Machine Learning for Graph Coloring

Assoc. Prof. Yusuf Sahillioğlu

Computer Eng. Dept, MIDDLE EAST TECHNICAL UNIVERSITY, Turkey

Machine Learning

- ✓ Artificial Intelligence (AI) & Machine Learning (ML) & Deep Learning (DL)
- ✓ AI ~ anything related to making computers do stuff that are traditionally done by humans; sorting, gaming, etc.
- ✓ ML ~ algorithms that learn models from data; neural nets, SVMs, etc.
- ✓ DL ~ application of multi-layer neural nets to learning tasks.

Machine Learning

- ✓ How do we decide the best class?
- ✓ Experience the past (training) and decide accordingly (query).

- ✓ Plot your experience.
- ✓ Mystery flower above (???) lands closer to reds, so decision: red.

Machine Learning using Neural Networks (NNs)

✓ Neural nets can do this classification for us w/o any plotting or such.

- ✓ Feed the input (width, length) to our net (bottom) and get an output as their weighted combination (top). If closer to 1, net tells us it is red.
- ✓ Currently net is wrong ('cos 2 & 1 from a blue flower). Adjust weights.

✓ Output is a weighted (w1 and w2) combination of the input.

- ✓ Adjust these weights and the bias term (b) to make your net behave the way you want.
- ✓ We want: respect the input-output pairs we provide (train with):
 - ✓ 2 & 1 \rightarrow Blue (so output \leq 0.5), 5.5 & 1 \rightarrow Red (so output > 0.5), etc.

color	0		\bigcirc		0	0	0
length	3	4	3	3.5	2	5.5	1
width	1.5	1.5	1	. 5	.5	1	1

✓ Squash the values to be in [0,1]: $sigmoid(x) = \frac{1}{1 + e^{-x}}$

✓ Weights and biases start randomly (to be adjusted later).

color	0	0	0	0	0	0	0	0	???
length	3	2	4	3	3.5	2	5.5	1	4.5
width	1.5	1	1.5	1	. 5	.5	1	1	1

- \checkmark w1 = .5, w2 = .2, b = .3 → NN(2,1) = sigmoid(1.5) = .8
- 0 1
- ✓ NN thinks it is red; we'd have preferred output to be closer to $0 \otimes$.
- ✓ Solution: adjust weights & biases (via Backpropagation method).
 - ✓ Cost function: (prediction target)² = $(.8 0)^2$
 - ✓ Since prediction depends on weights & biases variables, take partial derivative w.r.t. those (gradient descent) and get the adjustment that minimizes the cost.

✓ Weights and biases start randomly (to be adjusted later).

color	0	0	0	\bigcirc	0	0	0	0	???
length	3	2	4	3	3.5	2	5.5	1	4.5
width	1.5	1	1.5	1	.5	.5	1	1	1

- ✓ Once all weights & biases are adjusted based on the observed data, we essentially constructed our model (NN).
- ✓ Feed the parameters of the new flower to this constructed model in order to classify it instantly (and hopefully accurately).

Graph

✓ Graph: set of vertices and edges that model many problems in CS.

- ✓ Footballers (vertices) are connected (edges) if they played at the same team anytime in their careers.
- ✓ People are connected if they are friends, e.g., Facebook network.

Graph Coloring

✓ Assignment of colors to vertices s.t. neighbor verts've different colors.

- ✓ Use as few colors as possible (chromatic number).
- ✓ Why do we care?

- ✓ Series of taxi journeys with a start time (filled) and an end time (empty).
- ✓ A taxi cannot be used on another journey until it returns.
- \checkmark 10 taxis obviously suffice to serve these requests but expensive \otimes .
- ✓ Can do with just 3 ②.
- ✓ Graph: journey (vertex), overlapping in time (edge).

- ✓ Series of flights with a start time (filled) and an end time (empty).
- ✓ A gate cannot be used while occupied by a plane.
- ✓ 10 gates obviously suffice to serve these requests but expensive Θ.
- ✓ Can do with just 3 ②. Min # of gates for these flights is 3.
- ✓ Graph: flight (vertex), overlapping in time (edge).

- ✓ Schedule exams for courses.
- ✓ Two courses clash if some student taking them both.
- ✓ Can do with just 4 ②.
- ✓ Graph: course (vertex), clashing (edge).

- ✓ Separate cages in a zoo.
- ✓ Two species may not get along together.
- ✓ Graph: animals (vertex), hating (edge). Min # of cages.

- ✓ Design seating plans for weddings.
- ✓ Some people do not want to seat together (drama).
- \checkmark 9 tables obviously suffice to serve these requests but expensive \otimes .
- ✓ Can do with just 2 ②.
- ✓ Graph: party (vertex), hating each other (edge).

	Top table?	Guest name	Companion 1	Companion 2	Companion 3
Į	0	Cath	Michael	Kurt	Rosie
	-	John	Sarah	Jack	Jill
		Bill	June		
4		Pat	Susan		
		Una	Tom		
5		Ruth	Kevin	Gareth	
		Ken	Frank	Bobby	
		Rod	Dereck	Freddy	
9		Jane			

Graph Coloring for Sudoku

- ✓ Solve Sudoku puzzles.
- ✓ Fill in the blank cells s.t. each row, col, and 2x2 box has 1-4 just once.
- ✓ Graph: cell (vertex), same row, col, or box (edge).
- ✓ 4-coloring of this graph corresponds to a Sudoku solution.
- \checkmark Some cells filled already (clues) = some vertices already colored for u.

