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Abstract
In this paper, a novel data-centric approach is proposed for solving the 3D mesh segmentation problem. The method uses
node2vec, a semi-supervised learning algorithm, to create vector embedding representations for each node in a 3D mesh
graph. This makes the mesh data more compact and easier to process which is important for reducing computation costs.
K-Means clustering is then used to cluster each node according to their node embedding information. This data-centric
approach is more computationally efficient than other complex models such as CNN and RNN. The main contribution of
this study is the development of a data-centric AI framework that combines node2vec embedding, machine learning, and
deep learning techniques. The use of cosine similarity is also adapted to compare and evaluate the trained node embedding
vectors with different hyperparameters. Additionally, a new algorithm is developed to determine the optimal cluster number
using geodesic distance on the 3D mesh. Overall, this approach provides competitive results compared to existing mesh
segmentation methods.

Keywords 3D mesh segmentation · Unsupervised learning · Embedding · Node2vec · K-Means · Geodesic distance

1 Introduction

Adata-centric approach that is proposed for solving the prob-
lem of mesh segmentation is presented in this work. Unlike
traditional methods, which rely on labeled data, the pro-
posed algorithm uses unlabeled 3D triangular meshes. We
will consider both adata-centric approach and fully unlabeled
experiments. The algorithm is applied to 3D human body and
object meshes, such as a goblet, guitar, alien, chair, and vase.
In addition to the new approach to mesh segmentation, the
work also introduces three new methods: geodesic inertia,
an evaluation method for 3D mesh data, and an embedding
quality evaluation method for finding better vector represen-
tations of 3D mesh data. The proposed solution is shown to
be effective on 3D human body and object meshes.
Motivation This work takes a data-centric approach to AI,
focusing on data preparation rather than complex models.
Unlike model-centric AI, which aims to improve models
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by making them more complex, data-centric AI focuses
on improving the raw data itself. This approach has sev-
eral advantages, including reduced computation costs and
improved energy efficiency. A recent study showed [38]
that dimensionality reduction can lower the energy require-
ments of model training by up to 76% while maintaining
performance. This approach is particularly effective when
the number of data points is reduced. Most machine learn-
ing and deep learning techniques rely on labeled data, but in
reality, most data are unlabeled [24]. AI pioneers LeCun et
al. believe that unsupervised learning will be increasingly
important in the long term, as it more closely resembles
how humans and animals learn. They argue that we discover
the world by observing, rather than by labeling objects. In
light of this, the authors have developed an unsupervised
algorithm that is more efficient at training time, thanks to
its data-centric approach. In this study, we have focused on
unsupervised learning, using a data-centric and unsupervised
approach. They have applied the node2vec embedding algo-
rithm to 3D mesh data, transforming it into a more compact
and meaningful form. This reduces the curse of dimension-
ality and significantly lowers the computation cost, allowing
the results to compete with models such as meshWalker [22]
andmeshCNN [14], which require significant GPU and com-
putation power.
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2 Related work

A wide range of research contributed 3D mesh segmenta-
tion area. The graph embedding technique is vital in the
3D mesh segmentation we implemented in this work. We
cover graph embedding techniques in this section in detail.
Goyal and Ferrara et al. [12] divided graph embedding
techniques into three categories which are factorization, ran-
domwalk, and deep learning. Factorization-based techniques
factorize a matrix representing the connections between
nodes to generate the embedding. Locally linear embedding
[33] is a method for unsupervised learning that computes
neighborhood-preserving, low-dimensional embeddings of
high-dimensional inputs, graph factorization [2], graph rep-
resentation [6] which learns weighted graph vertex represen-
tations, and high-order proximity preserved embedding are
different kinds of factorization-based techniques. Addition-
ally, Luo et al. [25] provide a novel Cauchy graph embedding
that preserves the similarity relationships of the original data
in the embedded space by using a new objective.

