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Oğuzhan Taştan Yusuf Sahillioğlu

Computer Engineering Department,
Middle East Technical University, Ankara,
Turkey

Correspondence
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Abstract
We propose a novel approach for reconstructing plausible three-dimensional
(3D) human body models from small number of 3D points which represent body
parts. We leverage a database of 3D models of humans varying from each other
by physical attributes such as age, gender, weight, and height. First we divide
the bodies in database into seven semantic regions. Then, for each input region
consisting of maximum 40 points, we search the database for the best match-
ing body part. For the matching criterion, we use the distance between novel
point-based features of input points and body parts in the database. We then
combine the matched parts from different bodies into one body, with the help
of Laplacian deformation, which results in a plausible human body. To evaluate
our results objectively, we pick points from each part of the ground-truth human
body models, then reconstruct them using our method and compare the result-
ing bodies with the corresponding ground-truths. Also, our results are compared
with registration-based results. In addition, we run our algorithm with noisy
data to test the robustness of our method and run it with input points whose
body parts are manually edited, which produces plausible human bodies that do
not even exist in our database. Our experiments verify qualitatively and quan-
titatively that the proposed approach reconstructs human bodies with different
physical attributes from a small number of points using a small database.
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1 INTRODUCTION

Modeling human body digitally is one of the most attractive field in computer graphics as these models have wide-ranging
applications. In clothing, size, and shape of the body are important to improve cloth comfort and fit.1 In medicine,
the human model data can be used for arranging the doses of medication2 and monitoring the posture of human
body.3 There exist some studies which aim to create dynamic digital models that mimic physiological and behavioral
realism.4,5

This paper considers the problem of generating plausible three-dimensional (3D) human bodies from small number
of input points. Generating human body is already a difficult task because human body can be in large number of different
shapes and poses. Moreover, our task is even more challenging due to the lack of surface features such as mesh structure
and normal vectors in the input. Another challenge is the absence of the correspondence between sparse input points
and complete database models.
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In real life, the sparse points can be obtained from two-dimensional (2D) images or array of sensors as in the case
of the popular motion capture scenario with single6 or multiple cameras,7 touch-probe,8 laser triangulation,9 wearable
sensors,10 and laser pulse.11 As another sensor-based technology,12 makes use of a small set of inertial sensors attached
to the body. They deform a template human body based on the measurements from the sensors to capture the motion of
human. Although they place six sensors to the wrists, lower legs, back and head, increasing the number of sensor can
produce 3D points on human body which can be used as input to our method.

In addition to these so-called active methods where the real-world object is worn markers or hit by emitted beams,
there also exist passive acquisition methods based on existing images and videos. To this end, Reference 13 proposes
a neural network which learns a nonlinear mapping from a 2D image to a set 3D points that represent a human face.
Reference 14 proposes a method which learns salient points on the fingers and pose of hand. Their method can be extended
to learn salient points on human body which can be the input to our method, making our method capable of creating 3D
human body models from a single image, just like the SMPL model does.15 In this line of thought, 3D skeleton output of
3D pose estimators that run on single 2D images16 can be used as input to our generic framework, rendering our method
a potentially useful 2D image to 3D model generator.

Among all these active and passive data acquisition possibilities that can be seamlessly incorporated into our frame-
work, we decide to simulate the touch-probe mechanism by manually selecting our sparse input points over an existing
3D model and then try to recover the surface out of this selection. This is deemed appropriate for research purposes as
we naturally have a ground-truth 3D model to compare our reconstruction result with (see Section 3).

The main contributions of the paper are as follows:

• Novel method for reconstructing human body: A novel method is proposed to reconstruct human body from small
number of 3D points by following a data-driven approach which exploits a database of 3D human body models.

• Novel features for 3D points: We propose novel features which compactly and distinctively represent the geometry
of a set of 3D points. Our experiments show that the proposed features can effectively distinguish between 3D point
sets in different geometry and recognize 3D point sets in similar geometry.

This paper is organized as follows: In Section 2, the related literature is reviewed by focusing on the studies which
aim to reconstruct human bodies, specifically the ones which accept sparse inputs. In Section 3, the database in use,
our proposed geometric features and the method for reconstructing 3D human body are explained. In Section 4, the
experimentation of our method and its limitations are given. In Section 5, the conclusion and future work are discussed.

