
A Fabrication-Oriented Remeshing Method for

Auxetic Pattern Extraction

Supplementary Material

Extraction of auxetic patterns from a given quad mesh is shown in full detail
in this supplementary document. We use pseudo-codes for reproducibility and
the corresponding execution traces for further clarifications. As terminology,
we name each hexagon in the auxetic pattern as a bow tie and the extracted
auxetic pattern structure as a bow tie mesh in the sequel.

The extraction procedure of auxetic patterns is shown in Algorithm 1. This
algorithm searches and extracts auxetic patterns on given quad mesh starting
from given quad and returns the resulted structure.

Algorithm 1 SEARCH(QuadMesh, StartingQuad)

Input: Quad mesh and starting quad ID
Output: Bow tie mesh form of input quad mesh
1: BowTieMesh = empty set of bow ties, their points and their edges
2: QuadNeighbors = quads having a common edge with StartingQuad
3: Write QuadNeighbors
4: Read PairQuad
5: FINDBOWTIES(BowTieMesh, QuadMesh, StartingQuad, PairQuad)
6: for each quad Q ∈ QuadMesh do
7: if Q.IsMatched then
8: QuadNeighbors = quads having a common edge with Q
9: for each neighbor quad NQ ∈ QuadNeighbors do

10: if !NQ.IsMatched and Q is the only neighbor of NQ which is matched
then

11: NewStartingQuad = NQ
12: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, New-

StartingQuad , Q)
13: if NewPairQuad 6= null then
14: FINDBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad, New-

PairQuad)
15: break
16: end if
17: end if
18: end for
19: end if
20: end for
21: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, StartingQuad)
22: for each quad Q ∈ QuadMesh do

1



23: if !Q.IsInternalMatched and Q does not have any internal matched neighbor
then

24: NewStartingQuad = Q
25: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)
26: end if
27: end for
28: return BowTieMesh

The SEARCH algorithm uses FINDBOWTIES algorithm to find bow ties
and insert them into bow tie mesh structure. How to find, create and insert bow
ties starting from a given quad pair is shown in Algorithm 2. This algorithm
gets the quad pair, tries to create and insert a bow tie from this pair, if it
succeeds then it tries to find out all bow ties can be created from neighbor quad
pairs of this pair recursively, until it cannot find any bow tie. Execution of this
algorithm is shown in Figure 1.

Algorithm 2 FINDBOWTIES(BowTieMesh, QuadMesh, StartingQuad,
PairQuad)
Input: Bow tie mesh for inserting founded bow ties, quad mesh for searching bow

ties, starting quad and starting quad’s pair quad for creating bow tie and finding
new bow ties

1: INSERTBOWTIE(BowTieMesh, QuadMesh, StartingQuad, PairQuad)
2: if bow tie was inserted from StartingQuad and PairQuad then
3: AdjacentPairs = empty set of adjacent pairs of quads
4: AdjacentPairs = GETADJACENTPAIRS(QuadMesh, Starting, Pair)
5: while AdjacentPairs 6= empty do
6: NewAdjacentPairs = empty set of adjacent pairs of quads
7: for each adjacent pair P ∈ AdjacentPairs do
8: INSERTBOWTIE(BowTieMesh, QuadMesh, P.F irst, P.Second)
9: if bow tie was inserted from P.F irst and P.Second then

10: Add [P.F irst, P.Second] to FoundedBowTieTriPairs
11: AdcajentPairsFounded = GETADJACENTPAIRS(QuadMesh, P.F irst,

P.Second)
12: Add AdcajentPairsFounded to NewAdjacentPairs
13: end if
14: end for
15: AdjacentPairs = NewAdjacentPairs
16: end while
17: NewStartingQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, StartingQuad,

PairQuad)
18: if NewStartingQuad 6= null then
19: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, NewStart-

ingQuad , StartingQuad)
20: if NewPairQuad 6= null then
21: FINDBOWTIES(BowTieMesh, Quads, NewStartingQuad , NewPairQuad)