The process in which randomly moving objects depart
from their starting point is known as a random walk. Node
centrality [29] and similarity [11] are some of the applica-
tion areas for approximating graph properties. For instance,
the authors applied the random walk method in order to feed
the RNN model in [22]. DeepWalk [31] which uses trun-
cated random walks, node2vec, HARP [8] which presents a
method to enhance the solution and prevent local optima, and
walklet [32] where explicit modeling and random walks are
combined are algorithms for obtaining node representations
in a graph. This method is scalable and preserves high-order
proximity between nodes. node2vec [13] is a framework for
developing continuous feature representations for nodes in a
graph. It is an advanced version of DeepWalk controlling the
path and weighted random behavior. Grover and Leskovec et
al. developed BFS and DFS algorithms for controlling ran-
domness rather than walking randomly. In [23] implemented
a random walk strategy to segment 3D meshes.

Deep learning algorithms are being developed for graph
embeddings and scene processing [1] as a growing research
area. SDNE, DNGR, GCN, and VGAE are DL-based meth-
ods. SDNE [39] is a semi-supervised model that has layers
with nonlinear functions for capturing nonlinearity while
preserving the local and global structures. Cao et al. [7] devel-
oped a model for learning graph representations that creates
a low-dimensional vector representation for each vertex by
encoding the graph’s structural information. GCN [20] is dif-
ferent from SDNE and DNGR algorithms. While inputs are
the global neighborhood of each nodewhich is expensive and
non-optimal for large sparse graphs in SDNE andDNGR, the
GCN model takes inputs via a graph convolutional operator,
which solves the problems in other models. For example,
Sever et al. [34] used GCN for a 3D mesh segmentation

problem using sparse face labels of a 3D object. VGAE [21]
is an unsupervised learning technique in which a variational
autoencoder is applied to the graph. In [21], Kipf andWelling
et al. demonstrated their architecture, GCN as an encoder,
and an inner product as a decoder. Moreover, GCN is used
to learn the higher-level dependencies between nodes from
the input adjacency matrix. In [14], the authors developed a
newmesh convolution layer. They used it in the segmentation
problem. Lahav and Tal et al. [22] proposed a new algorithm
for segmentation that uses random walks for exploring mesh
and RNN, a deep learning algorithm for learning temporal
sequences in order to train a supervised segmentation model.

Unsupervised learning is often used in the field of mesh
segmentation. K-Means is applied for 3Dmesh segmentation
in [17]. Using geodesic distance and convexity was a strategy
for decomposing object meshes into segmented parts devel-
oped by Katz and Tal [17]. Also, [18] applied K-Means and
fuzzy C-Means algorithms to output direct clustering results.
Sidi et al. [37] performed a descriptor space study, and using
the results, they produced a spectral clustering for segmenta-
tion. In [26], the labeling is done by adding the energy term of
unlabeled data to the conditional randomfields. Shu et al. [35]
developed scribble-based segmentation with weakly labeled
objects. Additionally, Shu et al. [36] developed another algo-
rithm using soft density peak clustering and semi-supervised
learning. They proposed a network that significantly reduces
the necessity for not preparing fully labeled 3D shapes. In
[16], the authors developed a self-supervised algorithm that
uses KNN graph and shape descriptor two autoencoders:
classical and improved graph.

3 Methodology

In recent years, the field of deep learning has seen a growth in
the development of algorithms for data representation tech-
niques, such as embedding vectors. Embedding is a way of
converting data into numerical form to make it easier to pro-
cess and reduce its size, which can help prevent the challenge
of working with high-dimensional data known as the curse
of dimensionality. In this way, embedding extracts important
information from high-dimensional data and creates a low-
dimensional representation that retains enough information
to be useful for solving a particular problem. Our proposed
algorithm mainly focuses on the statement that an unsuper-
vised algorithmworks best for train timewith the data-centric
approach. Hence, we design an algorithm with node2vec
and K-Means to find an answer to our research question.
In this chapter, the details of our segmentation algorithm are
presented. Our 3D mesh segmentation algorithm is divided
into two parts, which are node embedding representation and
node clustering.
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Fig. 1 An example of how to
pair target and context data for
skip-gram architecture. The
passage is taken from the Lord
of the Rings, the Fellowship of
the Ring by J. R. R. Tolkien

