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a b s t r a c t

We present a new Euclidean embedding technique based on volumetric shape registration. Extrinsic
representation of the intrinsic geometry of a shape is preferable in various computer graphics applica-
tions as it poses only a small degrees of freedom to deal with during processing. A popular Euclidean
embedding approach to achieve such a representation is multidimensional scaling (MDS), which, how-
ever, distorts the original geometric details drastically. Our method introduces a constraint on the ori-
ginal MDS formulation in order to preserve the initial geometric details while the input shape is pulled
towards its MDS pose using the perfectly accurate bijection in between. The regularizer of this regis-
tration framework is chosen in such a way that the system supports large deformations yet remains fast.
Consequently, we produce a detail-preserving MDS pose in 90 s for a 53 K-vertex high-resolution mesh
on a modest computer. We can also add pairwise point constraints on the deforming shape without any
additional cost. Detail-preserving MDS is superior for non-rigid shape retrieval and useful for shape
segmentation, as demonstrated.

& 2015 Elsevier Ltd. All rights reserved.
2. Contributions
1. Introduction

The geometry of the objects we deal with in computer graphics
is non-Euclidean, that is, the distance between two points is a
curvy path along the object surface instead of a flat line through
the Euclidean space. In various computer graphics applications
such as correspondence and classification, Euclidean geometry is
preferable due to its smaller number of degrees of freedom to
compare two objects, consisting only of rotation, translation, and
uniform scaling. It is therefore plausible to embed the objects into
the Euclidean space, which equips them with the desired Eucli-
dean geometry.

It is, however, impossible to compute this embedding in the
Euclidean space without introducing distortions (Section 3.1.1). We
consequently added appealing features to our embedded poses
without worrying too much about the inevitable distortion. In
particular, we want to (i) preserve the geometric details and (ii)
enable pairwise point constraints, while maintaining the original
fast system designed for the embedding operation. The latter
feature is a relatively new one in this context, whereas the former
is shown to be advantageous for the shape retrieval application
[1]. Our method outperforms [1] in terms of accuracy as well as
Shi-Min Hu
execution time. We also show another advantage of the former
feature in the context of shape segmentation.

The main idea of our algorithm is to exploit the bijection from
the mesh model of the object to its embedded representation by
means of a shape registration process. The matching term of the
registration that pulls the mesh towards the distorted embedding
pose of interest competes with the regularization terms that try to
maintain the original geometric details. Additional pairwise point
constraints can also be added to this framework efficiently. Thanks
to the simple closed-form of our registration model, all our algo-
rithm boils down to iteratively solving a sparse linear system,
which makes it quite fast even with the high-resolution models,
e.g., 90 s for the detail-preserved embedding computation of a
53 K-vertex mesh.
� Computing a canonical pose for 3D models which preserves
details and pairwise constraints.

� Combining as-rigid-as possible (ARAP) deformation energy with
Tikhonov regularizer to handle large deformations with even
less tetrahedra inversions.
○ Slight modification on ARAP using mesh fairing.

� Clear closed-forms of the (well-known) components of our
deformation model with their derivations.
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○ Smooth blending of these components leading to an efficient
linear solution system.

� A basic shape segmentation application and promising results
on non-rigid shape retrieval that outperform some of the
existing robust works.

We note that the source code, executable, and video for the
method that we present in this paper will be made public.
3. Related work

Our work aims to create a special pose, namely a detail-
preserving canonical pose. We therefore investigate the related
work on the creation of special poses in two subsections, first of
which discusses canonical poses comprehensively in a survey
fashion, whereas the second one focuses on the poses that are
designed for purposes like beautification and fabrication.

3.1. Survey on canonical poses

Shape embedding is essentially the process of obtaining a
canonical pose that can be used as an extrinsic representation of the
intrinsic non-Euclidean geometry of an object. We discuss how the
objects equipped with non-Euclidean geometry are embedded into
a different domain where they gain invariance against the ubiqui-
tous isometric deformations, such as rotation, translation, and
bending transformations after which the pairwise distances along
the surface of the object are preserved. An embedding is Euclidean
or non-Euclidean if the embedding space is Euclidean, e.g., R3, or
non-Euclidean, e.g., sphere, respectively. The distance in the defi-
nition of isometry is generally the geodesic distance which is more
intuitive and accurate than the diffusion-based counterpart whose
main advantage is robustness to the topological noise [2].

3.1.1. Euclidean embedding
When each pair of points on an object is embedded into the

Euclidean space in such a way that the paired points are separated
by an amount equal to the corresponding geodesic distance on the
original shape, this Euclidean embedding is impossible to be dis-
tortionless, as illustrated at right with an example from [3].
After a distortionless Euclidean embedding of the sphere vertices
vf1;2;3;4g into the Euclidean space Rm for arbitrary m, the
embedded vertices v̂ f1;2;3;4g has ‖v̂1� v̂2‖Lm ¼ ‖v̂2� v̂3‖Lm ¼ 1 and
‖v̂1� v̂3‖Lm ¼ 2, making the triangle ðv̂1; v̂2; v̂3Þ flat. Moreover, ðv̂1

; v̂4; v̂3Þ is also flat implying that v̂2 ¼ v̂4 and consequently ‖v̂2�
v̂4‖Lm ¼ 0 contradicting with the assumption that v̂2 and v̂4 were
not overlapping in the first place. Geometric interpretation of this
contradiction is that we are trying to embed a curvy spherical
space into the flatty Rm. Since it is impossible to find a dis-
tortionless embedding, researchers try to construct an approx-
imate pose that distorts the embedding the least in the sense of
some criterion.