2 RELATED WORK

Due to the the growing demand for virtual human models, there is a large body of literature on reconstructing human bod-
ies and faces. The paper which is the most similar to ours17 expects, unlike our simpler sparse input requirement, a dense
point cloud as input. As we do, they leverage a database of 3D meshes. Their method semantically divides the meshes
into several parts in order to compare the input with the meshes in the database. Differently from our method, their
method reconstructs an articulation-free face rather than a full articulated human body and also they require anatomical
facial landmark points labeled manually by a trained expert, which we avoid. They first align input points to database by
detecting predefined facial landmarks and using them for rigid pose alignment via Procrustes analysis18 and then perform
dense alignment to a generic mesh.19 After the alignment process, each face part is matched to the database using dis-
tance function which is a weighted average of pseudo-landmarks and histograms of azimuth and elevation components
of the surface normals.20,21

Reference 22 processes several depth frames, which are again dense point clouds, by detecting and cropping the
face in each depth frame. Then, these extracted 3D faces are aligned with each other by using Coherent Point Drift
algorithm23 in order to build a cumulated face. Then, the LOWESS nonparametric regression method is used to approx-
imate the face surface from the cumulated face model and remove outliers from the data. The resulting 3D face is
still noisy, and in order to get rid of this noise, they first model the face as a 2D manifold embedded in the 3D
space. Then, they treat the problem as manifold reconstruction from noisy data and solve this problem by applying a
method which extends the one described in Reference 24 based on a combination of dimensionality reduction and local
weighted regression.
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In order to reconstruct a full body,25 built a full-body scanner and a separate face scanner, consisting of 40 and 8
DSLR cameras, respectively. This setup creates a huge body scan data with 4M points. After they scan a full body, they
try to align and fit to a template model by performing the following steps. In the initialization step, they optimize scal-
ing, rotation, and translation by using manually selected landmarks using26 and optimize the joint angles using inverse
kinematics based on linear blend skinning.27 After good initialization, fine-scale nonrigid registration is applied by min-
imizing an energy which a weighted average of the landmark term, fitting term, and regularization term. The landmark
term is to minimize the squared distance between the manually selected landmarks, the fitting term penalizes the squared
distance between corresponding points and the regularization term penalizes the geometric distortion from the unde-
formed model. A similar deformation framework is established in Reference 28 to reconstruct the shape by deforming
its bounding sphere in the guidance of silhouette data. Other deformation-based studies conform the template model to
the input point set via deep learning29 or energy minimization.30-32 All these works require an accurate template model
which can hardly be obtained in many cases. We overcome this issue by using templates for parts not for the entire
inseparable body. Similar to our work, the distributed part-based representations in References 33 and 34 showed more
promising results than the classical existing realistic 3D body models as these frameworks facilitate inference by allow-
ing the model to more effectively explore the space of poses. A significant difference of our proposed method from these
methods is that ours is a nonparametric-model-based reconstruction method and directly searches for body parts from
a small database. Reference 35 bears another similarity to our work in terms of the usage of sparse marker points for
3D reconstruction. The main difference of this method from ours is the usage of a parametric 3D body model, which
we avoid.

Reference 36 trains a convolutional neural network with RGB-D face data in order to reconstruct faces. Their network
has coarse-to-fine architecture in which a medium-scale CNN to regress a medium-scale face model is followed by a
fine-scale CNN to recover the surface details. Both CNN models are trained in a completely self-supervised manner in
that the face shape and details are automatically learned from the large-scale unlabeled RGB-D data.

Reference 37 exploits a database of 3D heads of 200 adults which are in a cylindrical representation produced by a
commercial laser scanner. First, they put all the head models in the database in full point-to-point correspondence. Then,
they create a morphable model from the head models. Finally, using the morphable model, they create a 3D head from
2D input image. To do so, a set of rendering parameters and coefficients of the 3D model are optimized until an image as
close as possible to the input image is produced. Their algorithm generates a 3D face from the current parameters, and
renders an image, and updates the parameters according to the residual difference. They start with the average head and
with rendering parameters roughly estimated by the user.