22: NewStartingQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, PairQuad,
StartingQuad)

23: if NewStartingQuad 6= null then

2



24: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, New-
StartingQuad , PairQuad)

25: if NewPairQuad 6= null then
26: FINDBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad, New-

PairQuad)
27: end if
28: end if
29: end if
30: end if
31: end if

3



(a)

Figure 1: Execution steps of the FINDBOWTIES algorithm

4



(b)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

5



(c)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

6



(d)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

7



(e)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

8



(f)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

9



(g)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

10



(h)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

11



(i)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

12



(j)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

13



(k)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

14



(l)

Figure 1: Execution steps of the FINDBOWTIES algorithm (cont.)

15



FINDBOWTIES algorithm employs INSERTBOWTIE algorithm to create
and insert bow tie. Bow tie creation from a quad pair is shown in Algorithm 3.
This algorithm calculates coordinates of points creating the bow tie and orders
these points to create a related bow tie. Then, inserts the points and edges
consisting of these points into bow tie mesh. Execution of this algorithm is
shown in Figure 2.

Algorithm 3 INSERTBOWTIE(BowTieMesh, QuadMesh, Quad1, Quad2)

Input: Bow tie mesh which bow tie will be inserted, quad mesh and quads which will
create bow tie together

1: if !Quad1.IsMatched and !Quad2.IsMatched then
2: CommonEdge = common edge between Quad1 and Quad2
3: if CommonEdge exists then
4: FacingEdgeOfQuad1 = Quad1’s facing edge to CommonEdge
5: FacingEdgeOfQuad2 = Quad2’s facing edge to CommonEdge
6: if FacingEdgeOfQuad1 exists and FacingEdgeOfQuad2 exists then
7: p1 = FacingEdgeOfQuad1.First + (lengt of FacingEdgeOfQuad1 ) * 1/8
8: p2 = FacingEdgeOfQuad1.Second + (lengt of FacingEdgeOfQuad1 ) * 1/8

9: p3 = CommonEdge.First + (length of CommonEdge) * 3 / 8
10: p4 = CommonEdge.Second + (length of CommonEdge) * 3 / 8
11: p5 = FacingEdgeOfQuad2.First + (length of FacingEdgeOfQuad2) * 1/8
12: p6 = FacingEdgeOfQuad2.Second + (length of FacingEdgeOfQuad2) * 1/8

13: Add points p1, p2, p3, p4, p5, p6 to BowTieMesh if they are not added
before

14: BowTie = empty set of ordered points creating bow tie
15: Add point p1 to BowTie
16: Add point p2 to BowTie
17: if p3 is closer than p4 to p2 then
18: Add point p3 to BowTie
19: if p5 is closer than p6 to p3 then
20: Add point p5 to BowTie
21: Add point p6 to BowTie
22: else
23: Add point p6 to BowTie
24: Add point p5 to BowTie
25: end if
26: Add point p4 to BowTie
27: else
28: Add point p4 to BowTie
29: if p5 is closer than p6 to p3 then
30: Add point p5 to BowTie
31: Add point p6 to BowTie
32: else
33: Add point p6 to BowTie
34: Add point p5 to BowTie
35: end if
36: Add point p3 to BowTie

16



37: end if
38: if Quad1’s normal vector and BowTie’s normal vector are in the opposite

directions then
39: Reverse points of BowTie
40: end if
41: Add BowTie to BowTieMesh
42: Quad1.IsMatched = true
43: Quad1.MatchedQuad = Quad2
44: Quad2.IsMatched = true
45: Quad2.MatchedQuad = Quad1
46: end if
47: end if
48: end if

17



(a)

Figure 2: Execution steps of the INSERTBOWTIE algorithm

18



(b)

Figure 2: Execution steps of the INSERTBOWTIE algorithm (cont.)

19



(c)

Figure 2: Execution steps of the INSERTBOWTIE algorithm (cont.)