A popular attempt to these distortion minimization approaches
is an Euclidean embedding called multidimensional scaling (MDS)
which comes in classical [4,5], least-squares [6–8], and landmark
[9–12] forms. While the least-squares MDS minimizes the
embedding distortion in least-squares sense, the classical MDS
performs the minimization in the sense of Frobenius norm.
Landmark method is merely an interpolation technique for fast
embedding of dense set of points. All MDS models aim to repre-
sent the pairwise (dis)similarity data stored in the affinity matrix
as Euclidean distances in a low-dimensional space in order to
make these data accessible to visual inspection and further
exploration. This mapping from the affinities aij to the m-dimen-
sional MDS configuration v̂ is achieved by the transformation
function f : aij-v̂ , where the particular choice of f specifies the
MDS model.

Classical MDS is used extensively in computer graphics and
vision applications such as shape correspondence [13,14], shape
retrieval [15], and texture mapping [16]. Classical MDS essentially
uses the m leading eigenvectors of the associated geodesic affinity
matrix of the shape in order to transform the affinities to the m-
dimensional configuration v̂ (see Section 5). This eigenanalysis
leads to a low-dimensional spectral embedding with no danger of
getting stuck in local minima, a problem that least-squares MDS
model exhibits while minimizing the transformation error via
gradient descent or Scaling by Maximizing a Convex Function
(SMACOF) optimization algorithms [17]. Landmark MDS (LMDS),
on the other hand, embeds a large number of points by further
approximating the classical MDS. Given the embedded landmark
points, LMDS interpolates the embedding coordinates for the
remaining data points based on their distances from the landmark
points. We employ LMDS [10] in order to guide our shape regis-
tration process.

The embedding space for all MDS models is Rm. These embed-
dings are all geodesic-based which arises the problem of sensitivity
to local topology changes. Another drawback is the arbitrary
reflections due to the sign ambiguities in the eigenvectors.

Another popular Euclidean embedding method is the Laplacian
embedding, which replaces the usage of geodesic distances with
the graph Laplacian that encodes local geometric and topological
properties of the mesh. This appealing property renders Laplacian
embedding more robust to topological noise than MDS embed-
ding. As another advantage over MDS that deals with dense affi-
nity matrices, Laplacian embedding performs eigenanalysis on the
sparse graph Laplacian defined as follows:

Lij ¼
�1 if vertex vi and vj adjacent;
degreeðviÞ if i¼ j;

0 otherwise:

8><
>: ð1Þ

Such a spectral analysis on this combinatorial Laplacian or its
variants [18–20] results in numerous applications such as natural
vertex ordering for mesh streaming [21], calculation of number of
spanning trees and connected components [22], and isometry-
invariant embedding, the last one being our particular interest.

By properly adjusting the weights in Eq. (1) using discrete
differential geometry, one not only injects more geometry to the
combinatorial Laplacian but also decreases the sensitivity to the
peculiarities in the triangulation of the input mesh. The resulting
discrete Laplacian is linked with the Laplace–Beltrami operator
that appears in the wave equation [23,24] and has the following
entries:

Lij ¼
�ðcot αijþcot βijÞ=2 if i and j adjacent;P
k
ðcot αikþcot βikÞ=2 if i¼ j;

0 otherwise;

8>><
>>: ð2Þ

where the edge ðvi; vjÞ is shared by two triangles whose angles
facing ðvi; vjÞ are α and β [25].

Laplacian embedding, as well as the classical MDS embedding,
are also known as spectral embeddings since the embedding
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coordinates are computed as eigenvectors or eigenfunctions of
some matrix.

3.1.2. Non-Euclidean embedding
In non-Euclidean embedding, a non-Euclidean space is used as

an embedding space with the aim of finding a more comfortable
accommodation to the objects than the flatty Euclidean space
does. With this type of embedding the distance between pair of
points can be measured via more sophisticated paths than the
simple line paths of the Euclidean space, which in turn decreases
the embedding distortion.

A popular and relatively easy choice of the non-Euclidean
embeddings is spherical embedding, which parameterizes a tri-
angle mesh onto the unit sphere in such a way that the spherical
triangles induced by the mesh connectivity are not too distorted
and do not overlap [26,27]. A common way to perform this
embedding is to cut the closed genus-zero mesh into two pieces,
parameterize each over a planar disk with a common boundary
using any planar parameterization method [28,29], and then map
each disk to a hemisphere to be merged along the common
boundary. This embedding, however, is not preferable for shape
comparison purposes due to the computational load of the arched
Fig. 1. High- (top) and low-resolution (bottom) models. Left to right: Input shape v ,
resulting deformed shape v, target canonical shape v̂ based on LMDS [10], alter-
native targets based on classical [13] and least-squares MDS [6]. Note that the
computation of the alternatives is intractable for the high-resolution input. Our
algorithm, on the other hand, can be efficiently applied to high-resolution models
to yield v.

Fig. 2. (Top) Input mesh (leftmost). Classical MDS on landmarks (spheres) is interpolated
v̂ with our algorithm. (Bottom) Details before (left of each box) and after (right of each
distances over sphere surface as well as the difficulty of rigid
surface matching in the spherical spaces.

Generalized MDS (GMDS), on the other hand, proposes to
embed one shape into the surface of another from the same class
[30,31]. Since the curved rooms of a surface embedding space is
more suitable than a flat embedding space for housing a similar
surface of the same class, this embedding generally performs
better than the pure Euclidean embedding as well as the spherical
one in the expense of minimization of a non-convex stress func-
tion that is difficult and expensive to optimize. The non-convex
optimization proposed in the original GMDS is based on many
geodesic distance approximations and can get stuck in a local
minima [32]. Nevertheless, the invaluable idea of embedding one
shape directly into the other removes unnecessary representation
errors stemming from embedding into an intermediate space such
as a sphere.