As we do, Reference 38 follows a data-driven method which reconstructs articulated 3D motion. Their method
extracts all shape information from a set of range scans which is formed by 200K points and 50K triangles. They
put the range scans in full correspondences by using markers obtained by Correlated Correspondence39 which com-
putes the consistent embedding of each instance mesh into the template mesh. Then, their model tries to align the
template with each mesh in the data set consisting of different poses of a human. The deformations are modeled for
each triangle of the template such that the deformations are applied in the local coordinate frame of each triangle by
translating a point of the triangle to the origin. A specific transformation matrix is applied to each triangle and then
an articulation rotation is applied. They aim to minimize the least-squares error by optimizing transformation and
rotation matrices.

As another data-driven algorithm, Reference 40 also uses a database of pre-existing rigs and extracts usable body parts
from it in order to construct rigged bodies for given unrigged target meshes. To do so, they fit together pieces from several
different source meshes in the database. Differently from ours, their input is a dense mesh.

Point-based registration methods are related to our work as they try to reconstruct a new shape from the existing tem-
plate model by deforming it toward the input data. As opposed to our method that requires sparse input, point-based
registration methods have to deal with models which are as dense as the template model to be deformed.41and simi-
larly Reference 42 first embeds the shape into isometric representation. Then, they optimize this embedding as a variant
of the classical intrinsic distortion43-45 objective by using Markov Random Field optimization. Nonisometric version of
this study achieves reconstruction of skulls by using volumetric Dirichlet energy.46 Reference 47 tries to align and label
two point clouds in 3D in a simultaneous way until they are as similar as possible via Procrustes Matching procedure
in a novel semi-definite programming relaxation framework. We state our main difference from these registration-based
methods as dealing with sparser data in a part-based fashion, features which bring better usability and flexibility to
the process.
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3 METHOD

In order to build a human body from limited number of 3D points, we make use of a database of human bodies. As a
preprocess, we compute a set of features for each body part of each body in the database from the manually selected feature
points and save them. Given a set of 3D points for each body part, we compute a set of features and find a best-matching
part from the parts in the database by comparing the calculated features of the input points and the saved features of
the body parts in the database. Then, the selected body parts from different bodies are combined together to build a
human body.

3.1 Database

In this study, a part of the database provided by Reference 48 is used in order to reconstruct human body parts from small
number of 3D input points. Each human mesh in this database has 6890 vertices and 13,776 faces. Five of the 10 samples
of our database and the segmentation to be used in the following steps are shown in Figure 1. Note that, only one model is
manually segmented (shown in Figure 1) and this information is automatically transferred to the other database models
via the available one-to-one correspondence through the dataset.

Note also that we keep the database very small in an effort to show the feasibility of our solution with less data which
is easier to obtain and store. We use the neutral poses of 10 different characters with varying gender, age, height, and
weight. This choice combined with the one-piece arm and leg segments (Figure 1-right) prevents the reconstruction of
highly articulated poses. It, however, enables reconstruction of all other poses as well as different features such as height
and weight.

3.2 Preprocessing of the database

We semantically divide each body into seven segments where the segments are represented by at most 40 ordered 3D
representative points. These points are manually selected from a single base model shown in Figure 1, and then trans-
ferred to the others by using the existing full correspondence between the models. Single manual segmentation takes
merely 5 s thanks to the the simplicity of the model’s pose. After segments are made ready, we calculate a feature vec-
tor for each segment based on their representative points. Since our feature vector is computed from exactly 40 points,

F I G U R E 1 (Left) Five
samples from our database.
(Right) Human body segments
and feature points for each body
part
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F I G U R E 2 Comparison
of point completion methods.
(a) Input points, (b) Completed
points by the linear method,
(c) Completed points by the
nonlinear method. Three
iterations of the linear method is
displayed at bottom

we first complete the number of segment points to 40 (user is allowed to select less points for less effort) in linear fash-
ion by adding a point at the middle of the most widely separated consecutive points until it reaches to 40 points. The
process is visualized on a didactic example in Figure 2-bottom. Alternatively, we first fit a nonlinear parametric B-spline
curve to the input points and then produce 40 uniform points from the fitted curve by changing the curve-defining
one-dimensional parameter uniformly. The results of both point completion methods are shown in Figure 2. As we
can see, the nonlinear method produces smoother and more uniform points than the linear method does, and hence it
is promoted.

