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A Genetic Isometric Shape Correspondence Algorithm
with Adaptive Sampling

YUSUF SAHILLIOĞLU, Middle East Technical University

We exploit the permutation creation ability of genetic optimization to find

the permutation of one point set that puts it into correspondence with an-

other one. To this end, we provide a genetic algorithm for the 3D shape cor-

respondence problem, which is the main contribution of this article. As an-

other significant contribution, we present an adaptive sampling approach

that relocates the matched points based on the currently available corre-

spondence via an alternating optimization. The point sets to be matched are

sampled from two isometric (or nearly isometric) shapes. The sparse one-

to-one correspondence, i.e., bijection, that we produce is validated both in

terms of running time and accuracy in a comprehensive test suite that in-

cludes four standard shape benchmarks and state-of-the-art techniques.
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1 INTRODUCTION

Three-dimensional (3D) content is becoming ubiquitous due to the

availability of the economical data sensors, the user-friendliness of

the 3D modeling software packages, and the simplicity of sharing

over the world wide web. Automated algorithms for a repository of

comparable 3D shapes are desired to (i) understand, e.g., decide on

the average shape, (ii) update, e.g., transfer texture from the source

shape to the others, (iii) populate, e.g., create a new shape based on

the existing ones, and (iv) organize, e.g., align shapes in upright ori-

entation, the collection. Established correspondence information

between shapes is extremely useful to perform these tasks and a

myriad of others.

Motivated by the usefulness of the shape correspondence

problem, we develop a robust and efficient solution in the form of

a genetic algorithm. In the search of a shape correspondence, it is
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common practice to resort to the discrete optimization schemes as

the correspondence problem is essentially an assignment problem

between two finite sets. Despite the convenience of genetic algo-

rithms in the generation of permutations, which is related to the

assignment problem, we see no attempt to take advantage of this

natural fit in this domain. To this end, we represent a permutation

that defines a correspondence as a chromosome and evolve many

of them into the fittest one that yields the minimum-distortion

correspondence. We also develop an adaptive sampling algorithm

that can improve a given correspondence by iteratively moving

the matched samples on one side of the correspondence. In

particular, we apply it to the resulting correspondences of our

genetic algorithm and another well-known technique for further

improvement.

We address the most basic and widely analyzed setting of the

correspondence problem: finding a correspondence between two

full and isometric (or nearly isometric) shapes with no missing

parts and no topological noise. The sought correspondence is

sparse in that we match a subset of the shape vertices. It is possible

to extract a sparse correspondence as a subset of the output of a

computationally expensive dense correspondence algorithm. One

can, however, avoid this cost by using a light sparse method if only

a sparse set is required, e.g., for the dense pipeline initialization

application.

Contributions. We summarize our key contributions as follows:

• We established the natural connection between the genetic

optimization and the isometric shape correspondence

problem.

• Our adaptive sampling algorithm that updates the posi-

tions of the samples has the potential to improve any exist-

ing sparse correspondence algorithm, as demonstrated with

improvements over our genetic algorithm as well as over

Sahillioğlu and Yemez (2012a).

• Our geometrically intuitive and easily implementable genetic

algorithm enables simpler future work extensions. We, in

particular, seamlessly extend our work to solve the more

challenging problem of partial matching.

• We provided fully automatic initializations for a dense

matching algorithm as well as a real 3D scan registration

system.

• We outperformed at various levels the recent state-of-the-

art shape correspondence methods (Aigerman and Lipman

2015; Aigerman et al. 2015; Kim et al. 2011; Maron et al. 2016;

Sahillioğlu and Yemez 2012a; Solomon et al. 2016; Vestner

et al. 2017).

We note that the source code and the executables for our

method are available at http://www.ceng.metu.edu.tr/∼ys/pubs/

ysf-ga-as.rar.
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2 RELATED WORK

To tackle the important 3D shape correspondence problem, there

are typical ways that formulate preservation constraints on

pairwise geodesic distances (Sahillioğlu and Yemez 2011), angles

(Lipman and Funkhouser 2009), and functions (Ovsjanikov et al.

2012). As a work landing in the first category, we will focus

on distance-preserving, i.e., isometric, correspondence algorithms

and briefly mention the recent advances on the other two cate-

gories. A thorough survey of correspondence algorithms is avail-

able in van Kaick et al. (2011).

Isometric shape correspondence is arguably the most popular

category as two shapes to be matched generally differ by isomet-

ric deformations in real world, e.g., articulated motions of humans.

Besides, semantically similar shapes are expected to have simi-

lar metric structures and isometry is an important clue to capture

such similarity. Some of the relevant methods, consequently, strive

to minimize some distortion function that measures the deviation

from isometry for a given correspondence or mapping (Huang

et al. 2008; Rodolà et al. 2012; Sahillioğlu and Yemez 2010, 2013a).

Compatibility between isometry-invariant descriptors can also be

utilized to compute such mappings (Bronstein and Kokkinos 2010;

Ovsjanikov et al. 2010; van Kaick et al. 2013).

Another type of isometric shape correspondence methods em-

beds two shapes to a common intermediate domain in such a way

that corresponding points get embedded to nearby points, which

in turn gives the desired mapping by simple closest-point searches.

Domains include, but are not limited to, Euclidean space (Jain and

Zhang 2006), disk (Aigerman et al. 2015), sphere (Aigerman et al.

2017; Aigerman and Lipman 2015; Kazhdan et al. 2012), and hyper-

bolic plane (Aigerman and Lipman 2016). Instead of an intermedi-

ate domain, some methods embed one shape to the curved sur-

face of the other (Aflalo et al. 2016; Bronstein et al. 2006; Chen and

Koltun 2015; Maron et al. 2016), which removes the embedding er-

rors to an extra domain at the expense of increased computational

time.

We also see learning-based isometric shape correspondence

solutions (Rodolà et al. 2014; Wei et al. 2016) that are powerful

enough to handle, to a certain extent, the challenging cases with

topological noise (Lahner et al. 2016). They are also relatively ro-

bust to extremely partial scans, such as single-view range map cap-

tures and highly non-isometric deformations of clothed subjects.

The downside of these approaches is their restriction to the trained

class of shapes. Besides, the training process is quite demanding,

e.g., requiring 50 million training examples, as they apply neural

networks to extrinsic surface representations that are not invari-

ant to isometric deformations. A set of recent works (Boscaini

et al. 2016; Litany et al. 2017a) decreases this size to merely

80 training models by using intrinsic representations. Another

intrinsic network (Maron et al. 2017) provides a non-isometric

correspondence as long as the shapes come in sphere topology.