20



Additionally, FINDBOWTIES algorithm uses GETADJACENTPAIRS al-
gorithm for finding adjacent quad pairs to quad pairs created bow ties. Finding
procedure is shown in Algorithm 4. This algorithm checks neighbor quads of
the given quad pair and couples proper ones which can create new bow ties.
Execution of this algorithm is shown in Figure 3.

Algorithm 4 GETADJACENTPAIRS(QuadMesh, Quad1, Quad2)

Input: Quad mesh and quads
Output: Adjacent quad pairs of input quads
1: Pairs = empty set of pairs of quads
2: CommonEdge = common edge between Quad1 and Quad2
3: if CommonEdge exists then
4: for each point P ∈ CommonEdge do
5: First = null
6: Second = null
7: Quad1Neighbors = quads having a common edge with Quad1
8: for each neighbor quad NQ ∈ Quad1Neighbors do
9: if NQ 6= Quad2 and P is a point of NQ then

10: First = NQ
11: break
12: end if
13: end for
14: Quad2Neighbors = quads having a common edge with Quad2
15: for each neighbor quad NQ ∈ Quad2Neighbors do
16: if NQ 6= Quad1 and P is a point of NQ then
17: Second = NQ
18: break
19: end if
20: end for
21: if First 6= null and !First.IsMatched and Second 6= null and !Second.IsMatched

then
22: Add [First, Second] to Pairs
23: end if
24: end for
25: end if
26: return Pairs

21



(a)

Figure 3: Execution steps of the GETADJACENTPAIRS algorithm

22



(b)

Figure 3: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

23



(c)

Figure 3: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

24



(d)

Figure 3: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

25



Finally, FINDBOWTIES algorithm uses GETOPPOSITESIDENEIGHBOR
algorithm in order to continue finding bow ties and inserting them into bow tie
mesh structure, recursively. The algorithm GETOPPOSITESIDENEIGHBOR
finds and returns neighbor quad of given quad and its already founded neighbor
quad. In other words, this algorithm returns the neighbor standing the opposite
side of given quad according to its neighbor quad. How this algorithm works
is shown in Algorithm 5. Execution of the GETOPPOSITESIDENEIGHBOR
algorithm is shown in Figure 4.

Besides, the algorithm GETOPPOSITESIDENEIGHBOR is also employed
by SEARCH algorithm. After finding bow ties process, SEARCH algorithm
scans the quad mesh and detects the neighbor quads which does not participate
in any bow tie of quads created a bow tie. When it finds such a quad, it gets
this quad’s neighbor quad which can create bow tie with this quad by using
GETOPPOSITESIDENEIGHBOR algorithm.

Algorithm 5 GETOPPOSITESIDENEIGHBOR(QuadMesh, Quad1, Quad2)

Input: Quad mesh, quad and neighbor quad of previous quad
Output: Other neighbor quad of input quad standing opposite side of quad according

to input neighbor quad
1: OppositeSideNeighbor = null
2: CommonEdge = common edge between Quad1 and Quad2
3: if CommonEdge exists then
4: Quad1Neighbors = quads having a common edge with Quad1
5: for each neighbor quad NQ ∈ Quad1Neighbors do
6: if NQ 6= Quad2 and !NQ.IsMatched then
7: CommonEdgeWithNeighbor = common edge between Quad1 and NQ
8: if CommonEdge and CommonEdgeWithNeighbor do not have any com-

mon point then
9: OppositeSideNeighbor = NQ

10: break
11: end if
12: end if
13: end for
14: end if
15: return OppositeSideNeighbor

26



(a)

Figure 4: Execution steps of the GETOPPOSITESIDENEIGHBOR algorithm

27



(b)

Figure 4: Execution steps of the GETOPPOSITESIDENEIGHBOR algorithm
(cont.)