We finally mention Möbius embedding which conformally
maps shapes with sphere topology into the extended complex
plane with a rational linear function [33,34]. This conformal
embedding that preserves angles is, however, sensitive to pecu-
liarities of the particular triangulation and restricted to genus-zero
surfaces.

3.2. Other special poses

Since the distortions being minimized in Section 3.1 do not
even attempt to preserve the geometric details of the original
shape, the resulting poses all lack visual quality, as illustrated in
Fig. 1 (see also Figs. 2–3 and 6–7). The poses we discuss in this
subsection, on the other hand, are detail-preserving as they aim to
achieve completely different objectives, ranging from beautifica-
tion to fabrication. Symmetrization, for instance, is the task of
enhancing approximate symmetries of an object by computing
optimal displacement vectors that pulls the shape towards sym-
metry [35]. For applications of animation control, [36] finds a pose
that approximately compensates the mesh sagging effect under
gravity by estimating rest-length parameters of a spring-mass
system. Refs. [37,38] aim to solve another physically based static
equilibrium equation for hair animation. Ref. [39] iterates between
carving and deformation to bring the object into a balanced pose
that makes it stand after 3D printing. Inverse design methods
[40,41] compute a special resting pose for 3D printing, which can
to the dense mesh [10] to yield the target pose v̂ (green). Mesh is then registered to
box) registration.



Fig. 3. Final deformed vertices v with (two views at left) and without (two views at
right) sufficient regularization weights. Note that v at right matches v̂ (green point
cloud) more tightly at the expense of losing original details. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 4. (Left box) EDirichlet does not support the large deformation to handle the
registration (middle), e.g., arms do not rise sufficiently. (Right box) EARAP rises arms
sufficiently. Unlike the tetrahedral mesh (right), the triangular surface mesh (left)
squeezes, hence promoting the former.
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deform into the desired target shape under specified forces when
fabricated.

The closest special pose to the pose we are aiming in this work
is [1], which goes for a detail-preserving canonical pose after
massive amount of computation and various heuristical stages that
accumulate errors on the resulting pose. Their resulting pose,
however, is shown to be superior for the non-rigid shape retrieval
application. We outperform this method in terms of both accuracy
and timing, which renders our solution as an even better alter-
native for non-rigid shape retrieval. This argument is supported
further by additional comparisons in Section 8.2. Besides, our
method is useful for the shape segmentation application, as
demonstrated in Section 8.1.
4. Problem statement and overview

Our goal is to deform a given shape into its canonical pose that is
invariant to non-rigid transformations such as bending. The key to
this deformation is to preserve the geometric details as well as to
enforce pairwise point constraints. To this end, we cast the problem
as a shape registration between the input shape (source) and its
canonical representation (target). While the matching term for this
registration process is induced by the perfectly accurate bijection
between the source and target, it definitely needs a good regular-
ization effect to preserve the original details as the target shape is
highly distorted from a visual point of view. Additional pairwise
constraints can still be added to the linear closed-form framework
designed for the detail-preserving shape registration task.

The input shape to our system is represented as a volumetric
tetrahedral mesh whose vertices are denoted by vAR3n�1 where n
is the number of mesh vertices, and 3 elements are stored for each
vertex, namely the x-, y-, and z-coordinates. The advantage of
using tetrahedral meshes over the ubiquitous triangular meshes
stems from the fact that the highly distorted configuration of the
target shape effects the mesh much more severely if handled as a
thin shell rather than a solid, as illustrated in Fig. 4 – right. Besides,
it is known that tetrahedral meshes yield more realistic defor-
mations than triangular ones do [42]. We consequently convert a
potential triangular mesh input to a tetrahedral mesh via [42].

We also denote the vertices in target canonical pose as
v̂AR3n�1, and want to find the deformed vertices vAR3n�1 as the
output of our algorithm (Fig. 1).

The following three sections describe our algorithm to compute
the detail-preserving multidimensional scaling of the mesh with
possible pairwise point constraints. Although most of the pieces
are brought together from the existing works, we derive and for-
mulate clean closed-form expressions to enable reproducibility.
Another contribution is the smooth blending of these pieces to
produce a solution that achieves the new state-of-the-art in the
creation of detail-preserving canonical poses, an important pro-
blem in computer graphics and vision.
5. Generation of target pose: v̂

We first need a fixed target pose towards which our tetrahedral
mesh will be pulled. This fixed pose captures the intrinsic non-
Euclidean geometry of the shape with an extrinsic representation,
an appealing property for most geometry processing applications
as this representation allows efficient and robust shape compar-
ison using only a few degrees of freedom [1,13,14]. To this effect,
we compute the target pose v̂ via multidimensional scaling (MDS).

The choice of the MDS model is an important issue. Since we
want a scalable algorithm that can handle high-resolution models
efficiently, we prefer the landmark-based interpolation method
LMDS [10], which requires a seed embedding to be interpolated
into a dense one. The seed embedding transforms only a subset of
the vertex set v to the Euclidean embedding space, which we call
the landmark vertices (spheres in Fig. 2) and compute using the
Farthest Point Sampling (FPS) algorithm [43]. Amongst two choi-
ces for this initial embedding, we prefer the classical approach [13]
over the least-squares method [6] as the former is based on
eigendecomposition, for which many efficient numerical algo-
rithms are available. Besides, unlike the latter, it does not suffer
from local convergence.