Fig. 2 A diagram of how
skip-gram architecture is
applied on 3D mesh data

3.1 Node embedding representation

Embedding representation is a way of using mathematical
operations on powerful computation tools to extract sim-
ilar information from objects or data features. In the first
step of our 3D mesh segmentation algorithm, we map 3D
mesh data to embedding vectors. The 3D mesh data struc-
ture creates a relationship between positions in 3D space and
the connections between them. We use the node2vec [13]
algorithm to capture the neighborhood information because
it uses the connections between nodes in a biased random
walk. node2vec is a semi-supervised framework that learns
continuous vector representations for nodes in graphs, like
the 3D meshes in our case. The algorithm maps nodes to a
low-dimensional space that maximizes the likelihood of pre-
serving the network neighborhoods of the nodes. The random
walk with bias method effectively explores different neigh-
borhoods and creates a flexible representation of a node’s
connected neighborhood. This method allows for more flex-
ibility in exploring neighborhoods, which leads to broader
representations that capture more comprehensive attributes
of a node. It also improves upon previous methods that used
more rigid conceptions of network neighborhoods.

The node2vec algorithm is based on the idea behind the
word2vec/skip-gram [28] algorithm, which is used for word
embeddings. In the word2vec algorithm, input and output
vectors are one-hot encodedpairs of target and contextwords,

obtained by sliding awindowof contextwords around the tar-
get word; see Fig. 1. The algorithm uses a negative sampling
strategy and a fully connected deep learning architecturewith
one hidden layer and one output layer to train the weights,
which are then used as the word embedding vectors for each
word in the vocabulary; see Fig. 3. In the node2vec algorithm,
nodes are used instead of words, and biased random walks
are used as input text. This allows the node2vec algorithm to
capture the relevant context of the 3D mesh data.

In the node2vec algorithm, randomwalks are used to con-
struct the input and output vectors, similar to how sentences
are used in the word2vec algorithm. A random walk is a
sequence of nodes that are randomly chosen from the nodes
connected to the current node in the sequence. For example,
in a sample graph from 3D mesh data (see Fig. 2), a random
walk starting from node Ni might be Ni , Nk , N j , No, Nn , Nl ,
Nm . In the node2vec algorithm, bias is added to the random
walks to make them follow a breadth-first search (BFS) or
depth-first search (DFS) strategy. In BFS, only nodes directly
adjacent to the source node are allowed in the neighborhood,
while in DFS, the neighborhood is formed of nodes that are
progressively further from the source node.

After exploring the 3D mesh data using biased ran-
dom walks, the node2vec algorithm begins the training
process. This involves training a shallow, deep learning net-
work with one-hot encoded target and context node pairs,
(Ni , N j ), (Ni , Nk), where Ni , N j , Nk ∈ N and N is the set
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Fig. 3 Skipgram architecture.
Ni is the target node and N j and
Nk are two example samples
from context node paired with
the target

of nodes in the 3D mesh data; see Fig. 3. The hidden layer is
linear, and the output layer uses a softmax function to calcu-
late probabilities for each pair. These context-paired nodes
are also known as positive samples. In addition, the node2vec
algorithm uses a negative sampling method to optimize the
training process, similar to the word2vec algorithm. Nega-
tive samples are selected using a unigram distribution, which
means that themost frequent nodes are not used in the training
and their weights are not updated. At the end of the training,
the neural network produces a weight matrix, also called an
embedding matrix,W , where eachWi corresponds to a node
Ni , and the matrix has dimensions a×b, where a is the num-
ber of nodes and b is the embedding size hyperparameter.

3.2 Measuring embedding vector quality

The goal of this implementation is to measure the quality of
node embedding vectors in a neural network. To do this, we
use a cosine similarity metric to compare the similarity of
vectors representing the neighbor nodes in the network. This
allows us to evaluate the effectiveness of the node embedding
vectors in representing the data, as well as the quality of the
training process for the neural network. By finding the cosine
similarity between the vectors of neighboring nodes, it can
be determined how well the vectors capture the relationships
between the nodes and thus how well the neural network has
been trained.

Cosine similarity = cos θ = A · B
‖A‖‖B‖ , where A, B ∈ R

n

(1)

This implementation uses cosine similarity to evaluate the
quality of node embedding vectors in a neural network. In
order to do this, the authors first detect and pair the unique
neighboring nodes in the network. Next, they calculate the
cosine similarity (Eq. 1) between each pair of nodes and
append the results to a list. Finally, they use the mean value
of the cosine similarity scores to evaluate the quality of the

node embeddingvectors. If themean is closer to 1, the authors
consider the embedding vectors to be well represented. If the
mean is closer to 0 or −1, they consider the vectors to be
poorly represented.

