
1

A Partition Based Method for
Spectrum-Preserving Mesh Simplification

Misranur Yazgan and Yusuf Sahillioğlu

Abstract—The majority of the simplification methods focus on preserving the appearance of the mesh, ignoring the spectral properties
of the differential operators derived from the mesh. The spectrum of the Laplace-Beltrami operator is essential for a large subset of
applications in geometry processing. Coarsening a mesh without considering its spectral properties might result in incorrect
calculations on the simplified mesh. Given a 3D triangular mesh, this paper aims to simplify the mesh using edge collapses, while
focusing on preserving the spectral properties of the associated cotangent Laplace-Beltrami operator. Unlike the existing
spectrum-preserving coarsening methods, we consider solely the eigenvalues of the operator in order to preserve the spectrum. The
presented method is partition based, that is the input mesh is divided into smaller patches which are simplified individually. We
evaluate our method on a variety of meshes, by using functional maps and quantitative norms, to measure how well the eigenvalues
and eigenvectors of the Laplace-Beltrami operator computed on the input mesh are maintained by the output mesh. We demonstrate
that the achieved spectrum preservation is at least as effective as the existing spectral coarsening methods.

Index Terms—Mesh Simplification, Spectrum-Preserving, Laplace-Beltrami Spectrum, Partitioning

✦

1 INTRODUCTION

T RIANGULAR meshes are frequently used to represent 3D
models in geometry processing and computer graphics

areas. Most of the applications in these areas prefer high-
resolution models containing tremendous amount of details,
in order to provide a more realistic experience. However, as
the complexity of a mesh increases, the computational cost
required to process it also increases. This is where mesh
simplification methods come into the picture, in order to
create a simpler version of the complex mesh containing
fewer details, by reducing the number of vertices, edges and
faces existing in the mesh.

Most of these mesh simplification methods focus on ap-
pearance preservation, which is the case preferred in areas
such as rendering. Unfortunately, appearance-preserving
methods fall short of maintaining the spectral properties
of differential operators constructed on a mesh (see Figure
1), which are essential for some geometry processing tasks
such as shape correspondence and spectral distance compu-
tations. When the simplification is performed by ignoring
the spectral properties, the related computations carried out
on the coarsened mesh become inaccurate.

This paper focuses on the problem of simplifying a 3D
triangular mesh, while preserving the spectral properties
of the associated Laplace-Beltrami operator. In the recent
years, there have been major advancements in spectrum-
preserving coarsening methods. However, most of these
methods address the problem from a complete algebraic
perspective, by relying on directly operating on the matrices
corresponding to the differential operators, thus not produc-
ing a mesh as output. The others producing an output mesh
are based on utilizing the eigenvectors of the differential

• M. Yazgan and Y. Sahillioğlu are with the Department of Computer
Engineering, Middle East Technical University, Ankara, Turkey, 06800.
E-mail: see http://ceng.metu.edu.tr/∼ys

Manuscript received Month Day, 2023

Fig. 1. Lion mesh is reduced from 20212 vertices to 2000 vertices (10%
of its initial size). For an effective spectrum preservation, the functional
map visualizations should be resembling the identity matrix. Since the
main focus of QSlim [1] is to preserve the appearance of the mesh, it
falls short of preserving the spectral properties, whereas we perform
well despite 10% size.

operator, maintaining the eigenvalues indirectly. Unlike the
previous methods, our method considers the eigenvalues of
the Laplace-Beltrami operator instead of the eigenvectors,
while outputting a simplified triangular mesh. Upon our
evaluation on a variety of meshes, it is demonstrated that
we preserve the spectrum of the Laplace-Beltrami operator
at least as effectively as the existing methods.

The contributions of this study can be listed as the
following:

• A new partition based mesh simplification method is
proposed, whose primary purpose is to preserve the
spectrum of the Laplace-Beltrami operator derived
from a mesh. The method is capable of preserving the
spectrum by considering only the 1D eigenvalues of

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

the operator, whereas the previous methods are built
around the higher-dimensional eigenvectors.

• The proposed method is able to perform the spec-
trum preservation by considering only a small num-
ber of eigenvalues, since it is a partition based
method.

• Among the existing spectrum-preserving coarsening
methods, our method is one of the two methods
which produce a mesh as an output. Please also see
Table 1 for the positioning of our paper in literature.

1.1 Preserving Eigenvalues vs. Eigenvectors
Being our main novelty and motivation, it is worth to clarify
why preserving the spectrum (the eigenvalues) is more
important than eigenvectors. One main reason of using
eigenvectors is that if you can preserve those eigenvectors,
then you automatically preserve the eigenvalues (see Ap-
pendix C in [2]). So conceptually, our competitors [2]–[4] are
also aiming for preserving eigenvalues.

We claim that directly comparing eigenvalues could
also be a valid approach if one can robustly quantify the
difference in eigenvalues, as we do in our paper. Another
motivation is rather obvious: dealing with one dimensional
scalar eigenvalues instead of multidimensional eigenvectors
is theoretically much more efficient. In practice, however,
we could not find the proper algebraic update rule that
fully demonstrates this efficiency. We, instead, used our
partitioning and similar edge elimination heuristics which
worked sufficiently well. Please note that this naive way of
utilizing the one dimensional eigenvalues may establish a
ground for more advanced future works whose main focus
is spectrum preservation.

We also note the ‘hear the shape of the drum’ ap-
plication, i.e., recovering the geometric shape from pure
eigenvalues (no eigenvector needed). While this recovery
is theoretically impossible, recent studies such as [5] show
practical progress for flat geometries. Hence, a simplification
algorithm preserving eigenvalues, such as ours, can ‘hear
the shape of the drum’ at arbitrary resolutions. Finally,
while eigenvectors are equivalent up to sign before and after
coarsening, there is no such ambiguity with the eigenvalues.

Although we explicitly preserve the first 15 smallest
eigenvalues in our algorithm for efficiency purposes, we
observe in all our experiments that the remaining eigenval-
ues are also preserved as a by-product (please see the trend
for the first 100 eigenvalues in Figure 13). We can justify
our choice of 15 eigenvalues by shape representation [6],
retrieval [7], descriptor [8], registration [9], correspondence
[10] [11], isospectralization [5], and sampling [12], [13] lit-
erature that rely on similar moderate number of eigenval-
ues. The main reason of success in all these applications
as well as ours stems from the fact that a moderate size
of small eigenvalues already covers sufficient variation in
the spectrum and calculating high-frequency eigenvalues
have computational errors, as reported in [14]. Note finally
that, our execution time grows linearly with the number of
eigenvalues (Figure 20).

