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Abstract
Scene extrapolation is a challenging variant of the scene completion problem, which pertains to predicting the missing part(s)
of a scene. While the 3D scene completion algorithms in the literature try to fill the occluded part of a scene such as a chair
behind a table, we focus on extrapolating the available half-scene information to a full one, a problem that, to our knowledge,
has not been studied yet. Our approaches are based on convolutional neural networks (CNN). As input, we take the half
of 3D voxelized scenes, then our models complete the other half of scenes as output. Our baseline CNN model consisting
of convolutional and ReLU layers with multiple residual connections and Softmax classifier with voxel-wise cross-entropy
loss function at the end. We train and evaluate our models on the synthetic 3D SUNCG dataset. We show that our trained
networks can predict the other half of the scenes and complete the objects correctly with suitable lengths. With a discussion
on the challenges, we propose scene extrapolation as a challenging test bed for future research in deep learning. We made our
models available on https://github.com/aliabbasi/d3dsse.

Keywords 3D scenes · Extrapolation · Convolutional neural networks

1 Introduction

Thanks to the availability of consumer-level 3D data acquisi-
tion sensors such asMicrosoft Kinect orAsusXtionLive, it is
now quite easy to build digital copies of the environments or
the objects. Regardless of its rapid development, some prob-
lems will always remain in the raw output of such sensing
technologies. The notorious example is the missing data arti-
fact which emerges due to self-occlusion, occlusion by other
objects, or insufficient coverage of the viewing frustum of
the device. While the occlusion-related problems have been
addressed extensively in the literature under the shape com-
pletion or scene completion problems, the coverage-related
version is, to our knowledge, not studied yet. In this paper, we
address this new problem that we cast as scene extrapolation.
Specifically, given the first half of the scene, we extrapolate
it to recover the second one. This is a valid scenario as the
3D sensor may not be able to capture the other half due to,

B Ali Abbasi
abbasi.ali.tab@gmail.com; ali.abbasi@ceng.metu.edu.tr

Sinan Kalkan
skalkan@ceng.metu.edu.tr

Yusuf Sahillioğlu
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for instance, physical limitations. This is also a more chal-
lenging problem than the completion task which is able to
use the available surroundings of the occluded holes to be
filled, an information that is unavailable to our extrapola-
tion framework. Our problem is also fundamentally different
from the family of shape or scene synthesis problems which
aims to reconstruct the target based on textual or geomet-
ric descriptions such as captions or 3D point clouds (see
Fig. 1).

In this paper, we study the problem of 3D scene extrap-
olation with convolutional neural networks (CNNs). The
dataset we use [38] is voxelized 3D indoor scenes with
object labeling at voxel level. Our proposed models take
the first half of each 3D scene as input and complete (esti-
mate) the other side of it. We use voxel-wise Softmax
cross-entropy loss function in the network to train our mod-
els.

The main contributions of this paper can be described as
follows. First of all, we introduce a novel problem differ-
ent than other completion tasks, namely the extrapolation
of a half-scene into a full one. Secondly, we propose a
deep CNN model using both 3D and 2D inputs to estimate
the unseen half of the scene given the visible part as its
input.
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(a)

(b)

Scene Completion

Scene Synthesis

?

Scene Extrapolation(c)

Fig. 1 An illustration of the relevant problems. a Scene completion
aims at estimating the missing hole in the middle of scene. b Scene
synthesis constructs 3D scenes from point clouds. c Scene extrapolation
estimates the unseen part of the environment from the seen scene (the
problem addressed in this paper) [best viewed in color]

2 Related work

Missing data can be completed in various ways depending on
the size of the misses. We broadly categorize these methods
as rule-based and learning-based approaches.