Non-isometric shape correspondence category is getting a

growing attention thanks to the huge online 3D shape reposi-

tories, e.g., SketchUp 3D Warehouse, Yobi3D, that accommodate

a diverse collection of semantically similar shapes. Aigerman

et al. (2015), Ezuz and Ben-Chen (2017), Kim et al. (2011), Solomon

et al. (2016), and Vestner et al. (2017) can deal with the lack of

isometry to some extent thanks to their geometric distortion

minimization approaches based on concepts such as conformality,

area-preservation, regularization, and smoothness prior. Enabling

topological updates during this minimization allows correspon-

dence computation between even more challenging shape pairs

(Fish et al. 2016; Zhu et al. 2017).

The functional map framework replaces the traditional point-

to-point mappings by matching real-valued functions over sur-

faces (Ovsjanikov et al. 2012), which in turn has further potentials

in combining and manipulating mappings (Kovnatsky et al. 2015;

Litany et al. 2016, 2017b; Nogneng and Ovsjanikov 2017; Pokrass

et al. 2013). The framework is, however, prone to conversion errors

when recovering the point-to-point map from the optimal func-

tional mapping (Rodolà and Cremers 2017).

Although we see genetic algorithms for geometry processing

in the context of 3D content synthesis (Duda and Jakiela 1997;

Pilat and Jacob 2008; Sims 1994; Xu et al. 2012), mesh unfolding

(Xi et al. 2016), rigid registration (Chow et al. 2004; Silva et al.

2005; Yamany et al. 1999), and 2D image registration (Delibasis

et al. 2010; Wang 2006), there is no application of this optimiza-

tion scheme to the shape correspondence problem. We exploit

the natural connection between this scheme and the isometric

correspondence problem for the first time. Genetic algorithms

are also widely used in the graph matching problem (Cross

et al. 1997; Khoo and Suganthan 2001; Myers and Hancock 2001;

Suganthan 2002), which in turn has the potential to enable further

geometry processing applications, such as retrieval of 3D shapes

represented as attributed relational graphs (Tao et al. 2012).

These algorithms, in general, locate the optimum of some global

consistency measure by genetic operations subject to a stochastic

selection process. Weights and architectures of neural networks

are also adjusted with genetic algorithms by mating and mutating

networks (Goh et al. 2008; Stanley and Miikkulainen 2002), a

feature that may come in handy in future learning-based graphics

applications.

Sampling is an important part of correspondence algorithms.

Although there are many useful and robust sampling algorithms

(Bowers et al. 2010; Eldar et al. 1997; Gelfand et al. 2003; Nehab

and Shilane 2004), none of them is designed with the shape corre-

spondence application in mind. In an attempt to address this issue,

Tevs et al. (2011) propose a planned landmark sampling that adds

the most discriminative samples that minimize the entropy of the

posterior distribution of potential matches. It is, however, unclear

how to connect the decrease in entropy with the stability of shape

correspondence. The joint sampling of two shapes is improved by

evenly sampling high-curvature points in Sahillioğlu and Yemez

(2012a). Ovsjanikov et al. (2011), however, propose condition num-

ber based sampling whose slightly different goal is to identify those

samples such that if their matches are known then the shape cor-

respondence problem becomes the easiest. Our alternative solu-

tion that is based on geometrically clear arguments handles the

sample selection part of the correspondence computation process.

Samples are selected adaptively based on the currently available

correspondence.

3 PROBLEM STATEMENT AND OVERVIEW

Our goal is to establish a sparse one-to-one correspondence be-

tween two isometric (or nearly isometric) shapes, each discretized
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Fig. 1. Overview of our genetic algorithm.

as a mesh structure consisting of vertices, edges, and polygonal

faces. We match a subset of vertices represented by a set of

evenly spaced (Eldar et al. 1997) samples S = {si } and T = {tj },
respectively. As we are looking for a bijection, we have |S | =
|T | = N .

We use the following isometric distortion measure to quantify

the quality of a bijection ϕ : S → T :

Diso (ϕ) =
1

|ϕ |
∑

(si ,tj )∈ϕ
diso (si , tj ), (1)

where diso (si , tj ) is the contribution of the constituent match

(si , tj ) to the overall isometric distortion:

diso (si , tj ) =
1

|ϕ ′|
∑

(sl ,tm )∈ϕ′
|dg (si , sl ) − dg (tj , tm ) |, (2)

where dg (., .) is the geodesic distance between two vertices on

a given surface and ϕ ′ = ϕ − {(si , tj )} in the most general set-

ting. Both diso and Diso take values in the interval [0, 1], since

the function dg is normalized with respect to the maximum ge-

odesic distance over the surface. Diso is a variant of the mea-

sures used in Bronstein et al. (2006) and Sahillioğlu and Yemez

(2011). The optimal bijection ϕ∗ we are seeking minimizes Diso in

the huge space of all N ! possible bijections. We have this search

space, since a bijection is merely an assignment of a permuta-

tion π of the target samples to the fixed source samples. This

line of thought would simplify the transition to our genetic algo-

rithm (Section 4), where we seek the optimal permutation π ∗ of in-

dices that will be used as subscripts of {tj }, e.g., fixed s1, s2, . . . , sN

is assigned to t4, t3, . . . , t29, respectively, and π∗ = 4, 3, . . . , 29

(Figure 1).

4 GENETIC ALGORITHM

4.1 Terminology

We first connect the bioinformatics and graphics terminology that

will alternate throughout the rest of the article. Each candidate

solution to our bijection search problem is called a chromosome,

which represents a permutation π of integers from 1 to N that

would be subscripted to the target samples {tj } in an attempt

to put them in correspondence with the fixed source samples

{s1, s2, . . . , sN } as demonstrated in Figure 1. Each integer in a chro-

mosome is called a gene, which basically represents a target sam-

ple, e.g., the first gene of the second chromosome in the initial

population of Figure 1 represents the sample t81. The set of chro-

mosomes make up the population, which is initialized as the first

generation. Through genetic operations, such as crossovers and mu-

tations, the current population is evolved to a different (and better)

one, called the next generation. Eventually the fittest chromosome

of the final generation (rendered in red in Figure 1) represents the

solution to our problem.

4.2 Main Design Decisions

First of all, we need a meaningful measure to evaluate the fitness

of a given chromosome as it will guide the evolutionary process.

We define the fitness of a chromosome representing a permutation

π as F (π ) = 1 − Diso (ϕπ ), where ϕπ : S → T is the bijection that

maps si to tπ [i] with π [i] being the ith integer in π for 1 ≤ i ≤ N .

The crossover operation takes two chromosomes and mixes

them together into a newborn child chromosome. The mutation

operation, however, takes one chromosome and converts it into a

new one. The resulting new chromosomes are ensured to be fitter

than the input chromosomes (detailed in Section 4.4). With this in

mind, we mix the healthy sections of two bijections (Figures 2(a)

and 2(b)) into a better bijection, or equivalently a fitter chromo-

some (Figure 2(c)), which is refined further by individual updates

(Figure 2(d)).