3.3 Node clustering

In the second part of our 3D mesh segmentation algo-
rithm, we use a clustering algorithm on the node embedding.
We use the K-Means [27] algorithm, which is a centroid-
based method that iteratively partitions the dataset into k
non-overlapping clusters. Selecting the initial centroids is
important for the convergence of theK-Means algorithm, and
there are two commonmethods for initializing them: random
initialization and K-Means++ initialization. Random initial-
ization involves running the algorithm multiple times with
different random centroids and selecting the best solution,
whileK-Means++ [4] initialization reduces the risk of subop-
timal solutions and improves convergence speed by choosing
centroids that are far from each other.

3.3.1 Choosing the cluster number

The 3D mesh data are segmented into parts and the bor-
ders of these segments are joint together. We use the elbow
method, which is a way of evaluating the within-cluster sum
of squares (WCSS, Eq. 2) to determine the optimal num-
ber of clusters for our problem. The K-Means algorithm is
used to determine the inertia value when the optimal cen-
troid locations have been found. WCSS evaluates the sum
of the squared distance for each sample in a cluster to its
centroid. The highest inertia value is obtained when there is
only one cluster, and as the number of clusters increases, the
inertia value begins to decrease. This is because the distance
between the data points and their cluster centers gets smaller
as the number of centers increases. The optimal number of
clusters is determined by looking for the point at which the
rate of decrease in inertia slows down, which is often called
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the elbow point.

inertia =
kc∑

k=1

N∑

i=1

(xi − Ck)
2 (2)

3.4 Geodesic distance inertia method

The computation of shortest paths and geodesic distance
on curved domains is important for various applications in
fields such as digital geometry, scientific computing, com-
puter graphics, and computer vision. These tasks are more
challenging than calculating Euclidean distance because of
the influence of curvature on shortest path behavior and the
potential imprecision of the domain representation. Geodesic
distance is calculated by taking into account the shape of the
dataset, whereas Euclidean distance ignores it. This makes
geodesic distance useful for evaluating the effectiveness of
clustering algorithms that use Euclidean distance on raw 3D
data.

To evaluate geodesic inertia, we first determine the cen-
troid nodes for each cluster. To do this, we use the cluster
centroids on node embedding vectors, as we are experiment-
ing with clustering on node embeddings. Since the indexes
of the nodes are the same as the indexes of the correspond-
ing embeddings, we can easily find the cluster centroid node
by applying the minimum distance on the 3D axes. Next, we
separate the nodes according to their cluster. Then, we evalu-
ate the geodesic distances between the cluster members and
the centroid nodes using the shortest paths between them.
Since inertia is the sum of squared distances, we square the
evaluated geodesic distances and sum the squared distances
of all cluster members. After performing these steps for all
clusters, we compute the final inertia score by summing the
scores for all clusters. The final score gives the geodesic iner-
tia value for the k clusters.

4 Experiments and results

In this section, we will explain the steps we experimented
with and show the results of 3D mesh segmentation exper-
iments. We processed the 3D mesh segmentation algorithm
experiments in two distinct stages. Firstly, we trained the
nodes in 3D meshes with different hyperparameters to find
the optimal hyperparameter values according to embed-
ding representation quality using cosine similarity between
neighboring pairs. Secondly, we implemented a clustering
algorithm on node embeddings in order to cluster each node.
While experimenting with clustering, we used the elbow
method to find the optimal k value and compared the obtained
results with the other elbow method, which uses the inertia

values we developed and computed with geodesic distance
instead of Euclidean distance.

4.1 Dataset

In 3D mesh segmentation, there are widely used datasets
with many different shapes. In this work, we experimented
with and tested our new segmentation algorithm on different
datasets. The first one is FAUST [5] dataset. The dataset has
100 scans of 10 distinct humans with 10 different poses,
which are high-resolution triangulated meshes. The FAUST
dataset is used because it has high-resolution meshes, and
our solution to the 3D mesh segmentation problem is related
to training embedding for each node. The second dataset is
SCAPE [3], which has 71 different poses and high-resolution
mesh objects. Another dataset is that we use three classes of
COSEG [40] dataset, which are guitar, vase, goblet, chair,
and alien. We use Plotly, which is a Python library for data
visualization (Figs. 4 and 5).