A set of rule-based approaches utilize an ‘as smooth
as possible’ filling strategy for the completion of suffi-
ciently small missing parts, or holes [26,42,51]. When the
holes enlarge to a certain extent, context-based copy-paste
techniques yield more accurate results than smooth filling
techniques do. In this line of research, convenient patches
from other areas of the same object [11,29,37] or from a
database of similar objects [9,21,24] are copied to themissing
parts. Although these methods generally arise in the context
of 3D shape completion, appropriate modifications enable
image [2,13,22] and video [16,40] completion as well. A
common limitation to this set of works is the assumption on
the existence of themissing part in the context. Besides, these
algorithms may generate patches inconsistent with the orig-
inal geometry as they may not be able to take full advantage
of the global information. Although semi-automatic meth-
ods that operate under the guidance of a user [12,46] may
improve the completion results, a more principled solution
is based on supervised machine learning techniques, as we
discuss in the sequel.

A different rule-based pipeline is based on the family of
iterative closest point algorithms [3,4,30,45]. These algo-
rithms are applicable when there are multiple sets of partial

data available at arbitrary orientations, a case that typically
emerges as a result of 3D scanning from different views [28].
By alternating between closest point correspondence and
rigid transformation optimization, these methods unify all
partial scans into one full scan, hence completing the geom-
etry. Requiring access to other complementary partial data is
a fundamental drawback on these works.

Scene completion, posed either on2D imagedomain or 3D
Euclidean domain, is more challenging than the shape com-
pletion case discussed thus far. The difficulty mainly stems
from the fact that it is an inherently ill-posed problem as there
are infinitely many geometric pieces that look accurate, e.g.,
a chair aswell as a garbage bin is equally likely to be occluded
by a table. A rule-based approach such as [52] should, there-
fore, be replaced with a machine learning-based scheme as
the latter imitates the thinking mechanism of a human for
whom the completion task is trivial, e.g., we immediately
decide the highly occluded component based on our years of
natural training. To this end, [38] recently proposed a 3D con-
volutional network that takes a single depth image as input
and outputs volumetric occupancy and semantic labels for
all voxels in the camera view frustum. Although this is the
closest work to our paper, we deal with the voxels that are
not in the view frustum, hence the even more challenging
task of scene extrapolation instead of completion, or inter-
polation. Similar to [38], unobserved geometry is predicted
by [6] using structured random forest learning that is able to
handle the large dimensionality of the output space.

Recent deep generative models have shown promising
success on completion of images at the expense of signifi-
cant training times, e.g., in the order ofmonths [17,19,25,47].
There also are promising 3D shape completion results based
on deep neural nets [5,44], which again suffer from the
tedious training stage.

In the shape synthesis problem, given a description of a
shape or a scene to be synthesized, it is aimed to reconstruct
the query in the form of an image [49,50], video [39], or sur-
face embedded in 3D [7,15,18,36]. There are many sources
for the descriptive information ranging from a verbal descrip-
tion of the scene to 3D point cloud of a shape. Synthesis can
be performed by either generating the objects [41] or retriev-
ing them from a database [8,20].

In deep learning, there are many generative models that
can scale well at large spaces such as natural images. The
prominent models include generative adversarial networks
(GANs) [10], variational autoencoders [32], and pixel-level
convolutional or recurrent networks [34]. In addition tomod-
eling the extrapolation problem as a voxel-wise classification
problem,we choseGANs among the generativemodels since
(1) they are easier to construct and train, (2) they are com-
putationally cheaper during training and inference, and (3)
they yield better and sharper results.
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Fig. 2 The scene extrapolation problemaddressed in the paper, and how
we use deep learning to solve it. Our deep CNNmodel takes in a half of
the 3D voxelized scene as input, and after applying some convolution
operations, generates the full scene as output. The numbers inside the

layers indicate the kernel sizes. Highlighted layers show dilation con-
volutions. The architecture consists of several residual connections, as
shown by the arrows [best viewed in color]

As a summary, completion and synthesis of shape, scene,
images or videos have been extensively studied in the litera-
ture. However, scene extrapolation is a new problem that we
propose to solve in this paper using deep networks.

