-than-√n factor of n must be multiplied by 
a smaller factor that has already been checked.

36
2 * 18
3 * 12
4 * 9
6 * 6



Square Root Complexity
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• Is n prime? So, we will go up to √n. But 6 by 6 
instead of 1 by 1. Still O(√n) but cool (6 times faster in practice).

• All primes (>3) are of the form 6k±1. Why?



Square Root Complexity
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• Is n prime? So, we will go up to √n. But 6 by 6 
instead of 1 by 1. Still O(√n) but cool (6 times faster in practice).

• All primes (>3) are of the form 6k±1 ‘cos all 
numbers are of the form 6k+i for i=0..5.

• 6k+0, 6k+2, 6k+4 are even (not prime). 6k+3 
divisible by 3 (not prime).

• So, 6k+1 and 6k+5 can be prime. Write as: 6k±1.
• With this in mind, write the primality test code 

with increments of 6. *see slide 89 for another cool pattern.



Square Root Complexity
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bool isPrime(int n){
if(n<=1) ret false; if(n<=3) ret true;

if(n%2==0 || n%3==0) ret false;

for(i=5;i*i<=n;i+=6)

if(n%i==0 || n%(i+2)==0) ret false;
ret true; //6k-1 6k+1

}



Square Root Complexity
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• Prime factorization: every number can 
be broken down into prime factors, i.e., 
prime numbers are the basic building 
blocks of all numbers: 12 = 2 * 2 * 3. 



Square Root Complexity
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• Prime factorization of n requires a search for prime 
factors in the range [2,√n], hence O(√n)*.

• There may be at most 1 prime factor in the range 
[√n,n] ‘cos o/w 2 factors’ multiplication would be >n, contradiction.

* We can find the unique prime factors in O(√n) by 
this search but cannot decide their multiplicity. 
That’s why prime factorization is very slow to 
solve for big numbers – foundation of cryptgraphy.



Square Root Complexity
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• A simple prime factorization algo is Trial Division.
At least 2x more efficient (+=2):

Some prime factorizations:



Square Root Complexity
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• For a base-2 m-digit number n, if we go from 3 to 
only √n, π(2m/2) ≈ 2m/2 / ((m/2)ln2)
divisions are required.
π(n): prime counting function,

# of primes less than n.



Square Root Complexity
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• π(2m/2) is exponential in m, the problem size.
• Problem size is not n as we’re dealing with 1 number 

whose value is n.



Square Root Complexity
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• Euler’s totient function ɸ(n): # of +ve integers less 
than n that are relatively prime to n.

• ɸ(n) = n-1 if n is prime (top line). Makes sense!



Square Root Complexity
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• Euler’s totient function ɸ(n): # of +ve integers less 
than n that are relatively prime to n.

• App: a regular n-gon can be constructed w/ ruler-
and-compass technique if ɸ(n) is a power of 2.

• 6-gon creation:

http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif

http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif


Square Root Complexity
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• Euler’s totient function ɸ(n): # of +ve integers less 
than n that are relatively prime to n.

• To compute ɸ(n), don’t need the proper prime 
factorization since the exponents αi aren’t required.

• Hence, O(√n) time required (slide 82), no 
multiplicity (αi) is required.



Square Root Complexity
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• A cool pattern for
primes: square of a
prime is always one
more than a multiple
of 24.

Either p-1 or p+1 must be a multiple of 4: 4n.
Hence (p-1)(p+1) must be a multiple of 8: 8h.

Either (p-1) or (p+1) must be a multiple of 3: 3r.
Hence (p-1)(p+1) must be a multiple of 3: 3i.

Being multiples of 8 & 3, (p-1)(p+1) is multiple of 24.



Square Root Computation
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• √n computation algorithm in O(logn + p), where p
is the # digits in fractional part: √10 = 3.162 if p=3.



Square Root Computation
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• √n computation algorithm in O(logn + p).
• Integer part is found via binary search (n=10):
1 2 3 4 5 6 7 8 9 10 52>10 so go to left. //e=m-1.

1 2 3 4 5 6 7 8 9 10 22<10 so go to right. //s=m+1.

1 2 3 4 5 6 7 8 9 10 32<10 so go to right. //s=m+1.

s              m                   e

s  m     e

s  e
m



Square Root Computation
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• √n computation algorithm in O(logn + p).
• Integer part is found via binary search (n=10):
1 2 3 4 5 6 7 8 9 10 42>10 so go to left. //e=m-1.

1 2 3 4 5 6 7 8 9 10 Break ‘cos e<s.
3 vs. 4, 3 wins ‘cos 42>10 and no recovery then.

• O(logn) time for the integer part.

s 
me

e   s



Square Root Computation
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• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=3):
3.?? = 10
3.12 < 10
3.22 > 10 //stop,

keep 1.



Square Root Computation
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• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=2):
3.?? = 10
3.12 < 10 3.112 < 10
3.22 > 10 //stop, 3.122 < 10

.
3.152 < 10
3.162 < 10
3.172 > 10 //stop, keep 6.

keep 1. .



Square Root Computation
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• √n computation algorithm in O(logn + p).
• Fractional part is found via linear search (p=3):
• At most 9 checks for each of p digits: O(p).

• Overall, O(logn + p) ≈ O(logn) as p insignificant.