We start by forming an affinity matrix Aij ¼ expð�g2ði; jÞ=2σ2Þ
for the landmark vertex set of cardinality l with gð�; �Þ being the
geodesic distance between two points on a given surface. We set
the kernel width σ to be half of the maximum geodesic distance
over the surface, and use l¼80. Note that computation of the
geodesic affinity matrix does not bring any additional load to our
overall algorithm as the corresponding geodesics are already
prepared during the FPS process. AARl�l is then eigen-
decomposed as A¼QΛQ �1, where ΛARl�l is a diagonal matrix
with eigenvalues λ1Z � �Zλl along the diagonal and Q ¼ ½q1 j �
�jql�ARl�l is the matrix of the corresponding eigenvectors, i.e., qi

ARl�1 is the ith eigenvector. We scale each of these eigenvectors
with the inverse of the square root of the corresponding eigen-
value as suggested in [10], leading to Q̂ ¼QΛ�1=2. We truncate
Q̂ ARl�l into Q̂ mARl�m by considering only the first m significant
eigenvectors and obtain an m-dimensional spectral embedding
Q̂ m ¼ ½q̂1 j � �j q̂m�, where the ith row of Q̂ m gives the m-dimen-
sional embedded coordinates of the ith landmark.

Given the seed embedded coordinates in Q̂ m, we employ LMDS
[10] to embed the remaining n� l vertices based on their distances
from the l landmark vertices. Specifically, the m-dimensional
embedded coordinates of the ith vertex is

v̂ i ¼ Q̂
>
m ðgi�gμÞ; ð3Þ

where giARl�1 is the vector of kerneled geodesic distances from
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the ith vertex to all the l landmarks and gμ ¼ ðg0
1þ � �þg0

lÞ=l is the
mean where g0

jARl�1 is the vector of kerneled geodesic distances
from the jth landmark to all the landmarks. We set m¼3 and
concatenate v̂ iAR3�1 for i¼ 1; ��;n into v̂AR3n�1 (green point
cloud in Fig. 2).
6. Shape deformation: v

Our deformation algorithm aims to register the input mesh to
the target v̂ . The deformed vertices v are expected to match v̂ as
much as possible while preserving the original geometric details
present at v . Since v̂ is highly distorted in terms of geometric
details, we need a volumetric deformation energy that competes
well against this situation. To this end, we employ as-rigid-as
possible (ARAP) energy which also supports large deformations
[44]. In order to avoid overly large steps that could result in
inversions, i.e., flipped tetrahedra, on the deforming mesh, we also
introduce a Tikhonov regularization term that penalizes too large
motion from the previous step. We therefore seek v that mini-
mizes the following overall energy:

Edef ðvÞ ¼ EmatchðvÞþαEARAPðvÞþβETikhonovðvÞ ð4Þ
We elaborate our deformation process in the sequel.

6.1. Minimization of EmatchðvÞ

The first energy term Ematch penalizes the spatial difference
between v and v̂ . Thanks to the one-to-one mapping from the
input shape to its LMDS representation v̂ , this difference is mea-
sured trivially by subtracting the coordinate entries at the same
indices:

EmatchðvÞ ¼ ‖v� v̂‖2 ¼ ðv� v̂Þ> ðv� v̂Þ ¼ ‖v‖2�2v> v̂þ‖v̂‖2 ð5Þ
Since this mapping is also perfectly accurate, Eq. (5) does not
suffer from the local minima problem of the classical ICP approa-
ches even if the initial positioning of v and v̂ is wide apart [45].
Minimization of Eq. (5) is, however, not very interesting as it
would set v¼ v̂ which would return the exact target LMDS pose,
defeating our detail-preservation purpose. To remedy this pro-
blem, we next introduce our regularization terms that keep v in
good shape.

6.2. Minimization of EARAPðvÞ

The second energy term EARAP has a regularization effect by
protecting the supposedly good initial shape of each tetrahedron
via

EARAPðvÞ ¼
X
t

λt‖Ft�Rt‖2F ; ð6Þ

which penalizes the deviation of the deformation gradient Ft for
tetrahedron t from the closest rigid rotation Rt [44].
Deformation gradient FtAR3�3 is a transformation shown at right
that maps the input-pose edges to their deformed pose as follows.
Let v1;2;3;4 and v1;2;3;4 be the input and deformed coordinates of
tetrahedron t, respectively. Representing the edges via Et ¼ ½v1�
v4 jv2�v4 jv3�v4�AR3�3 and Et ¼ ½v1�v4 jv2�v4 jv3�
v4�AR3�3, we obtain

Et ¼ FtEt ; ð7Þ
which implies Ft ¼ EtE
�1
t , with E

�1
t being pre-computed for

efficiency.
The closest rigid rotation Rt , on the other hand, optimally aligns

tetrahedron t with the corresponding 4 points on v̂ in the least-
squares sense, hence deforming v towards the target. We employ
the alternating iterative algorithm in [44] with a slight modifica-
tion to minimize Eq. (6): (1) Fixing v, we first solve for rotations
using singular value decomposition [44]. (2) Fixing rotations, we
then solve for v that minimizes Eq. (6) using the matrix algebra
discussed in the sequel. We alternate between these two steps
until mesh stops moving. Our slight modification is that in step
(1) we use v̂ only in the first iteration. For the remaining iterations,
we use the faired [46] version of v instead as it approximates v̂
with a better shape, hence improving the calculations of rotations.