3.3 3D Features

After completing the segment representative points, a histogram of Euclidean distances between each point to the other
representative points, called distance histogram features (DHF), is calculated and shown in Figure 3-left. The represen-
tative points are normalized so that they have zero-mean and unit SD. In addition, we calculate a vector for each point
to the others and look at the angles between those vectors and the x-, y-, z-axes. Then, the histogram of those angles,
called angle histogram feature (AHF), for each axis is calculated (shown in Figure 3-right). Since each histogram con-
sists of 20 bins, the feature vector for each body part has a size of 80 (20 for DHF and 20+20+20 for AHF that uses
three axes).

3.4 Body part selection

For each body part, we search for the best match in the database by comparing the feature vector of querying body part
and that of each of corresponding body part in database. The body part in the database with minimum feature distance to
the querying feature vector is selected as the best match. In order to calculate distances between feature vectors, we use
the L2 metric.
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F I G U R E 3 Illustration of distance histogram features (DHF) for one seed point is shown on the second column and angle histogram
feature (AHF) on the fourth column. The same point set of size 40 is used (first column) for both feature computations. u represents the
vector between any two points in the point set. DHF is an histogram of ||u|| and AHF is for the angles between u and x-, y-, z-axes namely, a,
b, c, respectively

3.5 Merging selected body parts

Since each body part is possibly taken from different human bodies, some unpleasant appearances come to existence
when the selected parts are merged together. In order to get rid of these problematic results, we follow a four-step pro-
cedure which is described in the following subsections. The effect of each step can be seen Figure 4-right. The relative
improvements of each of these steps are also visualized in Figure 5.

3.5.1 Moving base points

We first select one of the models from our database and call it the base model. We will essentially deform this base model
in order to get our smooth output. To this end, we first move the vertices of the base model to the corresponding positions
of the parts that we selected in Section 3.4. Recall that all of the models in our database are in fixed connectivity, revealing
the correspondences immediately.

Since the body parts belong to different bodies there exist some mismatches. In addition, since the range of rotations of
the body parts in the database is limited, the selected parts do not fully match with the input points in terms of orientation.
As a solution to this problems, we continue with the next steps.

3.5.2 Rigid body part alignment

In order to get the selected part (S) and the input points for that part (I) in the same orientation, we calculate and apply
a transformation matrix which transform the selected part into input points. This provides individual alignment of each
body part separate from each other. To do so, we follow the steps described in Reference 26, first both point sets are moved
to origin (S′ and I′) and then, calculate the co-variance matrix as follows:

C = S′(I′)T
. (1)



TASTAN and SAHILLIOĞLU 7

F I G U R E 4 (Left) Output
of the Interparts Alignment step
after Laplacian smoothing does
not yield a perfectly smooth
mesh (problems pointed by
arrows) (left). Smoother and
more natural result is obtained
when the output of the
Inter-parts Alignment goes
directly to our Border
Smoothing step. This is our final
resulting model (right). (Right)
All steps are visualized for a
different input. (a) Input points,
(b) Result after moving base
points (3.5.1), (c) Result after
Rigid Body Part Alignment
(3.5.2), (d) Result after
Interparts Alignment (3.5.3),
(e) Result after Border
Smoothing (3.5.4), (f)
Ground-truth result

F I G U R E 5 The
comparison of outputs of our
algorithmic steps with
color-coded errors. Top row is
the front view, bottom row is the
back view. (a) input points,
(b) output of moving base
points, (c) output of rigid body
part alignment, (d) output of
inter-parts alignment,
(e) output of border smoothing,
(f) ground-truth. The average
errors from column B to column
E are 2.120, 1.291, 1.088, 1.076,
respectively

Using this co-variance matrix, the following matrix is constructed

|||||||||||

C00 + C11 + C22 C12 − C21 C20 − C02 C01 − C10

C12 − C21 C00 − C11 − C22 C01 + C10 C20 + C02

C20 − C02 C01 + C10 −C00 + C11 − C22 C12 + C21

C01 − C10 C20 + C02 C12 + C21 −C00 − C11 + C22

|||||||||||

. (2)
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As Reference 26 suggested, in order to find the best orientation, we calculate eigen-vectors of the matrix. Using these
vectors, now we can construct the rigid alignment matrix.

3.5.3 Interparts alignment

To create a consistent human body, the body parts taken from different bodies should be aligned. To do so, we fix the
position of the chest part (light blue colored in Figure 1-right) and add a translation to the head, arms, and belly parts;
black-, yellow-, pink-, and green-colored parts in that figure, respectively, so that the borders of those parts are matched.
Then, the same operation is followed for legs, blue and red colored in Figure 1-right), to match them with the belly part.