2 RELATED WORK

This section addresses the previous work related to mesh
simplification, the use of the Laplace-Beltrami operator in

TABLE 1
Classification of fully-automatic spectral simplification methods. Note

that only our method is highly parallelizable and hence has the
potential to be faster with a GPU implementation (currently CPU).

Operates On Mesh Out Speed Spect. Preservation
Evals Evecs Yes No Fast Med High Med Low

Ours ✓ ✓ ✓ ✓
[2] ✓ ✓ ✓ ✓
[3] ✓ ✓ ✓ ✓
[4] ✓ ✓ ✓ ✓

spectral geometry processing and spectral coarsening, con-
sidering the topics that our method is built on.

Mesh simplification has been a well-studied topic in
computer graphics area due to the growing need to be able
to represent the meshes at different resolutions correspond-
ing to different level-of-details. For the current context, mesh
simplification methods can be categorized as appearance-
preserving and spectrum-preserving methods. The majority
of the simplification methods are focused on preserving
the appearance and the geometric properties of the mesh.
The most prominent previous examples in this area include
mesh optimization [15] and mesh decimation [16]. One of
the most well-known algorithms among the appearance-
preserving simplification methods is the quadric error met-
rics method introduced by Garland and Heckbert [1]. Later,
this greedy edge collapse algorithm is extended to preserve
a variety of vertex attributes such as textures, colors or
normal vectors along with the geometry [17], [18]. For the
appearance-preserving methods, [19] provides a compre-
hensive study, where multiple mesh simplification methods
are examined and compared. Even though these methods,
that can also benefit further from multiresolution structures
for significantly large inputs [20], manage to preserve the
appearance of the mesh successfully, they fall short of main-
taining the spectral properties of differential operators con-
structed on a mesh, which lie at the core of some geometry
processing tasks such as shape correspondence [21].

The Laplace-Beltrami operator has been utilized for a
variety of spectral geometry processing tasks for many years
[22]. The use of Laplacian operator for mesh processing was
first introduced by Taubin [23], pointing out the analogy
between the Laplacian operator and the Fourier analysis.
The eigenvalues and eigenvectors of the Laplacian are then
exploited in areas such as mesh compression [24], mesh
segmentation [25] and shape correspondence [26].

Alongside these studies, since the Laplacian operator
is invariant under isometric transformations, it also served
as a robust foundation for deformation-invariant shape de-
scriptors. With this purpose, the eigenvalues of the Lapla-
cian operator are utilized for extracting fingerprints called
Shape-DNA, to represent a surface or a mesh [8], [27]. These
works have proved that the spectrum of the Laplacian has a
discriminative power that is capable of capturing the global
properties of a shape. However, it should also be noted that
the spectrum of the Laplacian does not provide a complete
identification for the shape, since there are some rare cases,
where two non-isometric shapes have the same spectrum.
The use of eigenvalues alone as shape descriptors is one
of our source of inspirations for depending this simplifica-
tion method on the eigenvalues of the Laplacian operator.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

Following these works, shape signatures called global point
signature (GPS) [6] and heat kernel signature (HKS) [28]
are introduced, including the eigenvectors into the scenario
as well. These shape descriptors are utilized in works such
as detecting global intrinsic symmetries of the shapes by
Ovsjanikov et al. [29].

In the recent years, there has been significant devel-
opments in simplification methods which are focused on
preserving the spectral properties of a mesh rather than
just the appearance. Öztireli et al. [30] resampled points
on a manifold surface by preserving the spectrum of the
Laplacian operator. Similarly, Liu et al. [2] presented a
spectrum-preserving coarsening method, which is also built
on sampling points from the original mesh. Their method
can be directly applied to the discrete geometric operators
derived from a mesh including the Laplacian operator. They
also introduced a metric build upon functional maps [31] to
measure how well the spectrum of an operator is preserved
after the coarsening. The mentioned metric is utilized in
this work, as well as in [3] and [4]. However, both of the
proposed methods do not produce a mesh. Later, Lescoat
et al. [3] proposed a spectral mesh simplification method
built upon the formulation presented in [2], which produces
a mesh as output. They altered the greedy edge collapse
algorithm introduced by Garland and Heckbert [1] with
a spectral cost metric. Their spectral cost relies on the
eigenvectors of the Laplacian while preserving the spec-
trum, whereas our method focuses directly on preserving
the eigenvalues of the Laplacian operator. Following the
work of Liu et al. [2], Chen et al. [4] proposed an operator
coarsening scheme using chordal decomposition, enabling
the optimization of an operator separately from the mesh.
The main difference that separates our method from the
existing spectral simplification methods is that our method
solely relies on the eigenvalues of the Laplacian operator,
whereas the others utilize the eigenvectors. Given a mesh, a
list of Laplacians defined in different dimensionalities, and
associated spectral bands, recent [32] coarsens the mesh by
deciding the order of contractions greedily. Another recent
study [33] moves the focus from appearance to solving
equations on surface while performing mesh simplification.

3 METHOD

Our spectrum-preserving mesh simplification algorithm is
based on edge collapse operations. The main goal of the
method is to preserve the spectral properties of the input
mesh at the low frequencies as much as possible, while
reducing the number of elements used to represent the
mesh. For this, we only consider the smallest k eigenvalues,
since the high-frequency components will not be present on
the simplified mesh.

