
Machine Learning for
Graph Coloring

Assoc. Prof. Yusuf Sahillioğlu
Computer Eng. Dept, , Turkey

Machine Learning
2 / 25

ü Artificial Intelligence (AI) & Machine Learning (ML) & Deep Learning (DL)
ü AI ~ anything related to making computers do stuff that are

traditionally done by humans; sorting, gaming, etc.
ü ML ~ algorithms that learn models from data; neural nets, SVMs, etc.
ü DL ~ application of multi-layer neural nets to learning tasks.

Machine Learning
3 / 25

ü How do we decide the best class?
ü Experience the past (training) and decide accordingly (query).

ü Plot your experience.
ü Mystery flower above (???) lands closer to reds, so decision: red.

Machine Learning using Neural Networks (NNs)
4 / 25

ü Neural nets can do this classification for us w/o any plotting or such.

ü Feed the input (width, length) to our net (bottom) and get an output
as their weighted combination (top). If closer to 1, net tells us it is red.

ü Currently net is wrong (‘cos 2 & 1 from a blue flower). Adjust weights.

Weights of the NN
5 / 25

ü Output is a weighted (w1 and w2) combination of the input.

ü Adjust these weights and the bias term (b) to make your net behave
the way you want.

ü We want: respect the input-output pairs we provide (train with):
ü 2 & 1 à Blue (so output ≤ 0.5), 5.5 & 1 à Red (so output > 0.5), etc.

Weights of the NN
6 / 25

ü Squash the values to be in [0,1]:

Weights of the NN
7 / 25

ü Weights and biases start randomly (to be adjusted later).

ü w1 = .5, w2 = .2, b = .3 è NN(2,1) = sigmoid(1.5) = .8
ü NN thinks it is red; we’d have preferred output to be closer to 0 L.
ü Solution: adjust weights & biases (via Backpropagation method).

ü Cost function: (prediction - target)2 = (.8 - 0)2

ü Since prediction depends on weights & biases variables, take partial derivative
w.r.t. those (gradient descent) and get the adjustment that minimizes the cost.

Weights of the NN
8 / 25

ü Weights and biases start randomly (to be adjusted later).

ü Once all weights & biases are adjusted based on the observed data,
we essentially constructed our model (NN).

ü Feed the parameters of the new flower to this constructed model in
order to classify it instantly (and hopefully accurately).

Graph
9 / 25

ü Graph: set of vertices and edges that model many problems in CS.

ü Footballers (vertices) are connected (edges) if they played at the
same team anytime in their careers.

ü People are connected if they are friends, e.g., Facebook network.

Graph Coloring
10 / 25

ü Assignment of colors to vertices s.t. neighbor verts’ve different colors.

ü Use as few colors as possible (chromatic number).

ü Why do we care?

Graph Coloring for Scheduling
11 / 25

ü Series of taxi journeys with a start time (filled) and an end time (empty).
ü A taxi cannot be used on another journey until it returns.
ü 10 taxis obviously suffice to serve these requests but expensive L.
ü Can do with just 3 J.
ü Graph: journey (vertex), overlapping in time (edge).

Graph Coloring for Scheduling
12 / 25

ü Series of flights with a start time (filled) and an end time (empty).
ü A gate cannot be used while occupied by a plane.
ü 10 gates obviously suffice to serve these requests but expensive L.
ü Can do with just 3 J. Min # of gates for these flights is 3.
ü Graph: flight (vertex), overlapping in time (edge).

Graph Coloring for Scheduling
13 / 25

ü Schedule exams for courses.
ü Two courses clash if some student taking them both.
ü 9 timeslots obviously suffice to serve these requests but expensive L.
ü Can do with just 4 J.
ü Graph: course (vertex), clashing (edge).

Graph Coloring for Scheduling
14 / 25

ü Separate cages in a zoo.
ü Two species may not get along together.
ü Graph: animals (vertex), hating (edge). Min # of cages.

Graph Coloring for Scheduling
15 / 25

ü Design seating plans for weddings.
ü Some people do not want to seat together (drama).
ü 9 tables obviously suffice to serve these requests but expensive L.
ü Can do with just 2 J.
ü Graph: party (vertex), hating each other (edge).