We need the quadratic form of Eq. (6) to minimize it efficiently.
We begin by rewriting Eq. (6) as

EARAPðvÞ ¼
X
t

λtðGtv�rtÞ> ðGtv�rtÞ ¼
X
t

λtððGtvÞ>Gtv

�2r>t ðGtvÞþr>t rtÞ; ð8Þ

where λt is the volume of the tetrahedron t at the input-pose v
and the deformation gradient operator GtAR9�3n extracts the
vectorized version of the desired gradient ft ¼ vecðFtÞAR9�1 when
multiplied by v, i.e., ft ¼Gtv [47]. Note that rotation Rt is also
exposed to vectorization, i.e., rt ¼ vecðRtÞAR9�1. Using the ðABÞ>
¼ B>A> identity,

EARAPðvÞ ¼
X
t

λtððv>G>
t ÞðGtvÞ�2r>t Gtvþr>t rtÞ

¼ v> X
t

λtG>
t Gt

 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

L

v�2
X
t

λtr>t Gt

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

r> K

vþ
X
t

λtr>t rt ; ð9Þ

where L is the mesh Laplacian and r> ¼ ½r>1 j � �j r>h �AR1�9h con-
catenates the rotations of each of the h tetrahedra in the mesh
column by column. Similarly, KAR9h�3n concatenates the scaled
deformation gradient operators λtGt row by row. The final quad-
ratic form is given by

EARAPðvÞ ¼ v> Lv�2r>Kvþ
X
t

λtr>t rt ð10Þ

6.3. Minimization of ETikhonovðvÞ

The third energy term ETikhonov is another regularizer that helps
keep the deforming mesh in good shape. Since EARAP energy does
not sufficiently penalize element inversions, especially in the case
of large deformations that we intend to handle, we control the
deformation further via ETikhonov which penalizes the deviation
from the previous step:

ETikhonovðvÞ ¼ ‖v� �v‖2 ¼ ‖v‖2�2v> �vþ‖ �v‖2; ð11Þ

where �v is the pose of the previous iteration.

6.4. Minimization of Edef ðvÞ

Having put all the three constituent energy terms into their
quadratic forms after some matrix algebra (Eqs. (5), (10), (11)), it is
now easy to minimize the overall energy term Edef by differ-
entiating with respect to v:

∂Edef
∂v

¼ ∂Ematch

∂v
þα

∂EARAP
∂v

þβ
∂ETikhonov

∂v
¼ 2ðv� v̂þαðLv�ðr>KÞ> Þ

þβðv� �vÞÞ ð12Þ



Y. Sahillioğlu / Computers & Graphics 53 (2015) 156–165 161
Setting this derivative to zero, we obtain a linear system:

ðαLþðβþ1ÞIÞv¼ v̂þαðr>KÞ> þβ �v ; ð13Þ

which we solve quickly using a sparse direct solver.

6.5. Notes on Edef ðvÞ

Our deformation model is essentially a competition between
the matching term that pulls v towards v̂ and regularization terms
that favor a mesh whose tetrahedra are shaped similarly to the
original ones induced by v . Consequently, the selection of α and β
weights are important to achieve a good balance, as illustrated in
Fig. 3. Although there is not any systematic protocol other than
trial-and-error method for this selection, the optimal weights we
choose for the production of our results are always the same, i.e.,
α¼100 and β¼10.

We also emphasize the importance of our main regularizer
EARAP by replacing it with another deformation measure from the
same family, namely the Dirichlet energy EDirichlet, which penalizes
the deviation of the deformation gradient Ft for tetrahedron t from
the identity matrix I3AR3�3 [48]:

EDirichletðvÞ ¼
X
t

λt‖Ft�I3‖2F ð14Þ

Unlike EARAP that is invariant to rotations, EDirichlet penalizes rota-
tions as they are different from I3. Consequently, EDirichlet cannot
handle as large deformations as EARAP can, as illustrated in Fig. 4
– left.

We finally note that EARAP energy performs better on volu-
metric solid shapes represented by tetrahedra than it does on
surfaces in 3D, as shown in Fig. 4 – right, especially for our specific
registration problem which uses a squeezed target shape v̂ suf-
fering from volume loss. A tetrahedron having more neighbors
through its edges than a triangle in 3D is more constrained and
has less tendency towards the squeezed target configuration,
which in turn promotes a tetrahedral mesh for our work.
7. Additional pairwise constraints

As an additional feature to our deformation model, we can
incorporate pairwise point constraints on the deforming v in
quadratic form, hence still solving a fast linear system. To this end,
we adapt the quadratic spring potential representation of [49]. The
user-specified distances between the user-specified point pairs are
induced on v via springs connecting those points:

Edef2ðvÞ ¼ EspringðvÞþEdef ðvÞ ¼ 1
2 v

> Lsv�v> JdþEdef ðvÞ; ð15Þ

which leads to the following linear system to solve after setting its
Fig. 5. Input mesh (left) with two user-specified points to be constrained (spheres).
High (middle) and low (right) spring stiffness values yielding different poses v.
Unconstrained result can be seen in Fig. 2.
derivative to zero:

ðLsþ2αLþð2βþ2ÞIÞv¼ Jdþ2v̂þ2αðr>KÞ> þ2β �v ; ð16Þ
where the matrices Ls, J, and the vector d encode the spring
information (please refer to [49] for the derivation and content of
these structures). The resulting pose after the constrained defor-
mation is given in Fig. 5.
8. Results

We have tested our detail-preserving multidimensional scaling
(MDS) computation method on three well-known 3D shape
benchmark datasets: SCAPE [50], TOSCA [8], and Watertight [51].
The former is a reconstructed pose sequence of a human actor,
which contains 71 non-uniformly sampled models exhibiting tri-
angulation peculiarities. TOSCA, on the other hand, consists of 35
fourleg animals, 39 humans, and 6 centaurs, hence a total of 80
objects, each having approximately 50 K vertices. The part that we
have used from the Watertight dataset consists of glasses, chair,
spring, and armadillo classes of cardinality 20 each.