3 Scene extrapolation with deepmodels

We introduce two main models; the first is CNN-SE and the
other one is Hybrid-SE,which useCNN-SE as a sub-network
and extend it to use 2D top-view projection as another input.
We also test the U-Net architecture [35] in scene extrapola-
tion task.

3.1 A convolutional neural network for scene
extrapolation (CNN-SE)

CNNs [23] are specialized neural networks with local con-
nectivity and shared weights. With such constraints and
inclusion of other operations such as pooling and non-
linearity, CNNs essentially learn a hierarchical set of filters
that extract the crucial information from the input for the
problem at hand.

In our approach, we use deep fully CNN for the 3D
semantic scene extrapolation task (Fig. 2). Fully CNN mod-
els consist of only convolution and do not use pooling or
fully connected layers. Given the first half of 3D voxelized
scene (f3D ∈ V

w×h×d , where V = {1, . . . , 14} is the set of
object categories each voxel can take; w, h, d are, respec-
tively, the width, the height and the depth of the scene), our
task is to generate the other half of scene (s3D ∈ V

w×h×d ),
which is semantically consistent with first half of scene (f3D)
and conceptually realistic (e.g., objects have correct shapes,
boundaries and sizes). Since our approaches work on vox-
elized data, we treat each 3D voxelized scene as ‘2D images’
with multiple channels, where channels correspond to planes
of the scene.We find that each voxel in a 3D scene is strongly
dependent to adjacency voxels, or in the other words, each
plane of voxels in a way similar to near planes. Therefore, we
convert 3D voxelized scenes to 2D planes, like RGB images,
instead we have 42 channels (42 layers of voxels—i.e., w

is 42) for the input scene. Our models complete the missing
channels from an input 3D scene.

We have experimented with many architectures and struc-
tures, including pooling layers, strided and deconvolution
in bottleneck architectures, and dilated convolutions [48].
However, we found that a network with only convolution
operations with stride 1 yielded better results. Therefore, we
design our architecture as convolutional layers with stride 1
and same padding size, see Fig. 2.

Table 1 lists the details of the CNN-SE model. The fully
CNN model takes input scene and first applies a 7 × 7
convolutions, then the architecture continues with 6 resid-
ual blocks [14]. Each residual block contains 3 layers of
ReLU non-linearity (defined as relu(x) = max(0, x); see
[33]) followed by convolution after each. It finishes with a
1×1 convolutional layers, and Softmax classifier with voxel-
wise cross-entropy loss, LCE , between the generated and the
ground truth voxels as follows:

LCE = 1

m

∑

i

H(t3Di , s3Di ), (1)

wherem is the batch size; s3Di is the extrapolated scene for the
i th input, and t3Di is the corresponding ground truth. Cross-
entropy (H ) between two vectors (or serialized matrices) is
defined as follows:

H(p,q) = −
∑

i

pi log(qi ). (2)

We also use a smoothness penalty term, LS , to make the
network produce smoother results by enforcing consistency
between each generated plane spi j (i.e., the generated j th
voxel plane for the i th input instance) and its next plane in
the ground truth, tpi( j+1):

LS = 1

m

∑

i, j

H
(
tpi( j+1), s

p
i j

)
, (3)

where m is again the batch size.
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Table 1 The architecture details of our CNN model

Layer Activation Batch norm. Kernel Stride Dilation Outputs

(a) CNN model architecture

Conv. – × 7 × 7 1 1 64

Res1. ×4 – – – – – 64

Res2. ×2 – – – – – 64

Conv. – × 1 × 1 1 1 14 × 42

(b) Residual blocks internal architecture. Res2. use dilation 2 and 4, respectively, in two blocks

Res1.

– R × – – – –
Conv. R × 3 × 3 1 1 64

Conv. R × 5 × 5 1 1 64

Conv. – – 3 × 3 1 1 64

Res2.