3.1 Algorithm

The input to the algorithm is a manifold triangular mesh
M = (V, E ,F), which can possibly contain boundaries.
After the simplification process, it outputs a coarser mesh
M̃ = (Ṽ, Ẽ , F̃) with spectral properties as close as possible
to that of M. In addition, the algorithm also requires that
the following inputs are provided:

• m: the desired number of vertices in the simplified
mesh

• k: the number of eigenvalues to preserve
• p: the number of partitions that the mesh will be

divided into
• x: the number of similar edge collapses
• n: the number of edges to consider for the similar

edge collapses

Algorithm 1 Spectrum-Preserving Simplification
Input:M = (V, E ,F),m, k, p, x, n
Output: M̃ = (Ṽ, Ẽ , F̃)

1: Ṽ ← V; Ẽ ← E ; F̃ ← F
2: Divide the mesh M̃ into smaller partitions
M̃1,M̃2, . . . ,M̃p where M̃i = (Ṽi, Ẽi, F̃i)

3: Assign partitions M̃1,M̃2, . . . ,M̃p to threads
T1, T2, . . . , Tp

4: Calculate the number of edges that will be collapsed in
each partition nE1, nE2, . . . , nEp

5: Assign threads T1, T2, . . . , Tp to thread batches
B1, B2, . . . , Bb

6: for batch Bi in B1, B2, . . . , Bb do
7: for thread Tj in batch Bi do
8: Λin = {λin1 , . . . , λink

} ← the first k eigenvalues of
the Laplacian for partition M̃j

9: while nEj > 0 do
10: allCosts← FindEdgeCosts(M̃j , Ẽj , k,Λin)
11: bestEdges← edgeIds of allCosts[0 : n]
12: Collapse bestEdges[0]; nEj ← nEj − 1
13: for i in 1, . . . , x do
14: costs← FindEdgeCosts(M̃j , bestEdges, k,Λin)
15: Collapse costs[0]; nEj ← nEj − 1
16: end for
17: end while
18: end for
19: end for

Algorithm 2 FindEdgeCosts

Input: M̃j = (Ṽj , Ẽj , F̃j), E , k,Λin

Output: costs
1: costs← {}
2: for edge e ∈ E do
3: result← Collapse edge e
4: if result is successful then
5: Λout = {λout1 , . . . , λoutk} ← the first k eigenvalues

of the Laplacian for partition M̃j

6: coste ← the difference between Λin and Λout wrt
Levd norm

7: Reverse the edge collapse
8: end if
9: Add (e, coste) into costs

10: end for
11: Sort costs wrt increasing cost
12: return costs

Algorithm 1 summarizes the overall method, while Al-
gorithm 2 presents the main idea lying at the core of the
method, which is to compare the distance between the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

Fig. 2. Bunny mesh with 3485 vertices is divided into 10 partitions.
The triangles in the edge-cut region are marked with purple for better
understanding.

eigenvalues of the Laplacian computed on the original mesh
and the eigenvalues obtained after an edge collapse, for
measuring spectrum preservation. It is based on collapsing
the edges given in the edge set E one by one and associating
each edge with a cost measuring how much the spectrum of
the Laplacian operator is affected from the current collapse.
These costs are calculated by comparing the set of first k
eigenvalues with respect to the norm provided in Equation
1 [7]. Here, λM

i and λM̃
i stand for the ith eigenvalues of

the Laplacian operators derived from the input and output
meshes respectively.

Levd(M,M̃) =
1

2

k∑
i=1

[
|λM

i |
1
2 − |λM̃

i |
1
2

]2
|λM

i |
1
2 + |λM̃

i |
1
2

(1)

Since the eigen-decomposition of the Laplacian operator
takes very long time, performing this cost association for
every edge in the mesh at each step is impractical. To
avoid this, we introduced several approaches on top of the
core idea, which are explained one by one in the following
sections.

3.2 Partitioning
The input mesh is divided into smaller partitions and
each partition is simplified separately. Thus, the Laplacian
matrices are constructed within the partitions, instead of
constructing them for the whole mesh. This effectively
decreases the size of the Laplacian operator, leading to
much faster eigenvalue computations. In addition, when
each partition is treated separately, there are fewer edges to
consider while selecting the best edge to collapse. A sample
partitioning is provided in Figure 2. Although such a local
approximation of the spectrum through partitions is not
theoretically justified, we experimentally demonstrate that
the eigenvalues are preserved consistently better than the
state-of-the-arts (Figure 13). Besides, spectral compression
[24] and shape matching [34] studies also justify local ap-
proximations similar to ours for their own purposes.

Alongside its benefits, partitioning the vertices may in-
troduce some problems to the visual quality of the output
mesh. When each vertex is assigned to a partition, the
triangles left between the partition boundaries constitute
the edge-cut regions. Since the simplification is performed
within the partitions, the edges lying inside these regions
are not collapsed directly, but they get simplified indirectly

Fig. 3. Indirect simplification of the edge-cut region: If edge e lying on
the boundary of partition P2 is collapsed, it results with the removal of
a triangle inside the edge-cut region. Here, light blue and light green
triangles represent the triangles which will be removed indirectly with the
collapse of the edges lying on the boundary of P1 and P2 respectively.

when the edges lying on the partition boundaries are col-
lapsed. This indirect simplification is illustrated in Figure
3. In this way, the triangles inside the edge-cut regions are
also included in the simplification process and these regions
are not left with the original resolution. However, it is still
best to minimize these regions as much as possible. For this,
we utilized a partitioning tool called METIS [35], which
provides an option to prioritize minimizing the edge-cut
regions, specifically the number of edges in the edge-cut
regions, while keeping the partition sizes balanced. It also
guarantees that every edge belongs to only one partition, so
that the partitions do not affect each other.

As experimentally demonstrated in the previous
spectrum-preserving coarsening methods [2], [3], for proper
spectrum preservation, the number of vertices left in each
partition on the coarsened mesh should be at least 3 × k.
Hence, this situation bounds the number of vertices that
can be removed from a partition, allowing the simplification
only up to a point. To overcome this downfall of partition-
ing, if the desired output size m could not be achieved
with the given number of partitions p, we apply multi-
step simplification with hierarchical partitioning. With this,
the simplification is performed in multiple steps and at
each step we simplify the mesh only until an intermediate
resolution. A sample hierarchical partitioning can be found
in Figure 4.

3.3 Similar Edge Elimination
In this context, similar edges are defined as the edges, whose
removal affect the spectrum with an amount as close as
possible to each other. We essentially cache a batch of edges
without recomputing the Laplacian, and simplify this cache
first.

In the algorithm, at each step, the costs are calculated for
all the edges in the partition according to how much their
removal affect the original spectrum. Then, the edges are or-
dered with respect to this cost. At this point, instead of only
collapsing the edge with the lowest cost, we can consider
the best n edges. However, we do not collapse these best
n edges successively, because collapsing them without any
checks results with a worse spectrum preservation. Instead,
for the upcoming x steps, we select the best edge among
these best n edges found in the previous step, instead of
considering all the edges in the partition. In this way, we
consider all edges in a partition once every x steps, and
for the remaining steps, we select the edge from the best n
edges found in the previous step. It should be noted that

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

Fig. 4. Considering the partitionings from left to right, each partition
is divided into 2 smaller partitions, resembling a tree structure. The
simplification is performed from right to left, by simplifying the mesh until
an intermediate resolution at each step.

n must be greater than 3 × x, since some of these n edges
will get removed indirectly through other collapses in this
subset. For our purposes, x is selected as 4 and n is selected
as 20.