In addition to the visual evidence of our performance provided
through Figs. 6–8, we also demonstrate our advantage over the
only other existing work addressing the same detail-preserving
MDS problem (Fig. 9). We also show the potential of our algorithm
with a shape segmentation application (Section 8.1).

In Fig. 6, we visualize our deformation process on three dif-
ferent examples from the Watertight and TOSCA datasets through
intermediate iterations (please also see the accompanying video
for more results on this process).

Detail-preserving MDS poses of some SCAPE and Watertight
models are given in Figs. 7 and 8, respectively. We observe that all
models converge to their target poses with preserved details.
SCAPE models possessing peculiarities in their triangulations
Fig. 6. Three example shapes (gray) are being deformed towards their LMDS poses
(green) in the direction of arrows. Last steps show the resulting pose in a different
view. Note that details as subtle as those in the fingers of the human figure (dashed
arrows) are preserved. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)



Fig. 8. Input and resulting poses as left and right sides of three pairs.

Fig. 9. Input models (top) and outputs (bottom) produced by our algorithm (left)
and [1] (right).

Fig. 10. MDS embeddings with (right) and without (left and middle) topological
noise. Image taken from [8].

Table 1
Hausdorff distances between unfolded models when the target poses are obtained
with and without noise. Models are scaled such that maximum geodesic distance is
one. The amount of displacement is set to a random number in ½0; ρϵ�, where ϵ is the
average edge length in the original mesh.

Distance ρ¼1 ρ¼5 ρ¼10 ρ¼20 ρ¼50

Hausdorff 0.09 0.12 0.17 0.70 1.96

Fig. 7. (Top) Input (left) and its LMDS representation (middle). Resulting model by
our algorithm (right). (Bottom) Input and resulting models as left and right sides of
each box.
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deform as nice and smooth as the TOSCA human with uniform
triangulation (Fig. 6 – middle), which shows the insensitivity of
our framework to the tessellation quality.

The execution time of our algorithm on a 2.53 GHz PC with
8 GB RAM for a SCAPE model of 12.5 K vertices and 44 K tetra-
hedra is 20 s, whereas a TOSCA model of 53 K vertices and 185 K
tetrahedra requires 53 s. Chair (10 K vertices), ant (5 K vertices),
and spring (752 vertices) models from the Watertight dataset take
15, 7, and 1 s, respectively. While �10% of the execution time is
used for the sampling and landmark MDS embedding operations,
the remaining time belongs to the deformation process. Con-
sidering the 243 s execution time of [1] for a 5 K-vertex mesh on a
faster machine (3.19 GHz, 12 GB RAM), our method is much more
fast, i.e., compare with our corresponding 7 s on our slower
computer. The reason is that while we are solving one closed-form
energy function Edef as a sparse linear system at each iteration, [1]
solves several disjoint energy minimization problems for their
assembling and smoothing operations, preceded by other heur-
istical steps such as voxelization and segmentation. Unlike our
closed-form equation that can be easily implemented (Eq. (13)),
the descriptions of their steps are not clear and sufficient for
reproduction. We were also unable to find a public repository
(code, executable, resulting mesh files) for [1]. We consequently
directly copy their figure in our Fig. 9 and run our algorithm with
the same input. Our resulting pose obtained in much less time is
smoother and more accurate.

We finally evaluate the performance of our algorithm under
noise. The quality of the MDS-based target pose (Section 5)
depends on the geodesic distances, which are affected at various
levels in the presence of topological and/or geometrical noises.

With topological noise, e.g., hand is connected to the knee via a
single noisy edge (Fig. 10 – right), geodesic distances change
drastically, which in turn messes up the MDS-based embedding.

With geometric noise, e.g., random perturbations of vertices,
geodesic distances change in proportion to the amount of vertex
displacements. To quantify this affect, we add a combination of
noise (random amount of displacement in normal direction) and
shotnoise (random direction of displacement) to the male TOSCA
models [52], and then use the resulting embeddings as the target
pose of the original models, which are unfolded towards these
targets. We also unfold the original models towards the target
embeddings obtained without any noise. We then quantify the
similarity of these unfolded meshes by computing their Hausdorff
distances. Small distance values in Table 1 show that our unfolding
operation is insensitive to the geometric noise when the power of
displacement is sufficiently low, e.g., ρr10.

8.1. An application: shape segmentation

As mentioned in Section 1, Euclidean geometry simplifies
solutions to many graphics applications. After equipping a shape
with the Euclidean geometry by creating the extrinsic repre-
sentation of its intrinsic geometry via new coordinates v, we take
the shape segmentation application into consideration to
demonstrate this claim.



Fig. 11. (Top) Input mesh segmented via [53] based on the non-Euclidean geometry
(left). Our segmentation computed on v based on the Euclidean geometry (middle).
v is rolled-back to the input coordinates v with the new segmentation labels
(right). (Bottom) Segmentation results of [53] and our work as left and right sides
of each box.