17 / 25

- ✓ Color maps to separate neighboring regions robustly.
- ✓ Theorem: 4 colors suffice for all possible maps.
- ✓ Graph: region (vertex), neighboring (edge).

- ✓ So how to solve this problem?
- ✓ Exact solution: Check each of the k^n assignments of k colors to n vertices for legality. Repeat for k = 1, 2, ..., n-1.
- ✓ Too slow 'cos this is a brute-force exponential solution.
 - ✓ Growth-rates of functions.

				n			
							2/N — N log N ² —
Function	10	100	1,000	10,000	100,000	1,000,000	$ \begin{array}{c cccc} N^3 & & & N\log^2 N \\ 2^N & & & N\log N \\ N^2 & & & N \end{array} $
1	1	1	1	1	1	1	$N^2 \log N$ $N \log \log N$ \sqrt{N}
log ₂ n	3	6	9	13	16	19	PI N15
n	10	10^{2}	10 ³	104	105	106	Running Time
n ∗ log₂n	30	664	9,965	105	106	10 ⁷	- William But
n²	10 ²	104	106	108	1010	10^{12}	
n ³	10 ³	106	10 ⁹	10 ¹²	10 ¹⁵	10^{18}	
2 ⁿ	10 ³	1030	1030	1 103,01	10 ^{30,1}	103 10301,030	0
				_			10 20 30 40 50 60 70 80 90 Input Size (N)
		O(r	1 ²)		$2n^2$		10 ⁹ 2000 secs.

O(n²)	2n ²	10 ⁹	2000 secs.
algorithm	instructions	inst/second	
O(n lg n)	100 n lg n	10 ⁷	60 secs.
algorithm	instructions	inst/second	

- ✓ So how to solve this problem?
- ✓ Approximate solution: Based on heuristics. No optimality guarantees.
- ✓ This is where machine learning comes in.
 - ✓ Some heuristics goods for some graphs.
 - ✓ Train a neural network: input graph G1, output Heuristic2. input graph G7, output Heuristic1.

•

input graph G166, output Heuristic 2.

•

✓ Given a query graph, decide the best heuristic for it and apply it.

- ✓ So how to solve this problem?
- ✓ Previously, we used flower features (width, length) to flower color (red, blue) mappings to train our NN. Then, decided the color of a new query point using this NN.
- ✓ Now, use graph features* to preferred heuristic (H1, H2) maps to train the NN and decide the better heuristic for a new query graph.
 - * 13 features measured on graphs:

```
1: no. of nodes: n

2: no. of edges: m

3,4: ratio: \frac{n}{m}, \frac{m}{n}

5: density: \frac{2 \cdot m}{n \cdot (n-1)}
6-13: nodes degree statistics: min, max, mean, median, Q_{0.25}, Q_{0.75}, variation coefficient, entropy
```

** Heuristic preference: run both heuristics on each training graph and pick the one using fewer colors (or taking less time).

- ✓ So how to solve this problem?
- ✓ Heuristic 1: order vertices arbitrarily v_1 , v_2 , ..., v_n . You have available colors c_1 , c_2 , ..., c_n .
- ✓ For i=1 to n: Color v_i with the lowest legal color c_j //make it optimal by calling this loop n! times for each possible ordering. (O(n)->O(n!)).

- ✓ So how to solve this problem?
- ✓ Heuristic 1: order vertices arbitrarily v_1 , v_2 , ..., v_n . You have available colors c_1 , c_2 , ..., c_n .
- ✓ For i=1 to n: Color v_i with the lowest legal color c_j //make it optimal by calling this loop n! times for each possible ordering. (O(n)->O(n!)).
- ✓ Bad ordering: left-right-down-left-right-down-.. $\rightarrow n/2$ colors \otimes
- ✓ Good ordering: left-down-left-down-..right-down-.. \rightarrow 2 colors \odot

✓ Always optimal regardless of ordering (2 colors):

- ✓ So how to solve this problem?
- ✓ Heuristic 1: order vertices arbitrarily v_1 , v_2 , ..., v_n . You have available colors c_1 , c_2 , ..., c_n .
- ✓ For i=1 to n: Color v_i with the lowest legal color c_j //make it optimal by calling this loop n! times for each possible ordering. (O(n)->O(n!)).
- ✓ Upper bound on # of colors to be used: d+1, if max degree is d.
- ✓ Proof:
 - ✓ Basis: 1-vertex graph (max degree is d=0) requires 0+1=1 color. Done.
 - ✓ Induction: Assume statement is True for all *n*-vertex graphs. Show also True for n+1-vertex graphs. Here I show: $v_1, v_2, v_3, \dots, v_n, v_{n+1}$.
 - ✓ Red subgraph has n vertices and max degree $\leq d$, so by induction it uses at most d+1 colors.
 - For v_{n+1} , even if all its neighbors (at most d neighbors) have different colors (worst-case), pick the (d+1)th color for v_{n+1} . Done.

- ✓ So how to solve this problem?
- ✓ Heuristic 2: Choose the uncolored vertex w/ the highest # of different neighbor colors and color it legally. Break ties by choosing the vertex w/ the highest degree.
- ✓ Behaves better than Heuristic 1 but still no optimality guarantees.

- ✓ So how to solve this problem?
- ✓ Heuristic 2: Choose the uncolored vertex w/ the highest # of different neighbor colors and color it legally. Break ties by choosing the vertex w/ the highest degree.
- ✓ Behaves better than Heuristic 1 but still no optimality guarantees.
- ✓ Always optimal regardless of ordering (3 colors, 2 colors):