In order to calculate the translation between two parts, we first find the neighboring edges, that is, edges which has
one vertex at one part and the other vertex at the other part. Then, an average displacement between the vertices of the
neighboring edges is calculated. This displacement is the translation to be needed to align the borders of the body parts
from different bodies.

After this operation, the average points of the borders are matched. Since the parts can have different sizes, for example,
width of the borders, rough and uneven surfaces appears at the borders of parts. To alleviate this problem, we apply our
border smoothing algorithm.

3.5.4 Border smoothing

Since the selected parts come from different human bodies, there may exist “surgical scars” between neighboring body
parts. In order to get rid of these abnormalities, we first simply try Laplacian smoothing49 with several iterations as well
as surface fairing.50 However, the defects around the joint points are so large that they cannot be cleared by a simple
smoothing algorithm as shown in Figure 4-left.

In order to remove the defects more robustly, we perform Laplacian deformation of the base model. In particular,
the base model moves under Laplacian energy where we use the selected part points as handles. Consequently, the base
model goes to the shape and pose implied by the selected part points. For this deformation, we make use of the differential
coordinates by Laplacian of the mesh, which encodes each vertex relative to its neighbors, as defined in Reference 51. For
the construction of the Laplacian of the mesh, the cotangent weights52 are used. Since a differential coordinate is a linear
combination of a vertex and its neighbors, the process of constructing differential coordinates for all vertices is as follows:

Lv = 𝜹, (3)

where L is n-by-n Laplacian matrix, v is n-by-3 matrix in which each row contains a vertex and 𝜹 is n-by-3 matrix storing
differential coordinates.

The regularization term of the deformation energy is the least-squares difference between differential coordinates of
the rest-pose of the base model mesh (v0) and the deformed pose of the base model mesh (v):

Ereg = ||Lv0 − Lv||2. (4)

On the other hand, the match term is the sum of the squares of the distance between the corresponding points from
the deformed pose mesh and the fixed handles hk designated by the selected parts from Section 3.4:

Ematch =
N∑

k=1
||vk − hk||2, (5)

where N is the number of handle points, that is, 40 from each of the seven parts, hence 280 for our experiments.
In our case, weighted regularization term and matching term are used to construct total deformation energy

(Equation (6)), then a set of vertices is searched for in order to minimize the total deformation energy.

Etot = 𝛼Ereg + Ematch. (6)
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To minimize Etot, we first take the derivative of it with respect to v and then equate it to zero. The resulting sparse
linear system to be solved instantly for v is as follows:

(𝛼LTL + I)v = 𝛼LTLv0 + h, (7)

where 𝛼 controls the weight of the regularization energy.
The result of each step is shown on the right part of Figure 4. The results of the improvements made in each step, on the

other hand, can be shown in Figure 5. The largest improvement has been made by the Rigid Body Part alignment as each
part which is independent from each other is put together to build a human body. After Inter-part Alignment, the error
is decreased by significant amount. Finally, border smoothing reduces the error slightly but improves the appearance of
the body considerably.

4 EXPERIMENTS AND RESULTS

The proposed approach is evaluated with input body points which are taken from differently posed and shaped mod-
els. In order to make the evaluation easy and accurate, the input points are selected from the ground-truth body
meshes. However, the real-world applications can be possible such as obtaining the input points directly from 2D
images and feed them to our method to produce a 3D model from a 2D image. To do so, there exists various stud-
ies in the literature such as Reference 13. Although Reference 13 works with faces, it can be possible to extend their
work so that the method produces 3D body points by training their deep learning model with 3D body models. In
addition, Reference 53 design a cascaded coupled-regressor approach by integrating a 3D point distribution model
in order to estimate the 3D landmarks. Reference 10 also estimates 3D landmark on human bodies by using sen-
sor arrays which are combined with deep learning method which maps measured capacitance from the sensors to
the deformed geometry. Another source of data is the sparse markers placed on human bodies for purposes such as
motion capture.