3.4 Threading
Since the mesh is already divided into partitions and they
are all treated separately, we can run the partitions in
parallel by assigning each partition to a thread. However, if
all of the partitions are run at the same time, the neighboring
partitions affect each other causing race conditions. In order
to eliminate the potential race conditions without utilizing
concurrency control mechanisms and to avoid making the
method more complicated, threads are run batch by batch,
in a way that no two neighboring partitions are run at
the same time. The problem of assigning the threads into
batches is analogous with the well-known graph coloring
problem, for which finding the optimal solution is NP-
complete [36]. However, using one of the greedy solutions
providing an upper bound on the number of batches is
sufficient for our purposes.

The greedy solution utilized here orders the vertices with
respect to their degrees decreasingly and assigns the colors
to vertices in that order [37]. In our case, vertices correspond
to partitions and colors correspond to batches. A partition’s
degree is defined as the number of its neighboring par-
titions. By employing this greedy algorithm, the number
of batches required is guaranteed to be at most one more
than the maximum number of neighbors a partition has. In
this way, significant time improvements and deterministic
results are achieved through threading, while ensuring that
no partition affect each other.

4 RESULTS

In order to highlight our main focus and contribution, which
is the direct preservation of eigenvalues, we first provide

Fig. 5. The partitions running at the same time are marked with the same
color, where each color represents a different thread batch.

spectrum preservation results and then end with our execu-
tion times, which is slower than the fastest competitor [3].

Our method is evaluated by considering a variety of
metrics. The results are obtained on a machine with a 4-core
Intel i7-6700HQ 2.60GHz CPU and 16 GB of RAM. We focus
on preserving the first 15 eigenvalues (k = 15). However,
the functional maps are of size 100 × 100, so that we can
also demonstrate the spectrum preservation beyond the first
15 components. As dataset, we used models common to our
competitors as well as the first 5 models from each of the 10
categories of [38]. We have a CPU implementation in C++
that uses Spectra library [39]. See author’s website for code.

4.1 Evaluation Metrics
We used functional maps and the quantitative metrics which
are previously introduced by Liu et al. [2] and Lescoat et al.
[3], in order to measure how well the spectrum of a mesh
is preserved after the simplification. This same test protocol
enables fair comparisons with our competitors [2]–[4].

Functional maps [31] describe a way to transfer functions
from one shape to another. In spectral mesh simplification
context, they are utilized as a measure to evaluate how well
the eigenvectors of the Laplacian operator L̃ ∈ Rm×m com-
puted on the output mesh M̃ represents the eigenvectors of
the Laplacian operator L ∈ Rn×n computed on the input
mesh M. In order to take only the low frequency compo-
nents into account, the functional map C will be considered
for the first k eigenvectors. Therefore, the functional map
C ∈ Rk×k between the input and output meshes can be
defined as the following:

C = Φ̃T M̃PΦ (2)

Here, Φ ∈ Rn×k and Φ̃ ∈ Rm×k are the set of eigenvectors
corresponding to the first k eigenvalues of the Laplacian
operator obtained on the input and output meshes respec-
tively. M̃ ∈ Rm×m stands for the mass matrix constructed
on the output mesh, and P ∈ Rm×n represents the pro-
jection matrix. The optimal functional map is a diagonal
matrix filled with entries 1 and -1. Thus, the closer the
functional map to a diagonal matrix, the better the spectrum
is preserved.

Projection matrix is a fine-to-coarse operator allowing
to transfer functions across meshes at different resolutions.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

Since the Laplacian operators computed on the input and
output meshes have different sizes, their corresponding
eigenvectors are of different lengths as well. In order to be
able to compare them in a meaningful way, projection matrix
P is utilized in the functional map. We computed P during
the simplification process as in [3].

Projection matrix can be defined in terms of a series of Q
matrices, such that P = QnQn−1 . . . Q2Q1. Here, each edge
collapse operation is associated with a restriction matrix Q ∈
Rn−1×n, where n denotes the number of vertices existing
in the mesh before the collapse. Q matrix summarizes the
changes in the vertex set of the mesh caused by an edge
collapse, such that V

′
= QV .

Assume that edge e, joining vertices u and v is collapsed,
where u is kept while v is deleted from the mesh. Let u

′
be

the index of u after collapse, also the index of the merged
vertex, and x

′
be the index of vertex x after collapse. Con-

sidering this notation, the only non-zero elements in the Q
matrix will be Qu′u = 0.5, Qu′v = 0.5 and ∀x ∈ V − {u, v},
Qx′x = 1, since the merged vertex position is selected as the
midpoint of the edge.

The quantitative norms previously introduced by Le-
scoat et al. [3] for not only relying on visual inspections are
provided in Equation 3.

Laplacian commutativity: ∥C∥2L =
∥CΛ− Λ̃C∥2

∥C∥2

Orthonormality: ∥C∥2D = ∥CTC − Id∥2
(3)

where Λ, Λ̃ ∈ Rk×k are diagonal matrices storing the first k
eigenvalues calculated on the input and output meshes re-
spectively. Here, the Laplacian commutativity norm is orig-
inated from the idea that the eigenvalues of the Laplacian
should not change between the original and the simplified
meshes. On the other hand, the orthonormality norm is used
as a quantitative measure to tell how close the functional
map to the identity matrix. Therefore, for these norms, the
closer the values are to zero, the better the spectrum is
preserved throughout the simplification.

4.2 Partition Size
In Figure 6, going from left to right, the number of partitions
is decreased, so the average partition size is increased. As
the partition size is increased, the partitions become more
and more capable of representing the overall neighborhood.
Thus, it can be observed that both of the norms become
smaller, leading to a better spectrum preservation. For each
mesh, partition sizes should be adjusted so that the timing
improvements are sufficient to compensate the loss in the
spectrum preservation.

4.3 Number of Eigenvalues
The spectrum preservation results obtained by employing
different number of eigenvalues to preserve are presented
in Figure 7. Both the Laplacian commutativity and the
orthonormality norms tend to decrease, as the number of
eigenvalues to preserve is increased. Because, increasing
the number of eigenvalues results with a better spectrum
preservation for the higher frequency components. How-
ever, this only holds up to a certain point. After that, it only
introduces additional computational cost to the method.