4.2 Experiments and evaluations on node
embedding

The first part of the experiments consists of obtaining embed-
ding for 3D mesh data. PyTorch Geometric [10] library,
which leans on Pytorch [30], was used for training graph-
based learning models and processing 3D graph data such
as mesh and point clouds. We created all of our embeddings
from scratch for our experiments.We usedNVIDIAGeForce
GTX 1650 Ti GPU while training the node embeddings for
a single object.

4.2.1 Hyperparameter selection

Hyperparameter tuning is a process used inmachine learning
and deep learning to improve the performance of a model by
adjusting the settings of its hyperparameters. In this case, a
linear neural network with one hidden layer was trained to
compute the weights of the neural network for node embed-
ding representation vectors, using biased randomwalks and a
determined context size. The node embeddings were trained
using early stopping, which monitors the change in the loss
value between iterations and stops the training if the change
falls below a certain threshold. In this case, the threshold was
set at 1% and the “patience” parameter, which determines
how many times the training is allowed to continue after the
threshold is reached,was set at 4. SparseAdamoptimizer [19]
is used for all the training. Context size, embedding dimen-
sion, walk length, walks per node, learning rate, p, q, and
batch size are shown in detail in Eq. (3), where CS is context
size, ED is embedding dimension, WL is walk length,WpN
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Table 1 Embedding
representation quality results
according to cosine similarity
values’ minimum and maximum
values for all 3D mesh data
types

3D object Min Max

FAUST 0.36 0.98

SCAPE 0.68 0.99

ALIEN 0.32 0.98

VASE 0.07 0.94

GUITAR 0.13 0.96

CHAIR 0.13 0.98

GOBLET 0.06 0.97

Table 2 Optimal hyperparameters according to cosine similarity qual-
ity measurement experimented with chosen hyperparameter value sets

3D object CS ED WL WpN LR P Q

FAUST 40 32 100 10 0.01 1 1

SCAPE 20 10 100 30 0.005 0.3 0.4

ALIEN 20 16 25 15 0.005 0.7 0.9

VASE 20 16 30 25 0.005 1.2 0.1

GUITAR 18 12 30 25 0.005 0.2 0.3

CHAIR 24 16 30 25 0.005 1.5 0.9

GOBLET 20 12 25 10 0.005 0.4 0.2

CS context size,ED embeddingdimension,WLwalk length,WpN walks
per node, LR learning rate

is walks per node, LR is learning rate, P is return parameter,
Q is the in–out parameter, and BS is the batch size.

CS = {8, 10, 12, 15, 18, 20, 24, 40}
ED = {10, 12, 16, 32, 64, 72, 96, 128, 192, 256}
WL = {15, 20, 25, 30, 40, 60, 80, 100, 120, 150, 200}

WpN = {2, 5, 10, 15, 20, 25, 30, 40}
LR = {0.0005, 0.005, 0.001, 0.005, 0.002, 0.01, 0.02}
P = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5}
Q = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5}
BS = {8, 16, 32}

(3)

In experiments, we randomly selected hyperparameters to
generate more than 70 embedding vectors for each 3D mesh
data type. Using the cosine similarity algorithm, the results
were impressive; see Table 1, with values ranging from 0.36
to 0.98 for the FAUST dataset, etc. These results indicate that
the node embedding vector representations are qualified. The
following experiments were continued with the parameters
(Table 2) that gave the optimal results for each dataset and
found that different datasets required different hyperparam-
eters. The batch size was determined to be 8 based on the
results of the cosine similarity score.

Table 3 Optimal cluster values
according to elbow method for
each 3D mesh object

3D object k

FAUST 14

SCAPE 11

ALIEN 11

VASE 5

GUITAR 7

CHAIR 11

GOBLET 3

4.2.2 Experiments and evaluations on node clustering

In the second part of our 3D mesh segmentation algorithm,
we used node clustering to group similar nodes together. This
involved using the node embedding representations, which
we had previously trained and evaluated. We tested differ-
ent cluster numbers using the K-Means algorithm with both
random and K-Means++ initialization. The optimal number
of clusters for each dataset was determined using the elbow
method; see Table 3.