Only three genetic algorithm parameters are in use: crossover

rate fxover, mutation rate fmutation, and population size P . Despite

the diversity of our test meshes, we always used the same values;

the first two are fixed to 0.85, and the last one to 10N . Unlike many

genetic algorithms, user does not need to tune up many parame-

ters, which we consider as an advantage.

4.3 Initial Population

The population is initialized into the first generation of P chro-

mosomes based on our descriptor g defined at each sample as a

vector of geodesic distances to a few special samples that are al-

ready accurately matched—this initial bijection between few spe-

cial samples is denoted by φ and obtained as explained in Sec-

tion 4.5. Specifically, g
s
i = [dg (a1, si ) dg (a2, si ) .. dg (a |φ | , si )] and

g
t
j = [dg (b1, tj ) dg (b2, tj ) .. dg (b |φ | , tj )], where {(ak ,bk )} are the

constituent matches of φ with 1 ≤ k ≤ |φ | � N .

Having computed g, we define a set of initial match candidates

for each source sample si by inserting into c
s
i all the target samples

{tj } that satisfy dc < τ , where

dc

(
g

s
i , g

t
j

)
= max

k

�
�
�
g

s
i [k] − g

t
j [k]

�
�
�
, (3)
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Fig. 2. Healthy, i.e., less distorted, sections of two bijections (greens at
(a) and (b)) are crossed-over into a better bijection (c), whose smaller prob-
lems (orange highlights) are refined via mutations (d). Matches of the black
samples are not shown for visual convenience.

where g[k] is the kth entry in g. We use τ = 0.125, which corre-

sponds to, e.g., half of the toe to knee normalized geodesic distance

on a human model. This enables at worst a knee matching for a

toe sample in the initial population. We have on average |cs
i | = 10.

Each initial chromosome is then filled by picking a random ele-

ment for its ith entry from c
s
i , i.e., π [i] = tj ∈ c

s
i . To preserve bi-

jection, we prevent duplicates in π by marking the newly picked

sample as unavailable for the upcoming picks. Due to this marking,

some samples, about 6%, may not find an available initial match

candidate in which case we simply use the first available target

sample.

Thanks to our robust evolution scheme (Section 4.4), starting

with a completely random population will also lead to a good

final generation, but not as fast and accurate as our initialization.

We also use the compatibility of the rankings (Ganapathi-

Subramanian et al. 2016) of the average geodesic distance

descriptors дs
i =

∑
j�i dg (si ,sj )

N−1 and again could not achieve the

performance of our initialization scheme (Figure 3).

4.4 Evolution of Population

We develop our method in the spirit of the microbial genetic algo-

rithm (Harvey 2009) with our contributions to make the process

work well in the context of 3D isometric shape correspondence.

In the evolution of the populations, we stick to the survival-

of-the-fittest paradigm in that the best existing chromosomes are

mixed together to breed new chromosomes that are also expected

to do well (crossover operation). We also add some new genetic

material by updating individual chromosomes (mutation opera-

tion). Please see Figure 6 for the fully detailed yet compact pseu-

docode of our genetic algorithm.

Fig. 3. The fittest member of the initial population of 1,000 chromosomes
(a to c) and the resulting bijections (d to f). Initialization is done at ran-
dom (a and d), by ranking of average geodesic distances (b and e), and by
our scheme (c and f). 100 samples are matched. Corresponding samples
(spheres) and the connecting line are colored the same for each match.
This visualization scheme applies to the subsequent figures as well.

We start by evaluating the fitness F of each chromosomeCi and

store it inCFi to avoid recomputations. Based on the descendingly

sortedCFi values, we divide the current population into two parts,

a good part possessing the firsth chromosomes and a bad part cov-

ering the rest (typically h = P/2). We then replace some chromo-

somes in the bad part, induced by fxover, by the resulting child of

the two parents from the good part. The parent with a higher F is

marked as the winner and transfers multiple parts from its chro-

mosomes onto the loser parent, hence transferring its good genes.

The untouched part of the loser is tried to be maintained as much

as possible, since loser is after all from the good part and should

possess acceptable genes. Duplicated genes are also prevented in

the updated loser, which is returned as the resulting child chro-

mosome. We implement this crossover mechanism with the full

details in Figure 7 and demonstrate it in Section 4.4.1 and Figure 5.

The new population is then exposed to a mutation operation dur-

ing which two bad genes of the input chromosome are swapped

such that the exchange makes g descriptors of the corresponding

source and target samples compatible. Mutation is also done on

some chromosomes (fittest is exempt) induced by fmutation. Specif-

ically, our mutation operation checks whether the geodesic vector

g of the ith gene/sample of the input chromosome is compatible

with the g of the ith source sample. Two geodesic vectors are com-

patible if all the corresponding entries in the vectors differ by at

most τ . In case of incompatibility, we look for a candidate gene

whose swap with the ith gene brings compatibility to the ith de-

scriptors (Figure 7). The relative advantages of the crossover and

mutation operations are visualized in Figure 4.

Note that this process brings elitism for free, which means that

at least one best chromosome is copied without changes to the

new population of the next generation, so the best in the breed re-

mains in population and can survive to end of run. In other words,

elitism enables a guaranteed monotonic increase in F , as shown

in Figure 9. We achieve elitism as shown in the line 21 of Figure 6

ACM Transactions on Graphics, Vol. 37, No. 5, Article 175. Publication date: October 2018.
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Fig. 4. The fittest member of the random initialization (a) and the resulting
bijections when only mutations enabled (b), only crossovers enabled (c),
both enabled (d). Population size P = 1,000, number of samples N = 100.

where the crossover operation always replaces a chromosome Ci

from the bad part that certainly excludes the best/fittest one. Simi-

larly, mutation operation is guaranteed not to update the best one

by starting the loop from index 2, not 1, in line 24.

Finally, while replacing a bad chromosome via the crossover of

two good parent chromosomes, we repeat the crossover operation

five times and use the fittest of the child chromosomes, which ren-

ders crossovers more accurate at the expense of increased comple-

tion time per generation. The increased crossover accuracy helps

the evolution converge faster with less number of generations.

4.4.1 Execution Trace of a Crossover. To clarify our crossover

algorithm, we run it through the example case in Figure 7, where

colored substrings 3 12 17 9, 4 7 6, and 11 16 in the winner chro-

mosome will replace 6 10 9 16, 3 1 2, and 13 14 in the loser chromo-

some, respectively, without creating any duplicates in the resulting

child chromosome. The main idea for a duplication-free crossover

is as follows. When the first character of the winner’s substring

collection T = 3 12 17 9 4 7 6 11 16, namely 3, is transferred to

the loser (at index 7), it will not cause any duplication, because

there is already a 3 in the loser’s D = 6 10 9 16 3 1 2 13 14, which

is scheduled to be deleted, i.e., to be replaced by 4 due to 4 7 6→3 1

2. Since the transfer of 3 to the loser index 7 will be compensated

by the deletion of 3 from the loser index 2, we need no further

action (Figure 5(a)).