Fig. 6. As the partition size is increased (the number of partitions is
decreased), our spectrum preservation becomes more effective.

Fig. 7. As the number of eigenvalues preserved increases, the spectrum
of the Laplacian operator is better preserved, but up to a point. Plots are
shown for seven different models using two spectral norms.

4.4 Number of Similar Edge Collapses

In Figure 8, the spectrum preservation results obtained
by employing various numbers of similar edge collapses
are presented. As the number of similar edge collapses is
increased, both of the norms also increase. It can also be
seen that the bottom right parts of the functional maps
which correspond to the high-frequency eigenvalues start
to scatter, indicating that the capability to preserve the
spectrum at the higher frequencies decrease. This is because
as the number of similar edge collapses increases, more
edges are chosen among the same restricted subset of edges.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

Fig. 8. x is the number of similar edges to collapse, while n is the
size of the edge set for choosing similar edges. Here, from left to right,
the number of similar edge collapses is increased, leading to a worse
spectrum preservation between the input and output meshes.

Fig. 9. Relative errors with different percentages of edge collapses.

The mesh, however, gets modified with each edge collapse,
while the edges in the restricted subset were selected as
the best choices for an older state of the mesh. At some
point, the edges outside that subset may be preserving the
spectrum more than the edges in the subset, however they
are left as not considered. Therefore, it is a better practice
not to keep the number of similar edge collapses too large.

We also show the way commutativity and orthonormal-
ity errors behave as number of collapses changes in Figure 9,
where we observe significant increments after around 60%
of collapses.

4.5 Comparisons

The proposed method is evaluated by comparing against
some of the existing spectrum-preserving methods such
as spectral coarsening [2], spectral simplification [3] and
chordal coarsening [4]. For fair comparison, all of the meth-
ods are configured to preserve the first 15 components
of the spectrum along with ours. It should be noted that
our method and the spectral mesh simplification method
proposed by Lescoat et al. [3] produce a coarsened mesh as
output. However, the methods proposed by Liu et al. [2] and
Chen et al. [4] do not produce an output mesh. Therefore,
for their methods, the vertices that are selected to exist on
the coarsened domain are visualized by marking the vertices
over the surface of the original mesh.

To make the quantitative results comparable, before ob-
taining the results, all the meshes are scaled so that their
surface areas correspond to unit area. For the mass matrices
M and M̃ , it is ensured that tr(M) = tr(M̃) = 1.

Fig. 10. With each method, lion mesh is simplified from 20212 to 2000
vertices (10% of its initial size).

Fig. 11. With each method, camel mesh is simplified from 9757 to 800
vertices (8% of its initial size).

Fig. 12. With each method, armadillo mesh is simplified from 49990 to
3000 vertices (6% of its initial size).

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

Fig. 13. The first 100 eigenvalues of the Laplacian operator obtained on
the original reference mesh and its coarsened versions (top two rows).
Similar plotting for the rest of the models using the best-performing
competitor only (last row left). 100 eigenvalues are compared under L2
norm to obtain the bar chart for each model and method (last row right).

Figures 10, 11 and 12 show that our method usually
outperforms the method of Liu et al. [2], while considering
a small number of eigenvalues. It performs somewhere
between the method of Lescoat et al. [3] and Chen et al. [4]
in terms of functional map visualizations. We outperform all
of the competitors in terms of direct eigenvalue comparisons
as we produce plots that are closest to the reference plots
(Figure 13). When only the functional map visualizations are
considered, for the majority of the cases, the method of Chen
et al. [4] preserves the spectrum better than all other meth-
ods including ours, since they resemble the identity matrix
more. However, it should be noted that the functional map
visualizations represent only the eigenvector preservation,
they do not stand for the eigenvalues. When the norms are
examined, it can be seen that our Laplacian commutativity
norm is much smaller. This is because although the method
of Chen et al. [4] manages to preserve the first 15 eigenval-
ues, it fails to preserve the eigenvalues beyond that point,
as can be seen in Figure 13.

When we investigate Figures 10, 11 and 12 further,
we observe that our appearance visualizations are already
better than [3] as we preserve head and toe features but [3]
cannot. Other competitors [2], [4] do not produce a mesh
at all. Our matrix visualization, on the other hand, is worse
than [4] only and for the Camel model only. We still have
a better L norm here though because L norm includes
eigenvalues that we preserve much better than [4].

Fig. 14. Meshes simplified by our method to 8% of initial sizes.

The main advantage of our
method over the existing ones
is to be able to preserve the
spectrum by focusing on a
small number of eigenvalues
such as 15, while outputting a
simplified mesh. Our method
focuses on preserving the eigenvalues directly, whereas
other existing methods carry out this implicitly by preserv-
ing the eigenvectors. We provide further results in Figure 14.
Note also that our algorithm is insensitive to sharp creases
such as the ones in the base of eagle (Figures 6 and 14) and
the cuboid (Figure 15). We also maintain our stability on
non-watertight meshes with boundaries as depicted in the
inset.

4.6 Validation through Applications
We validate the spectrum preservation capability of our
method further by comparing our spectrum with the orig-
inal over various applications that use eigenvalues and/or
eigenvectors.

4.6.1 Only Eigenvalues
The set of Laplacian eigenvalues has been proved useful as
a discriminative global shape descriptor called Shape-DNA
[8]. Using Multidimensional Scaling (MDS), we convert the
Shape-DNA descriptor distances into Euclidean distances in
order to visualize where each model lands in a 2D coordi-
nate system (Figure 15). Specifically, we use the first two
principal components of the autocorrelation matrix AAT

where Aij = e−d2
ij is the Gaussian affinity matrix of Shape-

DNA distances.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

Fig. 15. 2D MDS embeddings based on our eigenvalues from the sim-
plified models (spheres) and ground-truth eigenvalues from the original
models (cylinders). Five models from each class are in use. Represen-
tative models simplified to about 1K vertices by our method are shown
at left with matching colors.

Fig. 16. Surface areas of our simplification results (blue) are always
closer to the original surface areas (green) than that of [3] (red).