28



After the algorithm SEARCH completes the finding bow ties, then it starts
a new finding operation to insert bow ties standing between founded bow ties,
called internal bow ties. Internal bow ties cannot be inserted directly because
founded bow ties generate them. If internal bow ties cannot be added into the
bow tie mesh, gaps occur at the resulted bow tie mesh and these gaps cause
disconnections. FINDINTERNALBOWTIES explained in Algorithm 6 is used
for finding and inserting internal bow ties. This algorithm gets quad, checks
bow ties around it for internal bow ties and inserts internal bow ties. After
that, this algorithm jumps the neighbor quads of given quad and continues
recursively. Execution of the FINDINTERNALBOWTIES algorithm is shown
in Figure 5.

Algorithm 6 FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, Start-
ingQuad)
Input: Bow tie mesh for inserting founded internal bow ties, quad mesh and starting

quad for searching internal bow ties
1: if StartingQuad.IsMatched then
2: PairQuad = StartingQuad.MatchedQuad
3: NeighborQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, StartingQuad,

PairQuad)
4: if NeighborQuad 6= null and !NeighborQuad.IsInternalMatched and !Start-

ingQuad.IsInternalMatched then
5: PossibleInternalBowTies = empty set of [Quad1, Quad2, QuadPair] creating

possible internal bow tie
6: AdjacentInternalPairs = GETADJACENTINTERNALPAIRS(QuadMesh, Start-

ingQuad, NeighbourQuad)
7: for each adjacent internal pair AIP ∈ AdjacentInternalPairs do
8: Add [StartingQuad, NeighborQuad, AIP ] to PossibleInternalBowTies
9: end for

10: while PossibleInternalBowTies 6= empty do
11: NewPossibleInternalBowTies = empty set of [quad, quad, pair of quads]

creating possible internal bow tie
12: for each possible internal bow tie PIB ∈ AdjacentInternalPairs do
13: INSERTINTERNALBOWTIE(BowTieMesh, QuadMesh, PIB.Quad1,

PIB.Quad2, PIB.QuadPair)
14: if bow tie was inserted from PIB then
15: NewAdjacentInternalPairs = GETADJACENTINTERNALPAIRS(QuadMesh,

PIB.QuadPair.F irst, PIB.QuadPair.Second)
16: for each adjacent internal pair AIP ∈ NewAdjacentInternalPairs

do
17: Add [PIB.QuadPair.F irst, PIB.QuadPair.Second, AIP ] to New-

PossibleInternalBowTies
18: end for
19: end if
20: end forPossibleInternalBowTies = NewPossibleInternalBowTies
21: end while
22: if NeighborQuad.IsMatched then
23: NewStartingQuad = NeighborQuad.MatchedQuad
24: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)

29



25: end if
26: NewStartingQuad = PairQuad
27: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)
28: end if
29: end if

30



(a)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm

31



(b)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

32



(c)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

33



(d)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

34



(e)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

35



(f)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

36



(g)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

37



(h)

Figure 5: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

38



Similar to algorithm FINDBOWTIES described in Algorithm 2, FINDIN-
TERNALBOWTIES algorithm is also used GETOPPOSITESIDENEIGHBOR
algorithm described in Algorithm 5 in order to find opposite side neighbor of
the given quad.

The algorithm FINDINTERNALBOWTIES needs procedure getting adja-
cent internal pairs of quads of the given quad pair in order to create new internal
bow ties. This procedure is very close the Algorithm 4 used by the Algorithm 2.
Detail of this procedure is given in Algorithm 7. This algorithm, GETADJA-
CENTINTERNALPAIRS, takes a pair of quads, checks their neighbors which
created bow tie before and returns the suitable combination of them to create
an internal bow tie with the given pair of quads. GETADJACENTINTERNAL-
PAIRS algorithm is almost the same with the Algorithm 4 except being pair
criteria therefore the same Figure 3 is valid for its execution.