When the next character from T , namely 12, is transferred to

the loser (at index 8), it will cause a duplication, because there is

no other 12 to be deleted from the loser, i.e., loser’s 12 does not

belong to any colored substring to be deleted, namely, 12 � D.

Fig. 5. Main idea of our duplication-free crossover operation.

Since the transfer of 12 to the loser index 8 will cause a dupli-

cation with the 12 at index 13, we will replace the 12 at index

13 using the first legal value in D. The first option 6 is not le-

gal, because it exists in T , meaning that it will be transferred to

loser (at index 4 due to 4 7 6→3 1 2), which in turn would cause

a different duplication involving indices 4 and 13. The next op-

tion 10 is legal as it does not exist in T , meaning that it will never

be transferred to the loser after getting deleted by 3 12 17 9→6

10 9 6 (Figure 5(b)). We finally set 10 as illegal for the upcoming

iterations.

Efficient linear-time implementation

of this main idea is provided in Figure 7,

which can directly be used for reproduc-

tion purposes. This algorithm requires

substrings to be nonoverlapping, which

we guarantee by checking certain con-

ditions for the query interval [a,b] vs.

each of the existing accepted intervals

[c,d] via the following quick macro that

is based on the figure at right (last three

rows show overlap cases):

Overlaps if c ≤ b ≤ d ∨ c ≤ a ≤ d ∨ (a < c ∧ d < b) (4)

4.5 Initial Bijection

While evaluating F , we set ϕ ′ =
φ to bring down the time com-

plexity of the frequently used

Diso computation from O (N 2)
to O ( |φ |N ), which is linear in

N as |φ | � N . To this end,

we create the initial bijection

φ between a few special sam-

ples, namely the extremities and

the center, that can be robustly
matched. For this sampling, we automatically stop the Farthest

Point Sampling (FPS) (Eldar et al. 1997) when the distance of the

next sample to the closest existing sample is one third of the maxi-

mum geodesic distance over the surface, i.e., the geodesic distance

ACM Transactions on Graphics, Vol. 37, No. 5, Article 175. Publication date: October 2018.
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Fig. 6. Our genetic algorithm for isometric shape correspondence.

between the first two FPS samples. We start FPS from an extreme

point, which is obtained as the farthest point to an arbitrary ini-

tial vertex. This scheme automatically and robustly samples the

extremities and the center, e.g., |φ | = 6, 7, and 9 for humanoids,

quadrupeds, and centaurs, respectively.

We then create an initial population of 200 random chromo-

somes each of which is considerably smaller than our original

chromosomes of size N , namely, each one represents a permuta-

tion of size |φ | � N . This initial population is evolved through the

same algorithm in Section 4.4 leading to perfect bijections up to

symmetric flips. Note that the flipping problem can be alleviated

using the collection information (Sahillioğlu and Yemez 2014), if

any, or using a symmetry-robust approach such as Liu et al. (2012)

and Zhang et al. (2013). A more practical solution than using an

external method is re-running our fast genetic algorithm multiple

times with the tracked symmetric flips as suggested in Sahillioğlu

and Yemez (2013b). Note that two random genes are swapped dur-

ing mutation in the absence of the g descriptor at this stage. Please

see the wrapped figure for two initial bijections φ.

Note that the accuracy of φ is crucial for our algorithm, espe-

cially in the evaluation of F . We guarantee it (up to symmetric

flips) by our planned sampling. The other task ofφ is in the creation

of the initial match candidates (Section 4.3), which are not required

to be highly accurate. We also use φ during mutation (Figure 7).

5 ADAPTIVE SAMPLING ALGORITHM

Besides the main genetic algorithm contribution of this article, we

also propose the adaptive sampling algorithm in the sequel, which

can improve any correspondence by relocating the target samples

Fig. 7. Crossover and mutation algorithms that complete Figure 6.

with the current correspondence in mind. In particular, we will im-

prove the bijections produced by our genetic algorithm in Section 4

and Sahillioğlu and Yemez (2012a).

Given a map, not necessarily a bijection, between source and

target sample sets ϕ : S → T = {(si , tj )}, we aim to compute a new

target sample set T̂ , where |T̂ | = |T | and (si , t̂j ) is a better corre-

spondence than (si , tj ). The first constraint is satisfied naturally by

moving tj to another vertex on the mesh, hence |T̂ | = |T |. For the

latter, we minimize the following energy function whose pairwise

term tries to improve the correspondence and singleton term acts

as a regularization energy that preserves evenly-spaced sampling:

E (t̂ ,ϕ)=
∑

(si ,tj )∈ϕ

∑

(sl ,tm )∈ϕ
|dg (si , sl )−dg (t̂j , t̂m ) |+α | |r̂−rs | |, (5)

where rs is the radius of the evenly spaced sampling on the source

mesh. The new radius on the target mesh is computed based on

the new samples {t̂j } and is asked to look like the radius of the

ACM Transactions on Graphics, Vol. 37, No. 5, Article 175. Publication date: October 2018.
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Fig. 8. Improvement of the adaptive sampling (b) to the mapping at (a).
Interesting behaviors of the adaptive sampling energy in (c) and (d). Im-
provements at denser maps, sole without (e) and with (f) adaptive sam-
pling. Map in Figure 4(d) is improved at (g).

source samples as the idea is to move target samples such that

they fit much better to the fixed source samples. Radius is given

by
∑

i dg (si , sc )/|ϕ |, where sc is the closest sample to si . Since ge-

odesic distance dg is normalized into [0, 1], so is radius. We use

α = 0.5.

We are inspired by the coordinate descent method in the min-

imization of E in that at every iteration of the optimization we

check whether moving from tj to a sample tk in its one-ring

neighborhood improves E or not. If an improvement is observed,

then we set t̂j = tk . For efficiency, we check local improvements

only, that is, while searching the one-ring of tj for an improve-

ment, we consider only the distances between sample pairs that

include tj . We show the advantage of this scheme on a sparse map

in Figures 8(a) and 8(b), as well as its interesting behavior when

α = 0 and dg (si , sl ) = 0. In this case, we get an attraction effect,

whereas we get a repulsion effect when the absolute value is re-

moved, i.e., negative of the distances is minimized, hence maxi-

mizing the distances in between (Figures 8(c) and 8(d)). We also

show improvements on denser maps in Figures 8(e)–8(g). Besides,

we improve another sample-based method, namely, Sahillioğlu and

Yemez (2012a), as shown in Figures 14 and 16.