Input points, the ground-truth result and outputs of each step are shown in Figure 4-right. The final result of our
algorithm has been compared with the results of as-rigid-as-possible (ARAP)-based shape registration algorithm intro-
duced in Reference 54. This algorithm essentially uses ARAP energy to regularize the mesh as it is being pulled toward
the data points. ARAP energy first fixes the positions and finds the optimal rotation for each mesh face. It then fixes the
rotations and finds the optimal positions. These two steps are alternated until mesh does not move any further. Here a
base model is deformed toward the sparse input point cloud. The obvious problem here is the pose and shape of the start-
ing base model for the ARAP method. To keep this competitor method more accurate, we manually select a good start,
but note that it is rather a difficult initialization problem, rendering our competitor less preferable than our method. The
error metric for comparison is the average Euclidean distance between the output points and the corresponding ground
truth points, formulated as follows:

𝜀 =
∑n

i=1 ||Ii − Gi||
n𝜏

, (8)

where n is the number of points in meshes, 𝜏 is the average edge length of the ground-truth mesh (in order to interpret
the results easily in terms of the average edge lengths), Ii is ith point of the output mesh and Gi is ith point of the
ground-truth mesh.

The constrained points are initialized with the ground-truth matches of the input points for the ARAP-based method.
Some comparisons have been shown in Figures 6–15 with the corresponding error quantification and timing values
in Tables 1 and 2, respectively. Note that, for space limitations we only provide output samples for a total of 10 dif-
ferent runs. We, in fact, have tested our algorithm comprehensively using a total of 50 different input configurations.
In the following figures, the order of the bodies from left to right is as follows; input points, ARAP-based result, our
Laplacian-based result, the ground-truth result. In addition, each body mesh in each figure is colored by the error
with respect to the the ground-truth. The error for each point of the mesh is the distance to the closest point in the
ground truth mesh after the output mesh is rigidly aligned to ground-truth mesh using Iterative Closest point (ICP)
algorithm. The average error for each result produced by the ARAP-based method and two different variants of the pro-
posed method are compared at Table 1. One of the variants interpolates the input points by linear method and the other
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F I G U R E 6 Comparison
of the results. Top row is the
front view, bottom row is the
back view. From left to right,
input points, as-rigid-as-
possible-based result, result of
our method and ground-truth
are shown, respectively. The
average errors of the second and
third columns are 1.736 and
1.125, respectively. The average
edge length of the ground-truth
mesh is 0.0144

F I G U R E 7 Comparison
of the results. Top row is the
front view, bottom row is the
back view. From left to right,
input points, as-rigid-as-
possible-based result, result of
our method and ground-truth
are shown, respectively. The
average errors of the second and
third columns are 1.23 and
1.103, respectively. The average
edge length of the ground-truth
mesh is 0.0165

does this by nonlinear spline interpolation. The results show that the proposed method with the spline interpolation
performs better than ARAP-based method. In addition, nonlinear point completion slightly improves the reconstruc-
tion accuracy compared to the linear point completion method. All errors in the tables and the figures are calculated
using Equation (8) which is the relative error with respect to average edge length in order to make the errors more
understandable. The execution times obtained on an Intel Core i7-6700K 16 GB RAM PC for each input are shown
in Table 2.

As shown in Figures 6–9, our method produces more accurate reconstructions than ARAP-based method does
for the most of the body parts. Although the deformation is higher in Figure 10 compared to the other samples,
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F I G U R E 8 Comparison
of the results. Top row is the
front view, bottom row is the
back view. From left to right,
input points, ARAP-based
result, result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 1.70 and 1.121, respectively.
The average edge length of the
ground-truth mesh is 0.0165

F I G U R E 9 Comparison
of the results. Top row is the
front view, bottom row is the
back view. From left to right,
input points, as-rigid-as-
possible-based result, result of
our method and ground-truth
are shown, respectively. The
average errors of the second and
third columns are 1.154 and
1.133, respectively. The average
edge length of the ground-truth
mesh is 0.0156

both methods reconstructs similar outputs. This suggests that both methods are affected by large deformations in
similar ways.