It is described that a data-centric 3D mesh segmentation
algorithm that usesK-Means++ initialization and cosine sim-
ilarity and the elbow method to find the optimal number of
clusters. The results of the algorithm show that it can success-
fully segment distinct parts of objects, as illustrated in Fig. 6.
The algorithm was applied to two human-shaped datasets,
FAUST and SCAPE, and achieved good results in terms of
symmetry and meaningfully for the FAUST dataset, but not
as good results for the SCAPE dataset. Additionally, it is
adaptable to apply obtained clusters for other members of the
SCAPE and FAUST datasets since they have the same node
and face properties. We experimented with 5 objects: a gob-
let, a vase, a guitar, a chair, and an alien. It was observed that
the model was able to segment the objects into their compo-
nent parts well, except for some small issues in specific areas;
see Fig. 6. In general, the model was able to segment objects
with different structures, like the guitar and the chair, andwas
also able to distinguish texture differences. The alien, which
has many extremities and unusual eyes, was also well seg-
mented by the model. To sum up, our data-centric 3D mesh
segmentation model works well for different kinds of objects
where their structures are different.

The segmentationmodel experimentedwith randomly ini-
tialized centroids to see how well it performed. We then
compared its results to those of amodel using theK-Means++
initialization method. We evaluated the performance of the
models using two numeric results: the Euclidean distance
between the initial and final centroid locations; see Table 4,
and the inertia values calculated using the elbowmethod; see
Table 5. It was found that the K-Means++ method generally
producedbetter results than the random initializationmethod,
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Fig. 4 Our 3D mesh
segmentation algorithm
illustration

Fig. 5 Examples of ill- and
well-trained 3D mesh data node
embedding vector
representations on 3D scatter
plot. Blue (left side) ones show
ill-represented examples, and
purple (right side) ones show
well-represented examples
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Fig. 6 Visual results with k values suggested by elbow method using
Eucldiean distance

with smaller distances and inertia values. These calculations
were performed on the vector representations of 3D mesh
data. The results of using the K-Means++ and random ini-
tialization algorithms for K-Means clustering are presented
in Fig. 7. It is clear that the way in which the initial centroids
are placed plays a crucial role in the quality of the resulting
clusters, as well as the number of clusters and the quality
of the data. In all of the 3D mesh data objects, K-Means++
produces better results in terms of symmetry and the ability
to separate distinct parts of the objects, such as the handle
of a vase or the feet of a chair. The problems with the ran-
dom initialization can be caused by the stucking the local
optima. Overall, K-Means++ initialization produces better
results than random initialization because the initial centroids
are distributed more evenly and are less likely to get stuck in
local optima.

Table 4 Euclidean distance averages between initial centroids and final
centroids for random and K-Means++ initialization methods

3D object Random init. K-Means++ init.

FAUST 2.80 2.78

SCAPE 2.09 1.75

ALIEN 2.13 2.15

CHAIR 2.36 2.15

GUITAR 2.29 2.46

VASE 2.23 2.50

GOBLET 2.48 2.32

Table 5 Inertia values at k which is decided by elbow method for ran-
dom and K-Means++ initialization methods

3D object Random init. K-Means++ init.

FAUST 16,798 16,044

SCAPE 11,324 10,906

ALIEN 6041 5975

CHAIR 7598 7391

GUITAR 2020 1968

VASE 1939 1924

GOBLET 3231 3109

Our data-centricAI approach has proven its success in per-
formance by demonstrating the difference in computational
time. For instance, our 3Dmesh segmentation algorithm per-
forms at high speed, unlike the supervised learning model
for 3D mesh segmentation [22]. The timing of the seg-
mentation algorithm including hyperparameter selection is
outlined in seconds in Table 6. In [22], which uses random
walk and RNN with labeled data, training time last approx-
imately 12h for the segmentation of the human body with
a GTX 1080 TI graphics card. The model uses SHREC11
dataset andCOSEGdataset for training themodel. SHREC11
dataset’s women and men classes have 252 nodes and 500
faces. Although the dataset has much less node and face data
according to SCAPE which has 12,500 nodes and 24,998
faces and FAUST which has 6890 nodes and 13,776 faces,
the training time of MeshWalker model’s is higher than
ours. Because they reproduced the data using random walks
and they feed their deep learning model data which is a
model-centric approach. Unlike the Meshwalker model, we
extracted the information from a 3D mesh data which helps
to lower the dimension with node2vec algorithm and trained
a single-layer deep learning model.

