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Abstract

We demonstrate a generic method for visualiza-
tion of high-resolution unorganized and noisy 3D
data points with a surface of significantly lower
resolution. To this effect, we feed our algorithm
with all the go Light Detection And Ranging (Li-
DAR) data and approximate it with a triangular
mesh that is being deformed iteratively until con-
vergence. Our main contribution is avoiding the
direct triangulation of LiDAR points, a cumber-
some step common in literature.

1. Introduction

Light Detection And Ranging (LiDAR) systems are ca-
pable of acquiring data to produce accurate digital eleva-
tion models by allowing the positioning of the footprint
of a laser beam as it hits an object. The laser produces
an optical pulse that is transmitted, reflected off an object,
and returned to the receiver. The receiver accurately mea-
sures the travel time of the pulse from its start to its return.
With the pulse traveling at the speed of light, the receiver
senses the return pulse before the next pulse is sent out.
Since the speed of light is known, the travel time can be
converted to a range measurement. Combining the laser
range, laser scans angle, laser position (from Global Posi-
tioning System — GPS), and laser orientation (from Inertial
Navigation System — INS), accurate spatial object coordi-
nates can be calculated for each laser pulse (Mosaic, 2001).
While we focus on forest modeling here, there are plenty of
other applications that are fed by LiDAR data, such as flood
risk mapping, oil/gas explorations, real estate development,
coastal zone mapping, and urban modeling. Our problem
is, given a set of unorganized and noisy 3D points acquired
by a LiDAR system, approximate the underlying surface
by a 2-manifold triangular mesh. To this end, we employ
a surface deformation framework and end up with a low-
resolution mesh from the high-resolution LiDAR points.
Our contribution is to avoid the computationally expensive
2D triangulation of the projected LiDAR points.

2. Related Work

LiDAR becomes an important and convenient data source.
Many researchers are developing algorithms to extract a
bare-earth model and building boundaries from the LiDAR
data. A method for building reconstruction with LiDAR
data (Sohn et al., 2004) combines filtered LiDAR data and
cadastral building boundaries data, while another one (Tse
etal., 2005) uses the Voronoi Diagram to trace building out-
lines, for which they extrude buildings via Computer Aided
Design (CAD)-type Euler Operators to create a Triangu-
lated Irregular Network (TIN) model and then applies these
operators to modify the TIN, e.g., extrude buildings. As far
as the bare-earth model generation, (Baligh et al., 2008) ap-
ply the wavelet denoising method followed by a convenient
filtering for the extraction. Applicable to both bare-earth
and building modeling, most researchers perform 2D trian-
gulation (Bourke, 1989) of the projection of LiDAR data,
followed by an elevation to 3D using the height informa-
tion available. An optional edge collapse operation with
convenient error metrics (Garland et al., 1997) on 2D trian-
gulation helps building fair reconstructions in sufficiently
low resolutions.

3. Algorithm

The deformation based algorithm that brings out the un-
derlying shape of the input LiDAR data L is adapted from
(Sahillioglu et al., 2006). We guide their surface deforma-
tion framework by the tangent planes attached to some of
the LiDAR points.

3.1 Tangent Plane Computation

Having subdivided the bounding box of L into a grid of
cubes, we select a set of k-nearest neighbors of a point p
inside the cube, which lets us fit a plane K to this set in
the least squares sense, where K eventually gets assigned
to p (see Figure (1)). For efficiency reasons, we deny the
tangent plane computation for the points which already ap-
pear in the k-nearest neighbors list of a point with an as-
signed plane by assuming that there already exists a plane
for them.



Figure 1. Grid of cubes (left) for fast tangent plane assignment
(right). The larger the number of the tangent planes, the better the
surface estimation is (framed in white).

The accuracy and speed of the system depends on the cube
size which is determined based on how high the resolution
is wanted to be. Note also that, the tangent planes in use
may be inconsistently oriented (Hoppe et al., 1992), but
this problem is handled easily in our case thanks to our a
priori that the mesh to be evolved, M, is initially outside L.

3.2 Deformation

In each iteration of the deformation process that evolves
M towards L, each unfrozen/active vertex is moved in the
direction of its normal with a conservative magnitude that
prevents the formation of non-manifold triangles. In order
to keep M as smooth as possible after moving all vertices,
we apply the non-shrinking mesh fairing operation. The
minimum edge length allowed on M is guaranteed to be
e after edge collapses, and €/2 is used as the magnitude
of movement. Edge split operation, on the other hand, di-
vides a long edge into two by introducing a new point in
the middle which then lets M evolve further towards the
concavities that would have never been reached otherwise.
Edge flips merely keep the valences of vertices close to 6
for regularity purposes. These local mesh transform oper-
ations (Hoppe et al., 1993) as well as the fairing (Taubin,
1995) keeps M in a good shape at all times.

A vertex v is freezed up as soon as it passes to the other side
of the tangent plane K of the closest LiDAR point p € L.
When a vertex is frozen/deactivated, a fine-tuning process
follows in order to refine its final position; a binary search
performed on the line segment with starting and final posi-
tions as endpoints, and v is pulled back to the point closest
to K. Figure (2) shows deformation of M in progress.

Figure 2. Low- (top) and high-resolution (bottom) M in deforma-
tion. White vertices are active whereas cyans are frozen. The
higher the resolution of M, the better its evolution.

3.3 Computational Complexity

The grid-based k-nearest neighbors for fast tangent plane
computation is O((|L|/C)k) per grid cube and accumu-
lates to O(|L|k) when summed over all cubes with C' be-
ing the number of cubes and underlying LiDAR data distri-
bution assumed to be uniform. Since k-nearest neighbors
is repeated (|L|/C)/k times per cube, this preprocessing
step indeed requires O(|L|k x (|L|/C)/k = L*/C) time.
Once the guide tangent planes are made available, it takes
O(|L|Vr) to perform one deformation iteration because all
Vs vertices of the evolving mesh M need to find the clos-
est LiDAR point to be able to realize whether they passed
to the other side of the target tangent plane, or equivalently
the target LIDAR surface. The number of deformation iter-
ations depend on the distance of the initialization from the
target LiIDAR surface and is expected to be bounded by a
small constant, e.g., 20 in our experiments, which renders
the deformation complexity as O(|L|Vys), and the overall
complexity becomes O(L?/C).

4. Results and Discussion

We use the LiDAR data from (PSLC, 2007) and perform
the traditional, i.e., direct triangulation based, generation
of LiDAR surface as well to compare our surface estima-
tion results with (see Figure (3)). Although the traditional
one in its simplest form cannot reduce the resolution of
the output, our solution can do so by simply initializing
M as a low-resolution 2-manifold. Another advantage of
our method is the clearance of the need of messing up with
the direct triangulation of the noisy and huge LiDAR data.



Figure 3. Three different target surfaces of 100K LiDAR points
(left) approximated by meshes of 3K vertices (right).

5. Conclusions

We have described an iterative deformation-driven algo-
rithm that is capable of being fed with unorganized and
noisy data. In particular, we work with the LiDAR points
although all data regardless of its size, connectivity type
and noise level are quite welcome. Starting with a rela-
tively low-resolution 2-manifold triangular mesh of a flat
plane pointed towards the target surface implied by the Li-
DAR points, we iteratively deform it until all vertices are
stabilized, i.e., convergence. With this scheme, we save
ourselves from the computationally expensive 2D triangu-
lation required by most of the related work. Besides, the
resolution of the output surface can be controlled easily as
the initial resolution of the evolving mesh stays the same at
the time of convergence.
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