6 COMPUTATIONAL COMPLEXITY

Let V be the number of vertices in the original mesh (source or

target, whichever has more vertices) and recall that P and N repre-

sent the population size and the number of samples to be matched,

respectively. We have P = O (N ) as we always use P = 10N . Ge-

netic algorithm is initialized with the Farthest Point Sampling

of O (NV logV ) time complexity, followed by the creation of the

initial match candidates set (O (N |φ |) per sample) and the as-

signment from this set (O (N ) per chromosome), hence a total of

O (NV logV + N |φ |N + NP ) = O (NV logV + N 2 |φ |).
Genetic algorithm takes O (G (N logN + N (N + N |φ |) +

N (N |φ |) + N (N |φ |))), where G is the number of generations

required to complete the evolutionary process. The first term mul-

tiplied by G is the sorting of the population that defines the good

and bad parts. The second term crossovers two chromosomes in

O (N ) (Figure 7) and repeats it five times to use the newborn child

chromosome yielding the minimum isometric distortion Diso,

which is computed in O (N |φ |). We traverse the entire O (N )-size

bad part for this operation, hence a total of O (N (N + N |φ |)).
Similarly, in the third term, one chromosome in the O (N )-size

population visits each of its N genes for a potential mutation

swap decided based on the |φ |-size geodesic vector descriptor

comparisons (Figure 7), hence O (N (N |φ |)). The fourth term is

due to the search of the fittest chromosome (fifth line in Figure 6).

It essentially checks the Diso of all chromosomes in the total

time of O (N (N |φ |)). A crucial observation is on the size of the

initial bijection φ, which is constant as we only use the extremity

samples and the center sample for φ. This fact simplifies the

overall complexity into O (GN 2), where G never exceeded 250 in

our experiments (Section 7.4).

For the adaptive sampling, we observe that O (N 2)-time energy

functional in Equation (5) can be evaluated through all vertices,

which, by aggregate analysis, yields O (VN 2).

7 EXPERIMENTS

7.1 Datasets

We tested our method on a comprehensive suite consisting of

four standard datasets in comparison with the state-of-the-art

techniques. The first dataset is a reconstructed pose sequence

of a human actor from the SCAPE set (Anguelov et al. 2005),

which contains 71 non-uniformly sampled models with the fixed

template connectivity, whereas the second one consists of the

high-resolution Cat, Centaur, David, Dog, Gorilla, Horse, Michael,

Victoria, and Wolf objects from the TOSCA set (Bronstein et al.

2008), each class representing the motion of an articulated object

with 11, 6, 7, 9, 4, 8, 12, and 3 meshes, respectively. We also used the

SHREC’11 set (Boyer et al. 2011) with 5 high-resolution meshes in

each of the Noise, Shotnoise, Isometry, Sampling, Scaling, and View-

ing categories. This dataset shows the robustness of our method to

various noises, resolution and scaling differences, as well as non-

spherical topologies. Finally, we tested our method on the FAUST

dataset (Bogo et al. 2014), which has 100 high-resolution scans of
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Fig. 9. Plots of various functions while matching a SCAPE pair.

10 human actors and a low-resolution template model registered

to each of these scans. This dataset verifies the applicability of our

method to real 3D scan data as well as to near isometric pairs by

matching not only the intra-subject pairs (different poses of the

same actor) but also the inter-subject pairs (different actors).

7.2 Evaluation Metrics

In addition to the visuals in Figures 9–19, we also quantify the

quality of our resulting genetic maps (Section 4) with and without

adaptive sampling (Section 5) using our isometric distortion mea-

sureDiso as well as the following ground-truth distortion measure:

Dgrd (ϕ) =
1

|ϕ |
∑

(si ,tj )∈ϕ
dg (γ (si ), tj ), (6)

where γ (si ) the ground-truth correspondence of si on the target

mesh. Since the geodesic distancedg is normalized, so isDgrd. Note

that Dgrd is used in Figures 3 and 4 as well. To ease comparison

to the most of the methods in literature, we use the error-fraction

metric in Figures 14 and 16 with the units of the plots and datasets

identical to the ones used in (Kim et al. 2011). We match N = 100

samples and consider the corresponding subset of matches from

the dense methods in our evaluations.

7.3 Results

The plots in Figure 9 confirm the reduction of Dgrd as the pop-

ulations get fitter through new generations. Adaptive sampling

takes the final distortion of the genetic algorithm and decreases it

further as its E gets lower. Thanks to the elitism, F monotonically

increases.

We provide further results in Figure 10 to demonstrate our

performance under isometric deformations. Figure 11 shows our

success on various levels of noise, resolution, and scaling differ-

ences, as well as non-spherical topologies. Real 3D scan matching

and partial matching examples are shown in Figures 17 and 18,

respectively.

7.3.1 Comparisons. We compare our method with the Blended

Intrinsic Maps (BIM) (Kim et al. 2011), which is able to produce

the state-of-the-art dense maps between 3D shapes by combining

conformal maps with the interpolated weights varying smoothly

over the surface. Approximating geodesic centroids of the blend-

ing maps with Euclidean distances may match touching parts of

the mesh wrongly (Figure 12(a)). We never encounter such a prob-

lem, because we avoid the extrinsic approximations to the intrinsic

geodesics used in our algorithm. A hand vertex touching (or close)

Fig. 10. Resulting genetic maps on the TOSCA set. David to Victoria map
shows success for a nearly isometric pair. When isometry deviates signifi-
cantly, we observe failure, e.g., from the short legs of Gorilla to Victoria.

to a knee triangle, for instance, does not lead to an erroneous ge-

odesic path from the hand to the knee thanks to the absence of

the edge connections between these regions. To emphasize our

advantage over BIM on such a common touch scenario, we sep-

arate the models that have touching parts in SCAPE and TOSCA

Michael into the SCAPE-TOUCH and TOSCA-TOUCH sets, respec-

tively. For SCAPE-TOUCH evaluation, we match the single self-

touching model (Figure 14(c)) with 20 other SCAPE models. For

TOSCA-TOUCH evaluation, we match all of the pairs produced

by 20 models, 6 of which exhibit the self-touching situation (Fig-

ure 14(d)). We clearly outperform BIM, as well as other competi-

tors, in this scenario (Figure 14(b) and Table 2). In addition to the

touching issue, exporting a subset of matches from the dense BIM

map may not be as accurate as the explicit computation of those

matches in an interpolation-free approach like ours (Figure 12(b)).

Note also that BIM needs spherical topology, which makes it fail in

the bottom row of Table 1 and in FAUST scans. BIM is also sensitive

to triangulation quality (Figure 14) and geometric noise (Table 1).

Finally, maps in BIM are not usually onto, which leaves many un-

matched target vertices. Note that we suffer from neither of these

shortcomings.