Fig. 12. Precision–Recall plots of the retrieval methods on TOSCA dataset.
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Our proposed segmentation algorithm leveraging an extrinsic
representation of intrinsic geometry is much more simple than
existing algorithms [53,54], yet perform sufficiently accurate for
isometric shapes that are identical up to rotation, translation, and
bending deformations, e.g., a human figure in standing and sitting
poses. Our algorithm simply runs the k-means clustering algo-
rithm on the resulting coordinates v to obtain a pose-invariant
segmentation. Unlike [53] which considers the intrinsic non-
Euclidean geometry, i.e., geodesic distances along the surface,
during the k-means process, we consider the Euclidean geometry,
i.e., the L2 distances over v, which in turn yields a better seg-
mentation illustrated in Fig. 11.

We also perform quantitative comparisons with [53]. Note that
[53] is one of the seven algorithms evaluated by Princeton seg-
mentation benchmark [55], which uses the Watertight models as its
dataset. We employ two metrics from [55], namely the boundary-
based Cut Discrepancy (CD) and the region-based Rand Index (RI),
where the former measures how close segment boundaries of the
computer-generated and human-generated results are to one
another, and the latter measures the consistency of segment inter-
iors. For human-generated results we use the ones provided by [55].
Since CD measures dissimilarities, we report 1-RI (as [55] does) to
quantify dissimilarities rather than similarities, thus lower values
are better on both metrics. The average CD and 1-RI over all models
in the benchmark for our method are 0.37 and 0.21, respectively.
The corresponding pair of numbers for [53] is slightly worse, being
0.41 and 0.25. We also give these numbers over the Human class
instead of over all the models. In this case we obtain 0.31 and 0.18,
whereas [53] achieves 0.33 and 0.22. These results show that uti-
lizing our Euclidean distances instead of geodesics [53] inside the
same clustering framework yields better performance. We therefore
think that this is a good showcase of the Euclidean distances pro-
duced by our detail-preserving MDS method. We should however
note that our preliminary segmentation algorithm requires further
optimization in order to compete with the recent sophisticated
algorithms that are designed specifically for the shape segmenta-
tion problem [56–58].

8.2. An application: non-rigid shape retrieval

As another computer graphics application, we note that [1] has
reported a superior performance of detail-preserving MDS poses
over the conventional MDS poses for the non-rigid shape retrieval
problem. This is a reasonable result as semantically similar shapes
with varying details could not be distinguished well with con-
ventional canonical poses that lack details. Our detail-preserving
canonical poses, being much more accurate than those of [1],
imply that our algorithm improves the performance of a non-rigid
shape retrieval application as well. We verify this hypothesis by
the experiments on the TOSCA benchmark in the sequel. We also
note that, in a parallel and independent work, [59] also computes
detail-preserving MDS poses and demonstrates their superiority
for the non-rigid shape retrieval application.

There is not a single state-of-the-art algorithm on non-rigid
shape retrieval. As reported recently in SHREC'15 track [60], some
of the older MDS-based methods [6] are still as effective as the
more recent algorithms, but have been surpassed in terms of
efficiency. We therefore pick [10,61] for comparisons, where the
first one is an MDS-based method that interpolates the sparse
results of [6] to dense meshes efficiently, and the second one is a
recent belief function based approach that already employs the
TOSCA dataset, which makes it easier and healthier to import their
results into our paper. Note that [10] is the target pose (Section 5)
of our method (Figs. 1 and 7) towards which our input tetrahedral
mesh is pulled with preserved details.

Quantitative analysis of our experimental results is depicted in
Fig. 12, which shows the Precision–Recall curves of our algorithm,
LMDS [10,61]. For the plots in Fig. 12, the vertical axis is the Pre-
cision, which is the ratio of the relevant matches to the number of
retrieved models, whereas the horizontal axis is the Recall, which
is the ratio of relevant matches to the size of the query class.
Ideally, this curve should be a horizontal line at unit precision.
Based on these plots, we find that our approach provides the best
retrieval precision in this experiment.
9. Limitations and discussion

The main limitation of our algorithm is its dependence on
geodesic distances which brings sensitivity to the topological noise
as a small topological change on the mesh may alter most of the
geodesics drastically (Fig. 10 – right). One may alleviate this pro-
blem by introducing diffusion-based distances [62,2] to the sys-
tem. Another limitation concerns our additional feature, namely
the pairwise point constraining, in that we currently can only
control the distance between the constraint pair of points, not the
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direction. We therefore cannot quite obtain a special pose, such as
the Vitruvian man pose, as the distances may be satisfied in
arbitrary configurations. This arbitrary behavior may even cause
self-intersections. The potential of our algorithm is demonstrated
through two applications, shape segmentation and retrieval.

Finally we note that there are methods that handle volumetric
deformation without requiring any volumetric tessellation [63,64].
Ref. [63] rather constructs a volumetric graph whose vertices are
derived from a lattice embedded inside the mesh. This deforma-
tion, however, only roughly preserves the volume. Ref. [64], on the
other hand, links the volume of an object to its surface curvature,
which in turn cannot preserve simultaneously the surface details
and the volume. We use the recent advances in volumetric tes-
sellation [42] to tetrahedralize any given mesh, and consequently
preserve the volume better.
10. Conclusion and future work

We presented an algorithm that brings a given shape into the
detail-preserving multidimensional scaling (MDS) pose by means
of an efficient and robust volumetric shape registration process.
The input tetrahedral mesh is pulled towards its MDS repre-
sentation using the perfectly accurate matching in between. The
original geometric details on the input is preserved by adapting
the closed-forms of as-rigid-as-possible and Tikhonov deforma-
tion energies. Thanks to the quadratic harmony of the energy
terms, all the deformation process boils down to solving a sparse
linear system. Additional pairwise point constraints can also be
added without sacrificing the linear structure of the solution.