Algorithm 7 GETADJACENTINTERNALPAIRS(QuadMesh, Quad1,
Quad2)
Input: Quad mesh and quads
Output: Adjacent internal quad pairs of input quads
1: Pairs = empty set of pairs of quads
2: CommonEdge = common edge between Quad1 and Quad2
3: if CommonEdge exists then
4: for each point P ∈ CommonEdge do
5: First = null
6: Second = null
7: Quad1Neighbors = quads having a common edge with Quad1
8: for each neighbor quad NQ ∈ Quad1Neighbors do
9: if NQ 6= Quad2 and P is a point of NQ then

10: First = NQ
11: break
12: end if
13: end for
14: Quad2Neighbors = quads having a common edge with Quad2
15: for each neighbor quad NQ ∈ Quad2Neighbors do
16: if NQ 6= Quad1 and P is a point of NQ then
17: Second = NQ
18: break
19: end if
20: end for
21: if First 6= null and Second 6= null and First 6= Second and !First.IsInternalMatched

and !Second.IsInternalMatched and First.IsMatched and Second.IsMatched
and First.MatchedQuad 6= Second and Second.MatchedQuad 6= First then

22: Add [First, Second] to Pairs
23: end if
24: end for
25: end if
26: return Pairs

FINDINTERNALBOWTIES algorithm needs a different method from the
INSERTBOWTIE described in Algorithm 3 to create and insert internal bow

39



ties because bow ties consist of quads while internal bow ties consist of the other
bow ties. This method is named INSERTINTERNALBOWTIE and described in
Algorithm 8. INSERTINTERNALBOWTIE algorithm takes four quads which
created bow tie before in doubles. This algorithm calculates coordinates of
points creating the internal bow tie and orders these points to create related
internal bow tie. Execution of this algorithm is shown in Figure 6.

Algorithm 8 INSERTINTERNALBOWTIE(BowTieMesh, QuadMesh,
Quad1, Quad2, QuadPair)
Input: Bow tie mesh which internal bow tie will be inserted, quad mesh, quads and

adjacent internal pair quads of quads which will create internal bow tie together
1: CommonEdge1 = common edge between Quad1 and QuadPair.First
2: CommonEdge2 = common edge between QuadPair.First and QuadPair.Second
3: if CommonEdge1 exists and CommonEdge2 exists then
4: CommonPoint = common point of CommonEdge1, CommonEdge2
5: if CommonPoint exists then
6: OtherPoint1 = CommonEdge1’s other point than CommonPoint
7: OtherPoint2 = CommonEdge2’s other point than CommonPoint
8: Edge = QuadPair.Firsts edge containing OtherPoint1 and not containing

CommonPoint
9: p1 = OtherPoint1 + (length of Edge) * 3/8

10: Edge = QuadPair.Firsts edge containing CommonPoint and not containing
OtherPoint1

11: p2 = CommonPoint + (length of Edge) * 1/8
12: Edge = Pair.Seconds edge not containing CommonPoint and not containing

OtherPoint2
13: Point = Edges point creating an edge with CommonPoint
14: p3 = Point + (length of Edge) * 1/8
15: Edge = Quad2s edge containing Point and not containing CommonPoint
16: p4 = Point + (length of Edge) * 1/8
17: Edge = Quad2s edge containing CommonPoint and not containing Point
18: p5 = CommonPoint + (length of Edge) * 3/8
19: Edge = Quad1s edge containing OtherPoint1 and not containing Common-

Point
20: p6 = OtherPoint1 + (length of Edge) * 3/8
21: Add points p1, p2, p3, p4, p5, p6 to BowTieMesh if they are not added before

22: BowTie = empty set of ordered points creating bow tie
23: Add ordered points p1, p2, p3, p4, p5, p6 to BowTie
24: if Quad1’s normal vector and BowTie’s normal vector are in the opposite

directions then
25: Reverse points of BowTie
26: end if
27: Add BowTie to BowTieMesh
28: Quad1.IsInternalMatched = true
29: Quad2.IsInternalMatched = true
30: QuadPair.First.IsInternalMatched = true
31: QuadPair.Second.IsInternalMatched = true
32: end if

40



33: else
34: INSERTHALFBOWTIE(BowTieMesh, QuadMesh, Quad1, Quad2, QuadPair)
35: end if

41



(a)

Figure 6: Execution steps of the INSERTINTERNALBOWTIE algorithm

42



(b)

Figure 6: Execution steps of the INSERTINTERNALBOWTIE algorithm
(cont.)