In the Expectation-Maximization (EM) algorithm (Sahillioğlu

and Yemez 2012a), based on the isometric distortions of the cur-

rent correspondence (E-step), a better correspondence is obtained

by using first a bipartite perfect matching and then a greedy op-

timization (M-step). Since EM is a sparse correspondence method,

just like our method, it can (and does) benefit from the adaptive

sampling idea, as shown by EM+AS in Figures 14 and 16. The main

drawback of EM is its sensitivity to the initial alignment, which

needs to be sufficiently good. Spectral alignment may occasionally

give a bad start from which EM cannot recover (Figure 12(c)). Note
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Fig. 11. Highest (a) and lowest (b) levels of Noise. No noise for the corre-
sponding Isometry pair (c). We require adaptive sampling with a low regu-
larization (α = 0.1) to handle the bad sampling of the source in the pres-
ence of the highest (d) and lowest (e) levels of Shotnoise. Highest levels of
Sampling (f), Scaling (g), and Viewing (h).

Fig. 12. Hand to knee matching in BIM due to touching surfaces (a). Fin-
gertip matches are also shifted to the palm in BIM. Similar shifts on the
cat’s back (b). Neither of these problems is observed in our genetic algo-
rithm (GA). GA and GA followed by adaptive sampling (AS) produce better
matches (arrows) than EM (c).

that embedding errors are involved in both BIM (extended complex

plane embedding) and EM (initial spectral embedding), which we

avoid by eliminating such intermediate parameterization domains.

We also compare with the Gromov-Wasserstein (GW) algorithm

(Solomon et al. 2016) that uses entropic regularization to map from

unstructured data to a regular representation. The optimization

procedure that iteratively distributes the distortion works best for

isotropic meshes, which is not the case for the non-uniformly sam-

pled SCAPE models (Figure 13(a)). We, as a triangulation-invariant

Fig. 13. Number of GW iterations (in parentheses) and the resulting maps
(a). Initial bijection φ (b) that leads to our GA mapping (c), which is im-
proved further via our adaptive sampling (d). Dgrd values are also provided
for three maps. Notice the many-to-one case of GW in the zoomed feet,
which may never occur in our bijections.

Fig. 14. Error-fraction plots on the SCAPE and TOSCA sets (a) and their
subsets (b). GA should be compared with EM and GA+AS with the others.

method, consequently outperform GW (Figures 13(b)–13(d)). Note

that GW can also optimize using the barycentric area weights

to alleviate the triangulation sensitivity issue, which we enable

in our quantitative evaluations (Figures 14 and 16), resulting in

similar GW performances for non-uniformly sampled SCAPE and

uniformly sampled TOSCA and FAUST. Our performance is still

higher on both datasets. We also point out that GW can cope with

the lack of isometry and structure to a larger extent than BIM and

much larger extent than our method as it distributes the stretch-

based distortion more evenly over the surface. Additionally, GW

objective is differentiable, a feature that allows it to be used in

the gradient-based optimization methods such as a deep network

(Ezuz et al. 2017). Similar to BIM, the maps produced by GW are

not usually onto (Figure 13(a)), which in turn leaves a significant

amount of target vertices unmatched, a problem we avoid in our
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Table 1. Quantitative Evaluation of the Maps Produced
by Different Approaches

GA EM GA + AS BIM GW

SCAPE (0.027, 0.036) (0.032, 0.042) (0.015, 0.029) (0.025, 0.030) (0.035, 0.045)

TOSCA (0.031, 0.041) (0.033, 0.043) (0.016, 0.029) (0.026, 0.026) (0.027, 0.033)

Dav-Vic (0.030, n/a) (0.033, n/a) (0.017, n/a) (0.030, n/a) (0.032, n/a)

Gor-Vic (0.061, n/a) (0.065, n/a) (0.039, n/a) (0.046, n/a) (0.049, n/a)

Noise (0.073, n/a) (0.077, n/a) (0.070, n/a) (0.077, n/a) (0.075, n/a)

Shotnoise (0.111, n/a) (0.136, n/a) (0.067, n/a) (0.129, n/a) (0.118, n/a)

Isometry (0.028, n/a) (0.028, n/a) (0.015, n/a) (0.020, n/a) (0.021, n/a)

Sampling (0.036, n/a) (0.037, n/a (0.016, n/a) (0.036, n/a) (0.039, n/a)

Scaling (0.027, n/a) (0.027, n/a) (0.010, n/a) (0.017, n/a) (0.021, n/a)

Viewing (0.049, n/a) (0.052, n/a) (0.022, n/a) (n/a, n/a) (0.021, n/a)

Each entry is an ordered pair representing (Diso, Dgrd ). For SHREC’11, we use the

highest levels of each category. Dav-Vic is short for David-Victoria. It is fair to compare
GA with EM (columns 2 and 3), and GA+AS with BIM and GW (columns 3, 4, and 5).
The best performing method w.r.t. Dgrd (or Diso when Dgrd is unavailable) is written

in bold.

Table 2. Quantitative Evaluation of the Maps in the Style of Table 1

GA + AS EM+AS PMF PM-SDP

SCAPE (0.015, 0.029) (0.030, 0.036) (0.026, 0.030) (0.028, 0.031)

TOSCA (0.016, 0.029) (0.030, 0.039) (0.020, 0.028) (0.026, 0.027)

SCAPE-TOUCH (0.015, 0.0281) (0.031, 0.036) (0.016, 0.0284) (0.024, 0.0282)

TOSCA-TOUCH (0.025, 0.026) (0.029, 0.037) (0.020, 0.028) (0.025, 0.027)

bijections. Finally, note that we rounded the GW maps to permu-

tations by picking the index of the maximum entry for each row

in their resulting fuzzy matrix.

In Table 1, we quantify the quality of the maps generated by our

genetic algorithm (GA), genetic algorithm followed by our adap-

tive sampling (GA+AS), BIM, EM, and GW. For the BIM, EM, and

GW, we used the source codes provided by their authors. Note that,

it is fair to compare GA with EM (as they are restricted to the fixed

joint sampling of two meshes), and GA+AS with the others (as they

are allowed to pick any mesh vertex in their correspondences).

Recent dense correspondence methods are also employed in our

comparison suite using their public source codes. PMF (Vestner

et al. 2017) and PM-SDP (Maron et al. 2016) perform slightly better

than our method (Figures 14 and 16 and Table 2) at the expense

of significantly increased computation time (Table 3). There are

also some datasets, such as SCAPE, SCAPE-TOUCH and TOSCA-

TOUCH, where we compare favorably. Note that, as we switch

from TOSCA to TOSCA-TOUCH (Figure 14 and Table 2), we see

that our results improve more than that of PMF and PM-SDP, the

purely intrinsic methods that are also robust to self-touching sit-

uations. Our improvement can be explained by the exclusion of

the Gorilla, David, and Victoria classes in the TOSCA-TOUCH set,

which are relatively problematic for our method but not for PMF

and PM-SDP.