– R × – – – –
Conv. R × 3 × 3 1 1 64

D.Conv. R × 1 × 1 1 2, 4 64

Conv. – – 3 × 3 1 1 64

The layer type is shown in the ‘Layer’ column; ‘Conv.’ stands for convolution, and ‘Res’ for residual block, which is detailed in (b). ‘R’ shows the
ReLU activation function in the second column. The last layer is a Softmax classifier
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Fig. 3 The hybrid model used in our paper. We feed the half of 3D
voxelized scene as input to the CNN-SE network—see Sect. 3.1. In
parallel, the top-view projection of the first half (i.e., ftop) is fed into
PixelCNN [34] to generate the other side top view (stop). The 2D to 3D

network, which consists of multiple residual blocks, maps its 2D input
to 3D. Then this output is aggregated with CNN-SE network output and
goes into a smoother network consists of 4 ResNeXt [43] blocks [best
viewed in color]
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Moreover, against overfitting, we add L2 regularization
on the weights:

L2 = λ

2

∑

i

w2
i , (4)

where λ is a constant, controlling the strength of regulariza-
tion (λ is tuned to 0.001), and wi is a weight.

In addition the focal loss L f [27] is added to have faster
convergence. Therefore, the total loss that we try tominimize
with our CNN model is as follows:

L total = LCE + LS + L2 + L f . (5)

3.2 Scene extrapolation with hybrid model
(hybrid-SE)

Figure 3 shows the overall view of our hybrid model. This
model, in addition to taking the first half in 3D (f3D) as input,
processes the 2D top-view projection in parallel. f3D is fed to
the CNN-SEmodel as explained in Sect. 3.1, in parallel, ftop,
the 2D top-view projection of f goes into an autoregressive
generativemodel, namely PixelCNN [34], to generate the top
view of the second part (stop). This top view should provide
whereabouts and identities of the objects in the space to be
extrapolated. Then a 2D to 3D network takes this generated
2D top view as input and predicts the third dimension tomake
it 3D. The output from CNN-SE (s3D) and 2D to 3D network
(stop) are aggregated together and fed into a smoothing net-
work consisting of 4 ResNeXt blocks [43]. In this model, we
use the loss in Eq. 5 for CNN-SE network; for PixelCNN
network, Eqs. 1, 4; for the focal loss for 2D to 3D network,
Eqs. 1, 2 and 4; and for the smoother network, Eqs. 1 and 2.

Our hybrid model predicts the top view of the unseen part.
However, this 2D extrapolation is itself as challenging as 3D
extrapolation. In order to demonstrate the full potential of
having a good top-view estimation of the unseen part, we
also solved the 3D extrapolation by feeding the known 2D
top view of the unseen part.

4 Experiments and results

In this section, we train and evaluate our models on SUNCG
[38] dataset. Our codes and models are available on https://
github.com/aliabbasi/d3dsse.

4.1 Datasets

WeusedSUNCG[38] synthetic 3D scene dataset, for training
and inference. This dataset contains 45,622 different scenes,
about 400k rooms and 2644 unique objects. We constructed
scenes by their available information with provided as JSON

Fig. 4 Sample scenes from the synthetic SUNCG dataset [38], a chal-
lenging dataset containing diverse kinds of chairs, beds, sofas, shelves,
tables, cabinets and coffee tables in different shapes and sizes [best
viewed in color]

Table 2 The training details for our models

model lr bs iter optimizer

CNN-SE 5 × 10−5 32 500,000 Adam

U-Net 5 × 10−5 32 500,000 Adam

H-SE 1 × 10−5 16 500,000 Adam

H-SE w gt 1 × 10−5 16 500,000 Adam

The weights are initialize randomly with mean = 0 and std = 0.01. The
training process for each model took about 8 days. ‘w gt’ indicates
known 2D top view

file for each scene.We parsed each scene JSON file and build
a separate scene for each room. In the roomextraction process
we ignored scene types such as outdoor scenes, swimming
pool. We used the binvox [31] voxelizer, which use space
carving approach for both surface and interior voxels. To
make the voxelizing process faster, we first voxelized each
object individually then put them in their place in each room.
During the object voxelization, we considered each 6cm as
each voxel size, then voxelized objects with respect to their
dimensions. The longest dimension in the object was divided
by 6 to give the resolution of voxelizing for that object.