Although extraction of surface areas from the Laplacian
eigenvalues is possible, e.g., through Eq. 41 in [8], this oper-
ation requires extremely high-resolution discretization, that
defeats our purpose, and very accurate eigenvalues close to
the real analytical ones, possibly computed with a cubature
integration approach over triangles in parameter space. We,
therefore, instead merely compared the total surface areas
of the original models and its simplified versions by our
method and [3], as eigenvalues are provably related to
surface area (Figure 16). Note that other competitors [2] and
[4] are not able to produce a surface mesh and therefore not
eligible for this comparison. Also, area discrepancy between
the original and simplified [38] models has never exceeded
6%, implying satisfactory area preservation by our method.

4.6.2 Only Eigenvectors
Eigenvalues are provable related to min-cuts as well, e.g.,
the second smallest Laplacian eigenvalue reflects how well
connected the overall mesh is, aka algebraic connectivity,
and subsequently leads to a robust binary spectral partition-
ing. Namely, negative entries in the corresponding eigenvec-

Fig. 17. Eigenvectors from the original spectrum (left), our spectrum
(middle), and [3] spectrum (right) are used for clustering (top left),
Laplacian Eigenmap (bottom left), and Laplacian embedding (right).
Note that our results are always more similar to the originals than [3].

tor, aka Fiedler vector, gives one partition and positives the
other. Obtaining a partitioning similar to the original one is
an evidence of our spectrum preservation at this frequency
during simplification (Figure 17-top left).

One can also transform the mesh to a different domain
by directly using the second, third, and fourth smallest
eigenvectors’ entries as coordinates, i.e. Laplacian Eigenmap
(Figure 17-bottom left), or by projecting the mesh coordi-
nates onto the first f Laplacian eigenvectors (Figure 17-
right). The latter can be seen as applying a low-pass filter to
the mesh coordinate signal X , i.e., X ′ = Φ1..fΦ

T
1..fX where

X ′ is the vector of transformed coordinates.

4.6.3 Both Eigenvalues and Eigenvectors
Laplacian eigenvalues λi are also coupled with their
corresponding eigenvectors ϕi to reveal mesh proper-
ties that are not apparent from the edge structure. To
this end, isometry-invariant heat kernel descriptor [28]
kτ (p, r) =

∑f
i=1 e

−τλiϕi(p)ϕi(r) and biharmonic distance
[40] d(p, r) =

∑f
i=1(ϕi(p) − ϕi(r))

2/λ2
i are employed

frequently in isometric shape matching. Obtaining values
similar to the ones computed on the original models is
yet another indication of our valid spectrum preservation
(Figure 18-a and c). Similarly, local extrema of the function
g(p) =

∑f
i=1

1√
λi

|ϕi(p)|
||ϕi||L∞ is known to provide consistent

sampling between pairs of shapes to be matched [12], [13]
(Figure 18-b).

Bunny mesh in Figure 18 is simplified by our method
to 17% of its initial size, while the others are simplified to
8%. We observe that even with a high reduction ratio, the
descriptor [28], distance [40], and sampling [13] almost stay
the same, which implies the spectrum preservation between
the original and the simplified meshes.

4.7 Timing
4.7.1 Partition Size
As the mesh is divided into more partitions, the size of each
partition gets smaller. Consequently, with each partition
having fewer vertices, the size of the Laplacian operators
constructed for each partition are reduced, leading to faster
eigenvalue computations. Besides, since the partitions are
run concurrently via threading, as the number of partitions
increases, the time it takes to simplify the overall mesh

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

Fig. 18. Heat kernel descriptor (c) and biharmonic distance (a) are
visualized with respect to a reference vertex (green) on the original
meshes and our simplified versions. In (b), sampling in the original
model (row 1) remains more consistent after our simplification (row 2)
than that of [3] (row 3 along with their matrix). Local maxima and minima
sampling detects the tips (downscaled cactus) and centers, respectively.

decreases. Figure 19 shows how the simplification time
changes with respect to the average partition size employed.

4.7.2 Number of Eigenvalues
Timing results obtained by focusing on preserving different
number of eigenvalues are provided in Figure 20. As the
number of eigenvalues to preserve is increased, the eigen-
value decompositions performed for the Laplacian operator
at each step of the algorithm takes longer time than before.
Consequently, the overall simplification time increases.

4.7.3 Number of Similar Edge Collapses
It is observed that enabling similar edge collapses by select-
ing 4 edges out of 20 candidates, reduces the simplification
time to approximately one fifth of the previous timing, while
affecting the spectrum as little as possible.

Fig. 19. The overall simplification time increases, as the average parti-
tion size is increased (the number of partitions is decreased), as shown
on seven different models whose sizes are given in Table 2.

Fig. 20. As the number of eigenvalues to preserve is increased, the
overall simplification time also increases, as shown on seven different
models.

4.7.4 Threading
Timing results obtained by enabling and disabling threading
are provided in Table 2. Here, the number of threads equals
the number of partitions that the mesh is divided into and
approximately 92% of the vertices are removed from each
mesh. It can be observed that threading provides a signif-
icant reduction in simplification times. However, since not
all of the threads are run at the same time, the acceleration
amount is not directly the same as the number of threads
(partitions).

TABLE 2
Timings obtained with and without threading on 7 models.

Corresponding minutes for the fastest competitor [3] are 0.06, 0.17,
0.68, 0.71, 3.08, 0.32, and 0.29, from top to bottom.

Number Number Time Time
Mesh of of with without

Vertices Threads Threading Threading
(mins) (mins)

bunny 3485 15 9 18
camel 9757 48 13 40
cactus 25131 180 17 75
eagle 25727 180 18 76

armadillo 49990 200 63 311
dragon 20741 160 15 46

lion 20212 160 14 43

Although there is no linear relationship between the
total number of partitions and the amount of acceleration,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

contributions of threading become more noticeable for the
meshes with more partitions. The reason behind this can
be visualized with a plot as in Figure 21. Green, blue and
red lines respectively indicate the minimum, average and
maximum number of threads existing in a batch, for the
given number of partitions. It can be observed that when
there are more partitions in a mesh, the average number
of threads per batch gets increased as well, leading to a
higher amount of parallelization. For instance, if there are
8 partitions in a mesh, the number of threads in each batch
will be between 2 and 3. On the other hand, if there are 100
partitions in a mesh, the number of threads per batch will
range from 11 to 24, which results with a more remarkable
timing reduction.