We finally note our light comparison with the sample-based

sparse method of (Tevs et al. 2011), which plans ahead the

informative samples for a robust isometric matching. Amongst

the four SCAPE maps received from one of the authors, we show

in Figure 15 the only one without the symmetric flip problem.

Fig. 15. Map of (Tevs et al. 2011) (a) in comparison with ours (b). The for-
mer matches 125 samples with Dgrd = 0.067. We match the same number
of samples with Dgrd = 0.029. Some matches are highlighted with lines.

Entropy-based planning of the former is likely to produce

unevenly-spaced sampling, whereas we do provide even spacing

and perform better.

7.4 Timings

On an 8GB 3.4GHz 64-bit PC, the average execution time of our

implementation over 50 random SCAPE pairs (12.5K vertices each)

is 4s for the computation of N = 100 samples plus 9s of the genetic

algorithm initialized by a population of size 1,000 plus 5s for the

adaptive sampling, hence a total of 13s when the optional adaptive

sampling is discarded. BIM creates its dense map in 72s, whereas

EM produces the sparse map of the same size (N = 100) in 5s. Dog

with 25K vertices is matched in 9s (initial sampling) + 9s (genetic

algorithm) + 12s (adaptive sampling), and in 234s with BIM, and

10s with EM. David with 52K vertices takes only 21 + 14 + 45s

to complete with our method. SCAPE, Dog, and David requires,

respectively, 200, 200, and 250 generations on average to complete.

Note that, our genetic algorithm is independent of the size of the

mesh vertices as it stresses only on the samples (Section 6). For a

sparse correspondence, this feature makes it preferable over dense

pipelines, which process all vertices in the form of some V ×V
matrices, e.g., kernel density matrix in PMF (Vestner et al. 2017),

metric measure matrix in GW (Solomon et al. 2016), positive semi-

definite matrix in PM-SDP (Maron et al. 2016), per-triangle second-

order cone constraints in SM (Aigerman et al. 2015), as well as

smaller but still computationally expensive blending matrix in BIM

(Kim et al. 2011) and basis functions matrix in FM (Ovsjanikov et al.

2012). A dense matching algorithm naturally provides the sparse

correspondence as a subset of its result set, but at the expense of

more time and space demands, e.g., using their public code one

GW iteration of cubic complexity takes 337s for a SCAPE pair in

our PC and it requires at least 20 of them (Figure 13(a)). Similarly,

the public codes of PMF and PM-SDP require 1050 and 1710s, re-

spectively, in our PC for the same pair, and SM reports 1380s of

computation for a total of 11K vertices, which is about half the

amount of vertices for a SCAPE pair. Recall our corresponding ex-

ecution time of 13 seconds (see Table 3 for a summary). Note also

that, we run GW on the decimated TOSCA and SHREC’11 models

of 15K vertices due to its speed problems.
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Table 3. Execution Times of Various Algorithms to Match 100
Sample Points on Two Shapes Having 12.5K Vertices Each

GA GA + AS EM BIM GW PMF PM-SDP SM

13 18 5 72 6,740 1,050 1,710 >2,760

First three columns are for the sparse correspondence methods, whereas the
rest is for the dense matching algorithms. Times are given in seconds.

7.5 Applications

Among many graphics tasks that may benefit from our fast and ro-

bust genetic algorithm, we demonstrate three adaptations, namely,

dense matching, registration, and partial matching, with proof-of-

concept examples validating the stability of the proposals.

7.5.1 Initializing a Dense Pipeline. We take the dense match-

ing algorithm (Aigerman and Lipman 2015), OTE for short, which

computes harmonic parameterizations of the spherical meshes

into the Euclidean orbifolds efficiently by solving a sparse lin-

ear system. Using their public code, we first compare our sparse

matches with the corresponding subset in their dense maps on

the FAUST dataset. We then replace the manual selection of four

landmarks in this approach by the four landmarks computed with

our method, hence making OTE fully automatic. The computation

based on our landmark matching, which are the first four matches

of our initial bijection (Section 4.5), reveals almost the same output

as the original OTE does, since they also manually select similar

landmarks (see Figure 13 of OTE). We should, however, note that

our automatization works only for the isometric (or nearly isomet-

ric) shape pairs, narrowing down the large application scope of

OTE. An isometric dense matching pipeline such as FM, however,

may be initialized with our sparse maps without any limitations

on its application domain. Other non-isometric pipelines that re-

quire initial sparse maps include PMF, SM, and the recent Ezuz and

Ben-Chen (2017).

The execution time of OTE is 0.16s on 7K-vertices models of

FAUST. Automatic landmark sampling and matching by our algo-

rithm brings 0.14s of extra time. We finally note that OTE, while

being very fast for a dense map producer, is not as accurate as our

algorithm (Figure 16 and Table 4). Their accuracy loss is mostly due

to the inclusion of an extra embedding domain, which we avoid.

Our comparative FAUST performance is also given in Figure 16.

Our method is on a par with BIM for intra-subjects. For inter-

subjects as well as FAUST-TOUCH, however, we perform better

than BIM, where the latter is a subset of FAUST consisting of 10

self-touching models. All other methods in our test suite are clearly

outperformed on FAUST-INTRA, -INTER, and -TOUCH.

Yet another important dense pipeline is the registration of high-

resolution real-world 3D scan data. Landmarks in correspondence

can alleviate the stability problems of the registration algorithms

(Allen et al. 2003; Maron et al. 2016; Pauly et al. 2005; Sahillioğlu

and Kavan 2015). With this motivation, we evaluate our sparse

landmark correspondence on the FAUST benchmark, which pro-

vides challenging real-world scans. Promising results increase the

impact of our method. Note that all methods discussed thus far

are too slow to handle the 190K-vertices scans of FAUST, except

BIM and OTE, which are also not applicable to this matching sce-

nario due to the non-sphere topology of the input with holes. Our

Table 4. Performance of Various Algorithms in the Form of
(Diso, Dgrd, Seconds) Triplets while Matching 100 Samples on FAUST

GA + AS OTE OTE by GA Init

Intra-subject (0.014, 0.027, 12.7) (0.033, 0.042, 0.16) (0.032, 0.043, 0.30)

Inter-subject (0.018, 0.032, 12.5) (0.035, 0.044, 0.15) (0.033, 0.044, 0.28)

Fig. 16. Our initial bijection on a FAUST inter-subject pair (a) provides the
four landmark matches (b) for the OTE algorithm (c). Our result for the
same pair is more accurate (d). Error-fraction plots over 45 intra-subject,
inter-subject, and self-touching pairs are also provided (e).

algorithm takes merely 6s for the initial sampling plus 0.14s for

the computation of the initial bijection, which is already sufficient

for the most of the registration algorithms (Figure 17(a)). A sparse

map of size 100 takes 96 seconds of initialization plus 20 seconds of

genetic algorithm (Figure 17(b)). Over 40 FAUST scan pairs, we ob-

tain an average Diso of 0.035. Note also our promising results on

the related SHREC’11 Viewing dataset (Figure 11(h)), which syn-

thetically represents scans with larger holes.