4.2.3 Geodesic inertia

The inertia value is calculated to determine the best number of
clusters where the experiments were made on 3D mesh data
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Fig. 7 Visual results with k values suggested by elbow method and
initial and final centroid positions. The left part of the each examples
illustrates the results that produced by the K-Means++ initialization and
the right part illustrates the random initialization. Blue dots denotes the
initial centroid positions and red dots denotes final centroids positions

Table 6 3D mesh segmentation train and clustering times in seconds

3D object NT NC Total Node num.

FAUST 91.26 0.19 91.45 6890

SCAPE 97.64 0.16 97.80 12,500

ALIEN 24.20 0.08 24.28 4060

CHAIR 21.37 0.10 21.47 5000

GUITAR 13.60 0.04 13.67 1152

VASE 8.65 0.02 13.62 874

GOBLET 7.23 0.03 13.63 1202

NT node training, NC node clustering

Table 7 Optimal cluster numbers according to metrics, Euclidean and
geodesic distance

3D object Euclidean, k Geodesic, k

FAUST 14 7

SCAPE 11 7

ALIEN 11 9

CHAIR 11 4

GUITAR 7 4

VASE 5 5

GOBLET 3 3

between 2 and 20 clusters. Instead of using the Euclidean
distance to calculate the inertia value, a new method called
geodesic inertia is used, which takes into account the orig-
inal structure of the data. The geodesic inertia method was
tested on different datasets and was found to return different
results than the Euclidean inertia method; see Table 7. While
making the experiments, we used the geodesic library [15].
In general, the geodesic inertia method was found to produce
more general and symmetrical segmentation results. It was
also easier to identify the optimal number of clusters using
the geodesic inertia method with the elbow method (Figs. 8,
9 and 10 ).

4.3 Comparisons

Our proposed model has been compared with other state-
of-the-art studies using the COSEG dataset by choosing k
according to the ground truth labels. Evaluations have been
conducted under three big categories of COSEG: vase, alien,
and chair datasets. For comparing our proposed model, no
specific training or tuning has been applied based on the
ground truth labels. The only adjustment in our algorithm
made was choosing the number of clusters in accordance
with the ground truth labels for comparison with the other
models. Tables8 and 9, respectively, show training time and
accuracy results based on the ground truth labels. It has been
observed that our algorithm is the fastest among the exist-
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Fig. 8 Our 3D mesh
segmentation results on FAUST
dataset for different people and
poses, k = 14

Fig. 9 Our 3D mesh
segmentation results on SCAPE
dataset showed in 8 unique
poses with k = 11

ing algorithms; see Table 8. In MeshWalker [22], random
walk and RNN are used with labeled data. Though it utilizes
with fewer nodes and faces, its training time is higher due
to data reproduction via random walks and a model-centric
approach. In contrast, ourmodel employs node2vec to extract
information from 3D mesh data, reducing dimensions and
training a single-layer deep learning model more efficiently.
Moreover, our algorithm is faster than SCMS-Net [16] due
to differences in architectural structure and processing of a
single object at a time. These results show training time.

When evaluating the accuracies, it was noted that apply-
ing the hyperparameters generated for specific objects to the
entire dataset using ground truth labels did not yield results
as successful as those of other models. Furthermore, as the
difference between the optimal cluster count identified by our
algorithm and the ground truth count increased, a decline in
accuracy was observed. This situation is particularly notice-
able for the alien dataset. Our algorithm finds the optimal
cluster number values (k) to be 9 and 11 depending on the
distance metric used, while the ground truth value is 4. Addi-
tionally, our algorithm learns the 3D mesh structure using
biased random walks, resulting in discrepancies between the
learned structure and ground truth labels. For example, in
the vase object depicted in Fig. 11, our algorithm segments
the vase into interior and exterior parts, whereas the other
model distinguishes it based on the base and top sections.
Considering all these factors, it has been observed that the
segmentation accuracy results, which rely on the ground
truth, are lower for our algorithm compared to other models;
see Table 9. We also compared qualitative the results with
the SCMS-Net. It was observed that the intersection of seg-
mented parts was more accurate in our case for the examples
in Fig. 11.