To demonstrate our high parallelizability further, we
distribute the independent partition simplification tasks
within a batch onto the 6-node cluster of our department1

where each node has two Intel Xeon 10-core 2.40GHz CPUs.
Each node simplifies the part of the original mesh that
corresponds to its assigned partitions in a physically parallel
fashion. We achieve about seven times speedup (Table 3)
compared to Table 2 where we used our original 4-core
2.60GHz Intel PC. The main reason of this acceleration is the
elimination of context switches and interleaving of about
30 (= 4 × 7 + 2, requiring about 7 passes) independent
threads over the four cores of a single PC. With a cluster
of computer nodes, we are able to run all of these threads
simultaneously, without any interleaving that gives the il-
lusion of concurrency. Note that, Bunny model does not
improve at all as our original 4-core PC is already capable of
allocating 1 core to each of the 4 concurrent threads. Finally
note that, although the workload within a thread batch
is embarrassingly parallel, batches must still be processed
sequentially in our current architecture. Further speedup is
therefore possible by parallelizing the thread batches with
the appropriate synchronization control strategies.

TABLE 3
Timings obtained with a cluster of computers. NumCThreads is short

for the average number of concurrently running threads.

Bun Cam Cac Eag Arm Dra Lio
NumCThreads 4 10 30 30 32 30 30

Time (mins) 9.1 6.7 2.5 2.7 7.9 2.2 2.1

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a mesh simplification method,
which focuses on preserving the spectral properties of the
input mesh as much as possible. Our method is the first
to address direct eigenvalue preservation during simplifi-
cation. The main idea lying at the core of the algorithm
is comparing the eigenvalues of the Laplacian operators
constructed on the mesh at different steps, to decide which
edges to collapse. In order to reduce the computational cost
caused by the eigenvalue decompositions carried out in the
algorithm, we introduced partitioning, threading and an
approach based on eliminating similar edges. We evaluated
our algorithm on a variety of meshes and demonstrated that
our method is capable of maintaining the spectrum at least
as effectively as the existing methods, by only considering a

1. https://ceng.metu.edu.tr/bigdatalab

Fig. 21. The number of threads (partitions) running at the same time for
various number of partitions.

small number of eigenvalues. We also demonstrated that the
coarsened meshes produced by the algorithm are still able
to represent various properties similar to the way they were
represented on the original mesh. Namely, we showed our
performance on heat kernel and Shape-DNA descriptors,
biharmonic distances, consistent sampling, spectral parti-
tioning, Laplacian Eigenmap, and Laplacian embedding.

As stated in Chen et al. [4], simplification methods can
either preserve the appearance [1] or the spectrum [2],
[3], but not both. In this regard, our spectrum-preserving
method is at least as effective as our recent state-of-the-art
competitors [2], [3], yet the third state-of-the-art competitor
[4] outperforms every other method in terms of eigenvector
preservation at the expense of first obtaining a coarsened
mesh using a third-party appearance-preserving simplifica-
tion method. Focusing and relying solely on eigenvalues of
cotangent Laplacians, our method clearly outperforms the
others in terms of eigenvalue preservation as shown by the
eigenvalue approximation plots and errors (Figure 13).

The main limitation of our algorithm is about efficiency,
since it requires the computation of the eigenvalues from
scratch for each edge collapse that is considered. One way
to overcome this problem would be adapting the classic
priority queue method introduced by Garland and Heckbert
[1] with the presented cost metric, just as Lescoat et al. [3]
did. However, to do this, an algebraic update rule should
be found such that an edge collapse can be simulated
without requiring the computation of the eigenvalues from
scratch. An alternative future work is to investigate ways to
approximate eigenvalues (vibration frequencies) [41], which
is all one needs to guide our method or any other fu-
ture simplification method that addresses direct eigenvalue
preservation. Note that, it is always possible to first reduce
the input size via QSLIM software [1], whose impact on
the spectrum would be limited, as stated by [3]. Note also
that, we did not take advantage of GPUs in the unoptimized
implementation of our parallel algorithm.

As a final note, our method is a greedy algorithm, so it
does not guarantee that the set of edge collapses performed
leads to the optimal preservation of the spectrum. Yet, we
believe that our naı̈ve way of utilizing the 1D eigenvalues

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

of the Laplacian may establish a ground for more advanced
future works, whose main focus is spectrum preservation.

ACKNOWLEDGMENTS

Supported by TUBITAK under the project EEEAG-119E572.

REFERENCES

[1] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in Proc. of the 24th conference on Computer
graphics and interactive techniques, 1997, pp. 209–216.

[2] H.-T. D. Liu, A. Jacobson, and M. Ovsjanikov, “Spectral coarsening
of geometric operators,” ACM Transactions on Graphics, vol. 38,
no. 4, pp. 1–13, 2019.

[3] T. Lescoat, H.-T. D. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur,
and M. Ovsjanikov, “Spectral mesh simplification,” in Computer
Graphics Forum, vol. 39, no. 2, 2020, pp. 315–324.

[4] H. Chen, H.-T. D. Liu, A. Jacobson, and D. Levin, “Chordal decom-
position for spectral coarsening,” ACM Transactions on Graphics,
vol. 39, no. 6, pp. 1–16, 2020.

[5] L. Cosmo, M. Panine, A. Rampini, M. Ovsjanikov, M. M. Bronstein,
and E. Rodolà, “Isospectralization, or how to hear shape, style,
and correspondence,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7529–7538.

[6] R. Rustamov, “Laplace-beltrami eigenfunctions for deformation
invariant shape representation,” in Symposium on geometry process-
ing, vol. 257, 2007, pp. 225–233.

[7] V. Jain and H. Zhang, “A spectral approach to shape-based re-
trieval of articulated 3d models,” Computer-Aided Design, vol. 39,
no. 5, pp. 398–407, 2007.

[8] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace–beltrami spec-
tra as ‘shape-dna’of surfaces and solids,” Computer-Aided Design,
vol. 38, no. 4, pp. 342–366, 2006.

[9] J. Hu, H. Hamidian, Z. Zhong, and J. Hua, “Visualizing shape
deformations with variation of geometric spectrum,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 23, no. 1, pp.
721–730, 2016.

[10] Y. Sahillioğlu and D. Horsman, “Augmented paths and reodesics
for topologically-stable matching,” ACM Transactions on Graphics,
vol. 42, no. 2, pp. 1–15, 2022.