Graph Coloring for Sudoku
16 / 25

ü Solve Sudoku puzzles.
ü Fill in the blank cells s.t. each row, col, and 2x2 box has 1-4 just once.
ü Graph: cell (vertex), same row, col, or box (edge).
ü 4-coloring of this graph corresponds to a Sudoku solution.
ü Some cells filled already (clues) = some vertices already colored for u.

Graph Coloring for Maps
17 / 25

ü Color maps to separate neighboring regions robustly.
ü Theorem: 4 colors suffice for all possible maps.
ü Graph: region (vertex), neighboring (edge).

Suboptimal: 5 colors used.

Graph Coloring Algorithms
18 / 25

ü So how to solve this problem?
ü Exact solution: Check each of the kn assignments of k colors to n

vertices for legality. Repeat for k = 1,2,..,n-1.
ü Too slow ‘cos this is a brute-force exponential solution.

ü Growth-rates of functions.

Graph Coloring Algorithms
19 / 25

ü So how to solve this problem?
ü Approximate solution: Based on heuristics. No optimality guarantees.
ü This is where machine learning comes in.

ü Some heuristics goods for some graphs.
ü Train a neural network: input graph G1, output Heuristic2.

ü Given a query graph, decide the best heuristic for it and apply it.

input graph G7, output Heuristic1.
.
.
input graph G166, output Heuristic 2.
.
.

Graph Coloring Algorithms
20 / 25

ü So how to solve this problem?
ü Previously, we used flower features (width, length) to flower color

(red, blue) mappings to train our NN. Then, decided the color of a
new query point using this NN.

ü Now, use graph features* to preferred heuristic (H1, H2) maps to
train the NN and decide the better heuristic for a new query graph.

* 13 features measured on graphs:

** Heuristic preference: run both heuristics on each training
graph and pick the one using fewer colors (or taking less time).

Graph Coloring Algorithms
21 / 25

ü So how to solve this problem?
ü Heuristic 1: order vertices arbitrarily v1, v2, .., vn. You have available

colors c1, c2, .., cn.
ü For i=1 to n: Color vi with the lowest legal color cj //make it optimal

by calling this loop n! times for each possible ordering. (O(n)->O(n!)).

Graph Coloring Algorithms
22 / 25

ü So how to solve this problem?
ü Heuristic 1: order vertices arbitrarily v1, v2, .., vn. You have available

colors c1, c2, .., cn.
ü For i=1 to n: Color vi with the lowest legal color cj //make it optimal

by calling this loop n! times for each possible ordering. (O(n)->O(n!)).
ü Bad ordering: left-right-down-left-right-down-.. à n/2 colors L
ü Good ordering: left-down-left-down-..right-down-.. à 2 colors J

ü Always optimal regardless of ordering (2 colors):

Graph Coloring Algorithms
23 / 25

ü So how to solve this problem?
ü Heuristic 1: order vertices arbitrarily v1, v2, .., vn. You have available

colors c1, c2, .., cn.
ü For i=1 to n: Color vi with the lowest legal color cj //make it optimal

by calling this loop n! times for each possible ordering. (O(n)->O(n!)).
ü Upper bound on # of colors to be used: d+1, if max degree is d.
ü Proof:

ü Basis: 1-vertex graph (max degree is d=0) requires 0+1=1 color. Done.
ü Induction: Assume statement is True for all n-vertex graphs. Show also True

for n+1-vertex graphs. Here I show: v1,v2,v3,……,vn,vn+1.
ü Red subgraph has n vertices and max degree ≤ d, so by induction it uses at

most d+1 colors.
ü For vn+1, even if all its neighbors (at most d neighbors) have different colors

(worst-case), pick the (d+1)th color for vn+1. Done.

Graph Coloring Algorithms
24 / 25

ü So how to solve this problem?
ü Heuristic 2: Choose the uncolored vertex w/ the highest # of different

neighbor colors and color it legally. Break ties by choosing the vertex
w/ the highest degree.

ü Behaves better than Heuristic 1 but still no optimality guarantees.

Graph Coloring Algorithms
25 / 25

ü So how to solve this problem?
ü Heuristic 2: Choose the uncolored vertex w/ the highest # of different

neighbor colors and color it legally. Break ties by choosing the vertex
w/ the highest degree.

ü Behaves better than Heuristic 1 but still no optimality guarantees.
ü Always optimal regardless of ordering (3 colors, 2 colors):