Upon examining the accuracy results in greater detail, we
observed that objects similar to the ones for which we tuned

the hyperparameters to find the optimal embeddings yielded
better outcomes; see Table 9. While determining the optimal
embeddings, we performed hyperparameter tuning on a sin-
gle object and applied the resulting parameters to all objects.
At this point, it has been observed that objects with similar
structures exhibit better segmentation accuracies, as shown
in Table 9. For instance, the hyperparameters that yield the
optimal embeddings have been selected based on the chair
structure featuring a single connection between the legs and
the seating area. These results have been obtained by select-
ing a subset of 25–45 similar objects, depending on the size
of the dataset.

5 Conclusions and future work

In this work, a novel unsupervised method for 3D mesh seg-
mentation is presented. The method maps 3D mesh data to
vector representations using the node2vec algorithm, which
allows for control over the discovery of mesh structure
through the use of biased random walks. This data-centric
approach does not require ground truth labels and is com-
putationally efficient, making it suitable for use on large
datasets. Themethodwas tested on different datasets, includ-
ing human-shaped and non-human-shaped objects, and was
found to produce similarity scores between 0.94 and 0.99.
The K-Means clustering algorithm was applied to the result-
ing vector representations, and a newmethod for determining
the optimal number of clusters was developed using geodesic
distance. This method was found to focus on more general
structures than classical methods and was easier to interpret.
Overall, this work presents a simple and effective approach
to 3D mesh segmentation that is applicable to a wide range
of datasets. At this point, when we look at computation cost,
today’sGPUs consumemuch power and contradict theGreen
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Fig. 10 Visual results with k values suggested by elbow method using
geodesic distance

AI concept. We benefited from the data-centric approach’s
computation cost and simple model outputs, which AI pio-
neers also emphasized.

The need for more computational power and the limita-
tions of current hardware mean that efforts to optimize the
training time of AI models will continue to be important. In
particular, the data-centric approach to AI will likely become
increasingly critical in the future. To improve the perfor-
mance of these models, researchers can work on optimizing
the node2vec algorithm or develop new embedding algo-
rithms. Additionally, using preprocessing techniques on the

Fig. 11 Qualitative results between ours (right ones) and SCMS-Net
[16] (left ones) results

Table 8 Average training time comparison table

Model Time Type GPU

Ours 38s U GTX 1650 TI

SCMS-Net [16] 145s U RTX 2080 TI

MeshWalker [22] 12h S GTX 1080 TI

U Unsupervised, S Supervised

data can help make the distinctions between clusters sharper,
and using autoencoders to transfer the data to a latent space
can help reduce the dimensionality of the data while still
preserving important information. Furthermore, classifying
objects with similar structures in the dataset and determin-
ing the hyperparameters that provide optimal embeddings
for each class, followed by applying them to their respective
classes, could potentially improve the overall results. These
approaches can be applied to a variety of datasets, including
point clouds and different classes of data.
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Table 9 Comparison between our results testedwith ground truth labels
and other models’ including unsupervised and supervised

Model Vase Chair Alien Type

Ours (subset) 0.769 0.901 0.625 U

Ours 0.723 0.748 0.562 U

SCMS-Net [16] 0.874 0.918 0.821 U

Sidi et al. [37] 0.69 0.80 – U

Wu et al. [41] 0.87 0.90 0.75 U

SCMS-Net [16] 0.934 0.967 0.961 S

MeshWalker [22] 0.987 0.996 0.991 S

MeshCNN [14] 0.923 0.929 0.962 S

Laplacian2Mesh [9] 0.945 0.965 0.950 S

Subset refers to a set with a similar structure with a single object for
which hyperparameter tuning has been performed to obtain the optimal
embedding
U Unsupervised, S Supervised
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