The number of points for each body part is also experimented in this study. The input points are completed up
to 10, 20, 30, 40, 50, and 100 points by starting from different numbers of points and the requested bodies are gen-
erated from these points. The starting points are the different percentages (viz, 30%, 40%, 50%, 60%, and 70%) of the
target number of points. The comparison of the different number of completed points is shown in Table 3. Most of the
cases, the error decreases as the number of points increases up to 40 points. After 40 points, the error almost remains
the same even if the number of points increases. Furthermore, after 50%, increasing the starting points percentage
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F I G U R E 10 Comparison
of results. Top row is the front
view, bottom row is the back
view. From left to right, input
points, as-rigid-as-possible-
based result, result of our
method and ground-truth are
shown, respectively. The average
errors of the second and third
columns are 2.284 and 1.617,
respectively. The average edge
length of the ground-truth mesh
is 0.0162

F I G U R E 11 Comparison
of the results for a different
input. Top row is the front view,
and bottom row is the back.
From left to right, input points,
as-rigid-as-possible-based result,
result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 1.853 and 1.429, respectively.
The average edge length of the
ground-truth mesh is 0.0163

does not change the error significantly. Considering the performance issues, we select 40 points as the most efficient
number of input points. We also come to conclusion that starting from merely 20 user input points (50% of 40) is
sufficient.

We also test our method with noisy data. To do so, each input point is moved in a random direction with random
amount of distance which can be at most the maximum edge length of the ground-truth mesh. Sample outputs with noisy
input are shown in Figures 16–18. As shown in the figures, our method is robust to noise in the input as it produces body
models which are very similar to the ones produced from noiseless input points. As the noise level increases, the average
error of the output increases.

Our method can also generate body models that do not even exist in our database by processing an input point set.
Some parts of this set are edited manually while other parts remain the same. As shown in Figure 19, points on the belly
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F I G U R E 12 Comparison
of the results for a different
input. Top row is the front view,
and bottom row is the back.
From left to right, input points,
as-rigid-as-possible-based result,
result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 1.01 and 1.82, respectively.
The average edge length of the
ground-truth mesh is 0.0148

F I G U R E 13 Comparison
of the results for a different
input. Top row is the front view,
and bottom row is the back.
From left to right, input points,
as-rigid-as-possible-based result,
result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 0.98 and 1.403, respectively.
The average edge length of the
ground-truth mesh is 0.0144

and chest parts are slightly moved outward from its center so as to create a human body which has a wider belly and chest
than the original one has.

4.1 Limitations

A limitation of the proposed method is that the input points need to be on the contours of the corresponding body
part. As the input points move away from the contours, e.g., due to geometric noise, the resulting reconstructed body
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F I G U R E 14 Comparison
of the results for a different
input. Top row is the front view,
and bottom row is the back.
From left to right, input points,
as-rigid-as-possible-based result,
result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 1.303 and 1.254, respectively.
The average edge length of the
ground-truth mesh is 0.0142

F I G U R E 15 Comparison
of the results for a different
input. Top row is the front view,
and bottom row is the back.
From left to right, input points,
as-rigid-as-possible-based result,
result of our method and
ground-truth are shown,
respectively. The average errors
of the second and third columns
are 1.281 and 1.176, respectively.
The average edge length of the
ground-truth mesh is 0.0155

becomes different from the ground-truth result. This is caused by the fact that the features are designed for defin-
ing a body part as a contour, therefore, given a non-contour point set, our method produces erroneous result. The
erroneous results produced from the input points which are far from the contours of the body parts are shown in
Figures 20 and 21.

Another limitation is the inability to reconstruct highly articulated poses due to the one-piece arm and leg segmen-
tations of our database. All other poses, including significant drifts without bending, can still be obtained with varying
features such as height and weight.
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T A B L E 1 Errors produced by
different methods. Our method with
spline interpolation turns out to be the
best performer on average taken over 50
different executions. Only 10 of them are
shown in this table with pointers to their
corresponding figures (first column)

Figure numbers

Our method
with linear
interpolation

Our method
with spline
interpolation

As-rigid-as-possible-
based method

6 1.146 1.125 1.736

7 1.146 1.103 1.23

8 1.170 1.121 1.70

9 1.359 1.133 1.154

10 1.759 1.617 2.284

11 1.552 1.429 1.853

12 1.19 1.01 1.82

13 1.126 0.98 1.403

14 1.299 1.254 1.303

15 1.204 1.176 1.281

Average 1.198 1.152 1.607

T A B L E 2 Execution times of each of our steps and our total as well as the competitor method′s total (in s)

Figure
numbers

Feature
matching
(Section 3.4)

Rotation
alignment
(Section 3.5.2)

Inter-part
alignment
(Section 3.5.3)

Border
smoothing
(Section 3.5.4)