43



”

(c)

Figure 6: Execution steps of the INSERTINTERNALBOWTIE algorithm
(cont.) 44



If the algorithm INSERTINTERNALBOWTIE cannot achieve to create
complete bow tie due to lack of common edges, it applies to INSERTHALF-
BOWTIE described in Algorithm 9. This algorithm tries to create one or two
half bow tie with the given quads and inserts what it founded in the bow tie
mesh. Half bow ties are very important to keep resulted bow tie mesh together.
Insertion steps of half bow ties are shown in Figure 7.

Algorithm 9 INSERTHALFBOWTIE(BowTieMesh, QuadMesh, Quad1,
Quad2, QuadPair)
Input: Bow tie mesh which half bow tie will be inserted, quad mesh, quads and

adjacent internal pair quads of quads which will create half bow tie together
1: CommonEdge1 = common edge between Quad1 and Quad2
2: CommonEdge1 = common edge between Quad1 and QuadPair.First
3: CommonEdge2 = common edge between Quad2 and QuadPair.Second
4: if CommonEdge1 exists and CommonEdge2 exists then
5: CommonPoint = common point of CommonEdge1, CommonEdge2
6: if CommonPoint exists then
7: OtherPoint = CommonEdge2’s other point than CommonPoint
8: Edge = Quad1s edge containing OtherPoint and not containing Common-

Point
9: p1 = OtherPoint + (length of Edge) * 3/8

10: Edge = Quad1’s edge containing CommonPoint and not containing Other-
Point

11: p2 = CommonPoint + (length of Edge) * 1/8
12: Edge = Pair.Firsts edge containing CommonPoint and not containing Oth-

erPoint
13: p3 = CommonPoint + (length of Edge) * 1/8
14: Edge = Pair.Firsts edge containing OtherPoint and not containin Common-

Point
15: p4 = OtherPoint + (length of Edge) * 3/8
16: Add points p1, p2, p3, p4 to BowTieMesh if they are not added before
17: HalfBowTie = empty set of ordered points creating bow tie
18: Add ordered points p1, p2, p3, p4 to HalfBowTie
19: if Quad1’s normal vector and HalfBowTie’s normal vector are in the opposite

directions then
20: Reverse points of HalfBowTie
21: end if
22: Add HalfBowTie to BowTieMesh
23: end if
24: end if
25: if CommonEdge1 exists and CommonEdge3 exists then
26: CommonPoint = common point of CommonEdge1, CommonEdge3
27: if CommonPoint exists then
28: OtherPoint = CommonEdge3’s other point than CommonPoint
29: Edge = Quad2s edge containing OtherPoint and not containing Common-

Point
30: p5 = OtherPoint + (length of Edge) * 3/8
31: Edge = Quad2’s edge containing CommonPoint and not containing Other-

Point

45



32: p6 = CommonPoint + (length of Edge) * 1/8
33: Edge = Pair.Secondss edge containing CommonPoint and not containing

OtherPoint
34: p7 = CommonPoint + (length of Edge) * 1/8
35: Edge = Pair.Secondss edge containing OtherPoint and not containin Com-

monPoint
36: p8 = OtherPoint + (length of Edge) * 3/8
37: Add points p5, p6, p7, p8 to BowTieMesh if they are not added before
38: HalfBowTie = empty set of ordered points creating bow tie
39: Add ordered points p5, p6, p7, p8 to HalfBowTie
40: if Quad2’s normal vector and HalfBowTie’s normal vector are in the opposite

directions then
41: Reverse points of HalfBowTie
42: end if
43: Add HalfBowTie to BowTieMesh
44: end if
45: end if

46



(a)

Figure 7: Execution steps of the INSERTHALFBOWTIE algorithm

47



(b)

Figure 7: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

48



(c)

Figure 7: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

49



(d)

Figure 7: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

50