[11] A. Dubrovina and R. Kimmel, “Approximately isometric shape
correspondence by matching pointwise spectral features and
global geodesic structures,” Advances in Adaptive Data Analysis,
vol. 3, no. 01n02, pp. 203–228, 2011.

[12] M. Edelstein, D. Ezuz, and M. Ben-Chen, “Enigma: Evolutionary
non-isometric geometry matching,” ACM Transactions on Graphics,
vol. 39, no. 4, 2020.

[13] X. Cheng, G. Mishne, and S. Steinerberger, “The geometry of nodal
sets and outlier detection,” Journal of Number Theory, vol. 185, pp.
48–64, 2018.

[14] S. C. Schonsheck, M. M. Bronstein, and R. Lai, “Nonisometric
surface registration via conformal laplace–beltrami basis pursuit,”
Journal of Scientific Computing, vol. 86, pp. 1–24, 2021.

[15] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh optimization,” in Proc. of the 20th conference on Computer
graphics and interactive techniques, 1993, pp. 19–26.

[16] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of
triangle meshes,” in Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, 1992, pp. 65–70.

[17] M. Garland and P. S. Heckbert, “Simplifying surfaces with color
and texture using quadric error metrics,” in Proceedings Visualiza-
tion’98 (Cat. No. 98CB36276). IEEE, 1998, pp. 263–269.

[18] J. Van, P. Shi, and D. Zhang, “Mesh simplification with hierarchical
shape analysis and iterative edge contraction,” IEEE Trans. on
visualization and computer graphics, vol. 10, no. 2, pp. 142–151, 2004.

[19] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh
simplification algorithms,” Computers & Graphics, vol. 22, no. 1, pp.
37–54, 1998.

[20] F. Ponchio, “Multiresolution structures for interactive visualiza-
tion of very large 3d datasets,” Ph.D. dissertation, Zugl.: Clausthal,
Techn. Univ., Diss., 2008, 2009.

[21] Y. Sahillioğlu, “Recent advances in shape correspondence,” The
Visual Computer, vol. 36, no. 8, pp. 1705–1721, 2020.

[22] H. Zhang, O. Van Kaick, and R. Dyer, “Spectral mesh processing,”
in Computer graphics forum, vol. 29, no. 6. Wiley Online Library,
2010, pp. 1865–1894.

[23] G. Taubin, “A signal processing approach to fair surface design,”
in Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, 1995, pp. 351–358.

[24] Z. Karni and C. Gotsman, “Spectral compression of mesh geome-
try,” in Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, 2000, pp. 279–286.

[25] R. Liu and H. Zhang, “Mesh segmentation via spectral embedding
and contour analysis,” in Computer Graphics Forum, vol. 26, no. 3.
Wiley Online Library, 2007, pp. 385–394.

[26] J. Ren, S. Melzi, P. Wonka, and M. Ovsjanikov, “Discrete optimiza-
tion for shape matching,” in Computer Graphics Forum, vol. 40,
no. 5. Wiley Online Library, 2021, pp. 81–96.

[27] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-spectra as
fingerprints for shape matching,” in Proceedings of the 2005 ACM
symposium on Solid and physical modeling, 2005, pp. 101–106.

[28] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably
informative multi-scale signature based on heat diffusion,” in
Computer Graphics Forum, vol. 28, no. 5, 2009, pp. 1383–1392.

[29] M. Ovsjanikov, J. Sun, and L. Guibas, “Global intrinsic symmetries
of shapes,” in Computer graphics forum, vol. 27, no. 5. Wiley Online
Library, 2008, pp. 1341–1348.

[30] A. C. Öztireli, M. Alexa, and M. Gross, “Spectral sampling of
manifolds,” ACM Trans. on Graphics, vol. 29, no. 6, pp. 1–8, 2010.

[31] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and
L. Guibas, “Functional maps: a flexible representation of maps
between shapes,” Trans. on Graphics, vol. 31, no. 4, pp. 1–11, 2012.

[32] A. Keros and K. Subr, “Spectral coarsening with hodge laplacians,”
in ACM SIGGRAPH 2023 Conference Proceedings, 2023, pp. 1–11.

[33] H.-T. D. Liu, M. Gillespie, B. Chislett, N. Sharp, A. Jacobson, and
K. Crane, “Surface simplification using intrinsic error metrics,”
ACM Transactions on Graphics, vol. 42, no. 4, pp. 1–17, 2023.

[34] Y. Sahillioǧlu and Y. Yemez, “Coarse-to-fine combinatorial match-
ing for dense isometric shape correspondence,” in Computer graph-
ics forum, vol. 30, no. 5. Wiley Online Library, 2011, pp. 1461–1470.

[35] G. Karypis and V. Kumar, “A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices,” University of Minnesota,
Department of Computer Science and Engineering, Army HPC Research
Center, Minneapolis, MN, vol. 38, 1998.

[36] D. S. Johnson and M. R. Garey, Computers and intractability: A guide
to the theory of NP-completeness. WH Freeman, 1979.

[37] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,”
The Computer Journal, vol. 10, no. 1, pp. 85–86, 1967.

[38] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for
3D mesh segmentation,” ACM Transactions on Graphics (Proc. SIG-
GRAPH), vol. 28, no. 3, Aug. 2009.

[39] Y. Qiu, “Spectra. a library for large scale eigenvalue problems,”
https://spectralib.org/, 2018.

[40] Y. Lipman, R. M. Rustamov, and T. A. Funkhouser, “Biharmonic
distance,” ACM Trans. on Grap., vol. 29, no. 3, pp. 1–11, 2010.

[41] A. Nasikun, C. Brandt, and K. Hildebrandt, “Fast approximation
of laplace-beltrami eigenproblems,” in Computer Graphics Forum,
vol. 37, no. 5. Wiley Online Library, 2018, pp. 121–134.

Misranur Yazgan received her BS and MS de-
grees from the Computer Engineering depart-
ment of Middle East Technical University, Turkey.
She is now working as a software engineer at
a startup software company based in Brooklyn,
New York.

Yusuf Sahillioğlu is a Professor in the Depart-
ment of Computer Engineering at Middle East
Technical University, Turkey. He is also an as-
sociate editor of The Visual Computer journal.
His research interests include digital geometry
processing and computer graphics. He has a
PhD in computer science from Koç University,
Turkey. Contact him at ys@ceng.metu.edu.tr or
visit http://www.ceng. metu.edu.tr/∼ys.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3341610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