In our experiments, we removed categories that did not
have sufficient number of instances, (or smaller than most
occur objects in scene like beds, sofas, cabinets, windows),
which reduced the number of object categories from 84 to
13 (plus one category, for emptiness). The removed objects
include TVs, plants, toys, kitchen appliance, floor lamps,
people, cats. We set the fix resolution i our models to
84 × 42 × 84. We observed that this resolution was suffi-
cient to represent the objects and the content of the scenes.
We also removed scenes which has less than 12000 voxels in
size, and leave about 211k scene, we used 200K as train the
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Fig. 5 Results on the SUNCG dataset [38] from our models. ‘w gt’ indicates known 2D top view [best viewed in color]
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rest as test data. The data processing and building roughly
took a week. Figure 4 shows some sample scenes from this
challenging dataset.

4.2 Training details

We used Tensorflow [1] to implement our models. Table 2
summarizes the training details for each model individually.
For all training processes, we used a singleNVIDIAGeForce
Titan X GPU.

4.3 Results

Figure 5 shows the results of our experiments. We use two
metrics in order to evaluate the results. First, the accuracy
metric, defined as the number of correctly generated voxels
in the output divided by the total number of estimated voxels.
In the first metric, we also consider empty voxels if they are
estimated at the right place. The second metric is complete-
ness, which is the number of correctly generated non-empty
voxels in the output divided by the total number of non-empty
voxels. Table 3 shows the quantitative results of our models,
as well as per-category F1 scores.

4.4 Discussion

The architectureWe have experimented with many architec-
tures and structures for the generator, include pooling layers,
bottleneck architectures with strided and deconvolution lay-
ers, yet, at the end, we concluded that a simple architecture of
stride-1 convolution layers can generate better results. This
suggests that it is better to keep the widths of the layers unre-
duced and allow the network to process information along
the width of the scene at each convolution. This also allows
the network to get a better estimation about the sizes of the
objects since each convolution has access to the width of the
scene.Moreover, worse performance on increased filter sizes
suggests that highly local processing is better and bigger filter
sizes lead to averaging of information across voxels.

Future work One can formulate the scene extrapolation
task as a sequence modeling problem, such that the input
sequence (the visible scene) is encoded by a sequence mod-
eling framework, and the rest of the scene is decoded by
another. Moreover, a context network can be trained in paral-
lel together with the generation network such that the context
network captures a high-level scene information and layout
of the scene and modulates the generation process.

5 Conclusion

In this paper, we have proposed using convolutional net-
works for the scene extrapolation problem, which has not Ta
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been addressed in the literature before. We showed that the
proposed models are able to extrapolate the scene toward the
unseen part and extend successfully the ground, thewalls and
the partially visible objects.

However, we realized that the networks were unable to
hallucinate objects in the extrapolated part of the scene if
they did not have any part visible in the input scene. This
is likely to be due to the highly challenging nature of the
extrapolation problem, due to the huge inter-variability and
intra-variability between the objects. To able to extrapolate
at a level where new objects can be generated would likely
require (1) a much larger dataset than we used and available
in the literature, and (2) extraction and usage of higher-level
semantic information from the input scene, as a modulator
for the deep extrapolating networks.

Scene extrapolation is a challenging and highly-relevant
problem for the computer graphics and deep learning soci-
eties, and our paper offers a new research problem and
direction with which new and better learning and estimation
methods can be developed.
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