As the future work, apart from analyzing the trade-off between
the accuracy of the geodesic metric currently in use and the
topological noise robustness of the diffusion-based metric to be
tested, one may also investigate a way to fine-tune the deforma-
tion weights in a more principled way than the trial-and-error
approach. We should note that, though, once tweaked, we used
the same weights for all the results in this paper. Our preliminary
segmentation solution may also benefit from more advanced
clustering techniques as well as boundary smoothing via mor-
phology. Improving the pairwise point constraints to handle spe-
cial poses, such as the Vitruvian man pose or A-pose, may also be
interesting.
Appendix A. Supplementary material

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2015.10.003.
References

[1] Lian Z, Godil A, Xiao J. Feature-preserved 3d canonical form (IJCV). Int J
Comput Vis 2013;102(1–3):221–38.

[2] Lipman Y, Rustamov R, Funkhouser T. Biharmonic distance. ACM Trans Graph
2010;29(3).

[3] Linial N. Finite metric spaces combinatorics, geometry, and algorithms. In:
Proceedings ICM, vol. 3; 2002. p. 573–86.

[4] Cox T, Cox M. Multidimensional scaling. 2nd ed.. London: Chapman & Hall/
CRC; 2000.

[5] Rustamov R, Lipman Y, Funkhouser T. Interior distance using Barycentric
coordinates. Comput Graph Forum 2009;28(5).

[6] Elad A, Kimmel R. On bending invariant signatures for surfaces. IEEE Trans
PAMI 2003;25:1285–95.

[7] Borg I, Groenen P. Modern multidimensional scaling–theory and applications.
2nd ed.. Berlin: Springer; 2005.

[8] Bronstein AM, Bronstein MM, Kimmel R. Numerical geometry of non-rigid
shapes. New York: Springer; 2008.

[9] Faloutsos C, Lin K. A fast algorithm for indexing, datamining and visualisation
of traditional and multimedia datasets. ACM SIGMOD 1995:163–74.
[10] de Silva V, Tenenbaum J. Global versus local methods for nonlinear dimen-
sionality reduction. In: Proceedings NIPS; 2002. p. 705–12.

[11] Aflalo Y, Kimmel R. Spectral multidimensional scaling. Proc Natl Acad Sci
2013;110(45):18052–7.

[12] Panozzo D, Baran I, Diamanti O, Sorkine-Hornung O. Weighted averages on
surfaces. In: Proceedings SIGGRAPH, 32 (4) (2013) 60:1–60:12.

[13] Jain V, Zhang H. Robust 3d shape correspondence in the spectral domain. In:
IEEE international conference on shape modeling and applications (SMI);
2006. p. 118–29.

[14] Sahillioǧlu Y, Yemez Y. Minimum-distortion isometric shape correspondence
using EM algorithm. IEEE Trans PAMI 2012;34(11):2203–15.

[15] Jain V, Zhang H. A spectral approach to shape-based retrieval of articulated 3d
models. Comput Aided Des 2007;39(5):398–407.

[16] Zigelman G, Kimmel R, Kiryati N. Texture mapping using surface flattening via
multidimensional scaling. IEEE Trans Vis Comput Graphics 2002;8:198–207.

[17] Groenen P, van de Velden M. Multidimensional scaling. Econom Inst Rep EI
2004:04–15.

[18] Zhang H. Discrete combinatorial Laplacian operators for digital geometry
processing. Proc SIAM Conf Geom Des Comp 2004:575–92.

[19] Sorkine O. Differential representations for mesh processing. Comput Graph
Forum 2006;25(4):789–807.

[20] Mateus D, Horaud R, Knossow D, Cuzzolin F, Boyer E. Articulated shape
matching using Laplacian eigenfunctions and unsupervised point registration.
In: Proceedings of computer vision and pattern recognition (CVPR); 2008.

[21] Isenburg M, Lindstrom P. Streaming meshes. IEEE Vis 2005:30–7.
[22] Feidman J. Computing betti numbers via combinatorial Laplacians. Proc 28th

Symp Theory Comput 1996:386–91.
[23] Levy B. Laplace–Beltrami eigenfunctions: towards an algorithm that under-

stands geometry. In: IEEE international conference on shape modeling and
applications (SMI); 2006.

[24] Wardetzky M, Saurabh M, Kalberer F, Grinspun E. Discrete Laplace operators:
no free lunch. In: Sympsium on geometry processing; 2007. p. 33–37.

[25] Rustamov R. Laplace–Beltrami eigenfunctions for deformation invariant shape
representation. Comput Graph Forum (Proc SGP) 2007:225–33.

[26] Gotsman C, Gu X, Sheffer A. Fundamentals of spherical parameterization for
3D meshes. ACM Trans Graph 2003;22(3):358–63.

[27] Haker S, Angenent S, Tannenbaum A, Kikinis R, Sapiro G. Conformal surface
parameterization for texture mapping. IEEE Trans Vis Comp Graph 2000;6
(2):1–8.

[28] Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes.
Comput Graph Forum 2002;21(3):210–8.

[29] Sheffer A, Sturler E. Parameterization of faceted surfaces for meshing using
angle based flattening. Eng Comput 2001;17(3):326–37.

[30] Bronstein AM, Bronstein MM, Kimmel R. Generalized multidimensional scal-
ing: a framework for isometry invariant partial surface matching. Proc Natl
Acad Sci 2006;103(5):1168–72.

[31] Bronstein AM, Bronstein MM, Kimmel R. Efficient computation of isometry-
invariant distances between surfaces. SIAM J Sci Comput 2006;28(5):1812–36.
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