Our
method
total

ARAP-based
total

6 1.197 2.043 0.47 5.02 8.73 9.3

7 1.164 2.314 0.469 4.97 8.917 9.65

8 1.172 2.145 0.468 4.95 8.735 9.72

9 1.189 2.095 0.472 5.05 8.806 9.47

10 1.175 2.243 0.471 4.98 8.869 9.82

11 1.166 2.145 0.467 5.01 8.78 9.52

12 1.159 2.211 0.420 4.36 8.15 9.16

13 1.163 2.144 0.408 4.61 8.325 9.97

14 1.188 2.042 0.451 4.99 8.671 9.17

15 1.178 2.255 0.759 4.56 8.752 9.44

T A B L E 3 Errors by number of points after
point completion

10 Points 20 Points 30 Points 40 Points 50 Points 100 Points

30% 2.035 1.326 1.264 1.222 1.222 1.222

40% 1.39 1.354 1.25 1.18 1.183 1.181

50% 1.27 1.319 1.243 1.18 1.18 1.18

60% 1.25 1.25 1.243 1.153 1.151 1.151

70% 1.243 1.229 1.243 1.153 1.153 1.153
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F I G U R E 16 Comparison
of results under geometric noise.
Top row is the front view, bottom
row is the back view. From left to
right, input points (noisy input
colored as red, original input
colored as blue), result of noisy
input, result of original input
and ground-truth are shown,
respectively. Noise is generated
from Gaussian distribution with
standard deviation of 0.8. The
average errors of the second and
third columns are 1.243 and
1.125, respectively. The average
edge length of the ground-truth
mesh is 0.0144

F I G U R E 17 Comparison
of results under geometric noise.
Top row is the front view, bottom
row is the back view. From left to
right, input points (noisy input
colored as red, original input
colored as blue), result of noisy
input, result of original input
and ground-truth are shown,
respectively. Noise is generated
from Gaussian distribution with
SD of 1. The average errors of
the second and third columns
are 1.285 and 1.125, respectively.
The average edge length of the
ground-truth mesh is 0.0144

5 CONCLUSION

In computer graphics, one of the most studied field is human body modeling. In order to create human body models,
different approaches use different inputs such as single RGB-D depth frames,17 multiple depth frames,22 morphable tem-
plate models and landmarks,25 and dense 3D point clouds.41 Differently from previous studies, in this paper, a data-driven
method which reconstructs human body from sparse input points is proposed.

The comparative evaluations have shown that proposed method is fast and successful at generating human body from
limited number of points. The proposed method is able to reconstruct bodies in different shapes and different poses,
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F I G U R E 18 Comparison
of results under geometric noise.
Top row is the front view, bottom
row is the back view. From left to
right, input points (noisy input
colored as red, original input
colored as blue), result of noisy
input, result of original input
and ground-truth are shown,
respectively. Noise is generated
from Gaussian distribution with
SD of 1.5. The average errors of
the second and third columns
are 1.458 and 1.125, respectively.
The average edge length of the
ground-truth mesh is 0.0144

F I G U R E 19 Illustration of generating a
new body by manual editing. Top row is the
front view, bottom row is the back view. From
left to right, input points (manually edited input
colored as blue, original input colored as green),
result of manually edited input and result of
original input shown, respectively. Notice the
slight expansion in belly and chest of the blue
model
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F I G U R E 20 Comparison
of the results produced from the
input points which are far from
the contours and from the input
points which are around the
contours. Top row is the front
view, bottom row is the back
view. From left to right, input
points (red one represents the
input points which are far from
the contours and blue one
represents the input points
which are around the contours),
result of red input points, result
of blue input points and
ground-truth are shown,
respectively. The average errors
for model in the second and
third column are 2.083 and
1.569, respectively

F I G U R E 21 Comparison
of the results produced from the
input points which are far from
the contours and from the input
points which are around the
contours. Top row is the front
view, bottom row is the back
view. From left to right, input
points (red one represents the
input points which are far from
the contours and blue one
represents the input points
which are around the contours),
result of red input points, result
of blue input points and
ground-truth are shown,
respectively. The average errors
for model in the second and
third column are 2.639 and
1.433, respectively.

including non-rigid bending, thanks to the novel point set features and deformation support. It has shown resilience to
geometric noise and potential for the synthesis of brand new models.

As a future work, our method can be extended so that the bodies are reconstructed from 2D images by combining our
method and the methods like the one proposed in.13 Manual editing that lead to brand new human body generations can
also be replaced by an automated process, for example, allow movement of input points in a particular pattern.
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