Note that, the learning-based methods such as Wei et al. (2016)

can handle scan matching in a more stable manner than our purely

geodesic-based approach. Our relative instability can be explained

with an example concerning two samples in the scan mesh of Fig-

ure 11(h), namely, the cyan sample in the chest and the purple one

around the armpit. Due to the missing black region in between,

the geodesic distance between these two will be very high com-

pared to the one computed on a full model. This problem does not,

however, apply to all the pairs, e.g., the geodesic between the left

and the right pinky fingers is not affected by the missing region.

Consequently, we expect performance degradation proportional to

the amount of missing data, as verified by our tests on Viewing in

Table 5.

7.5.2 Partial Isometric Matching. We take the partial iso-

metric matching algorithm (Sahillioğlu and Yemez 2012b), PIM

for short, which performed well on a recent partial matching

contest (Cosmo et al. 2016). By minimizing a novel scale-invariant
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Fig. 17. Our initial bijection (a) and sparse correspondence (b), either of
which can be incorporated into the registration process of these scans.
Neither the holes nor the nonuniform triangulation (zoomed) prevents our
algorithm from producing these plausible maps.

Table 5. Scan Matching Performance of Our Genetic Algorithm under
Different Percentages of Missing Data

Level 1 Level 2 Level 3 Level 4 Level 5

% of hole 13 14 25 27 28

Diso 0.033 0.034 0.040 0.042 0.044

Fig. 18. Distortion measure of PIM is inspired by the fact that the ratios
between blue geodesics and red geodesics are the same as three matches
involved are all good (a). Our genetic algorithm efficiently minimizes this
distortion to match an arbitrarily scaled partial model from SHREC’11 Par-

tial with a full SHREC’11 Isometry model. Note that the touching surfaces
around hands and knees do not degrade our performance (b).

isometric distortion measure that is based on the preservation

of geodesic distance ratios (Figure 18(a)), PIM solves the partial

correspondence problem in a setting where one of the shapes to

be matched is an arbitrarily scaled isometric part of the other. The

measure that is cubic in the map size is evaluated
( |F |
|P |
)
|P |! times

via combinatorial search over all possible mappings, where F and

P are the sample sets over the full and partial shapes, respectively.

Fig. 19. Our resulting sparse map (spheres and lines) is interpolated triv-
ially into a dense one by simply assigning a source vertex (non-sphere) to a
target vertex with the most similar geodesic distances to the samples of the
existing sparse map. Result is not as smooth as the dense map of the BIM.

For tractability, PIM uses |F | = 10 and |P | = 5, which, using their

public code, takes 0.6 seconds of search time on a pair of SHREC’11

models, each with 50K vertices. To ensure that F includes all the

samples in P , it is suggested to increase |F | to 20, in which case

the search time becomes 37 seconds. Replacing the combinatorial

search with our genetic search reaches the same optimum in 0.2

and 1.9s, respectively, as the latter explores the space of permu-

tations more wisely without visiting every possibility (Figure

18(b)). During our genetic optimization, we evolve chromosomes

consisting of |F | genes, |P | of which represent the samples on

the partial shape and the remaining |F | − |P | are dummy entries

corresponding to the unmatched samples on the full shape.

The 599 shapes in Cosmo et al. (2016) are based on the TOSCA

dataset, some are cut with a plane (cuts set) and some are punc-

tured (holes set). We use PIM to match 100 random cuts-meshes

and 100 random holes-meshes with their full base models. We ob-

serve that the minimization of the PIM’s distortion with the origi-

nal scheme of Sahillioğlu and Yemez (2012b) and with our genetic

algorithm gives very close results on average, which in turn fairly

lends the qualitative and quantitative (ground-truth) evaluations

in Cosmo et al. (2016) to this article. The only significant differ-

ence is the execution time, which favors the genetic algorithm.

8 CONCLUSION

We presented a fast and robust 3D isometric shape correspondence

algorithm, every step of which is geometrically intuitive and eas-

ily comprehensible, e.g., the standard C library is enough to im-

plement every step without including an external support such

as a linear algebra library. We minimized the isometric distortion

without using an intermediate parameterization domain; hence,

our solution is free of embedding errors. The minimization is car-

ried out with genetic optimization, a framework that fits well for

the essential permutation creation task of all the correspondence

problems. To this end, we provided a genetic algorithm geared

towards the isometric correspondence problem. Our method re-

quires no initial input matches, is insensitive to surface triangu-

lation, self-touching situations, and mild geometric noise, and can

also be applied to shapes with arbitrary genus and resolution.

As a second contribution, we provided an adaptive sampling

strategy that is able to improve a given correspondence by
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iteratively moving the matched samples on one side of the

correspondence.

The comprehensive evaluation on four standard benchmarks in

comparison with state-of-the-art methods validated our technique.

Specifically, our algorithm compares favorably with BIM, while be-

ing significantly faster. We outperform EM, which is faster, as well

as GW and OTE, which are more versatile than our method. Other

methods in our comparison suite, namely, PMF, PM-SDP, and SM,

are much slower as they are designed for dense maps.

9 LIMITATIONS

Failure cases arise under topological noise and significant devi-

ation from isometry. This is mainly because of the drastic and

unpredictable geodesic distance changes that make two shapes

unmatchable under our geodesic preservation rules (fitness in

Section 4.2).

Partial matching support is brought only after altering the dis-

tortion measure and introducing the dummy entries. In the origi-

nal setting, however, we cannot decide a consistent maximum ge-

odesic distance across the partially similar shapes, which breaks

down our scale normalization operation. If the partially simi-

lar shapes are assumed to be at the correct scale beforehand (a

strong assumption), or if the fitness is computed based on a scale-

invariant isometric distortion measure (as done in Section 7.5.2),

then partial similarity will not be a limitation any more.

10 FUTURE WORK

Genetic optimization is a convenient tool to establish isometric

correspondences, as shown in this article. We believe that it can be

adapted to other scenarios such as dense, non-isometric, partially-

isometric, and collectionwise-consistent correspondences. We in-

deed took the initiative for the dense matching (Section 7.5.1) and

the partially-isometric matching (Section 7.5.2) extensions. Our

work can also benefit from the exact geodesics (Xu et al. 2015)

that would replace the currently active Dijkstra’s shortest paths re-

stricted to the mesh edges. Finally, a new interpolation scheme can

be developed to achieve a smoother dense map based on a sparse

one (Figure 19).
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