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Abstract
In real-time computer graphics, efficient discretization of scenes is required in order to accelerate graphics related algorithms 
such as realistic rendering with indirect illumination and visibility checking. Sparse voxel octree (SVO) is a popular data 
structure for such a discretization task. Populating an SVO with data is challenging when dynamic object count is high, 
especially when data per spatial location is large. Problem of populating such trees is adressed with our Voxel Transforma-
tion method, where pre-generated voxel data is transformed from model space to world space on demand, in contrast to the 
common way of voxelizing each dynamic object over each frame. Additionally, an accompanying filtering technique for 
voxel transformation is also proposed. This technique serves proposed system in two ways: (1) resolves issues introduced 
by the proposed fast and scalable voxel transformation method, and (2) enables smooth transitions between frames and 
handles the aliasing problem naturally as shown in the supplementary video. As an application use case, the proposed Voxel 
Transformation method is demonstrated in order to achieve indirect illumination using the well-known voxel cone tracing 
method. Results, which is compared with the standard voxelization method and ground-truth, are visually appealing and 
also scalable over large number of dynamic objects as shown in the supplementary video.
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1  Introduction

Modern graphics hardware is capable of rendering scenes 
that have high complexity on a high pixel density canvas. 
Even with fast hardware however, numerical calculation of 
realistic scene rendering with indirect illumination still is 
a challenging task for real-time applications. Many meth-
ods that can provide indirect illumination are not scalable 
for scenes with many dynamic objects. With this important 
indirect illumination application in mind, a real-time capable 
scene discretization method that can handle complex scenes 
with many dynamic objects is developed. Proposed method 
utilizes the idea of space transformations.

Scalability is our main motivation. This involves deal-
ing with scenes consist of large number of dynamic objects. 

Contribution of dynamic objects, especially highly glossy 
objects, to indirect illumination increases believability of 
the scene. Temporal caching such as pre-computation of illu-
mination are not applicable to such scenes since dynamic 
objects’ temporal state changes over time. Scalability is 
made possible with proposed voxel transformation based 
data generation. The artifacts brought by this speed up are 
handled by the acompanying filtering technique.

After the related work section, proposed scalable discre-
tization method and then the accompanying filtering tech-
nique are explained. Next, the usage of proposed method 
on the indirect illumination case is shown. Results are 
compared with the standard voxelization and ground-truth 
(please also see the accompanying video). Finally limita-
tions, conclusions and future work recommendations are 
explained.

It should be noted that the source code and the executable 
for the method that are presented in this paper are publicly 
available.
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2 � Related work

2.1 � Voxelization

Voxel based models have many usages like intersection 
testing, visibility testing and efficient spatial scene tra-
versal. Such instances only require binary voxelization [1]. 
GPU implementations of such solid and sparse-solutions 
voxelization are also available [2]. Although these imple-
mentations utilize GPU, graphics pipeline (hardware ras-
terizer) are not utilized.

Hardware rasterizer can also be utilized in order to 
generate voxels [3, 4]. In order to fully voxelize surfaces 
without any gaps, conservative rasterization can be applied 
[5]. Instead of conservative rasterization, hardware multi-
sample anti-aliasing (MSAA) pipeline can be employed to 
over-generate fragments per pixel in order to fill the poten-
tial gaps during voxelization [6]. Such methods either ras-
terize over a dense 3D structure or rasterize over a linear 
array. When algorithm rasterizes the voxels over a linear 
array, this array is sorted and voxels that occupy the same 
space are blended. Hardware voxelization methods have 
high throughput unless the required data is high which 
depends on the application.

2.2 � Global illumination

Global illumination (GI), or equivalently indirect illu-
mination, is a heavily-studied research area. We refer 
to the survey of Ritschel et al. [7] for a comprehensive 
research compilation about GI methodologies. In addi-
tion, Davidovič et al. [8] recently published a survey paper 
about light transport techniques. In this section, we will 
cover the prominent indirect illumination and real-time 
capable methodologies.

Rendering photo-realistic images mostly requires high 
quality approximation of the rendering equation [9]. Brute 
force approaches like path tracing and its improvements 
such as bi-directional path tracing [10] and metropolis 
light transport [11] give good results but these methods 
tend to converge slowly due to their unbiased nature. 
Another unbiased method, Instant Radiosity [12], uses vir-
tual point lights (VPL) to simulate bounces of light from 
the light source. Quick determination of VPL visibility is 
tackled by Hasan et al. [13] and Sun et al. [14]. Although 
it is natively acceleratable by GPU hardware [15–17], 
the method has problems approximating high-frequency 
(specular) indirect illumination.

Biased approaches are introduced in order to approxi-
mate the indirect illumination faster. Most common biased 
technique is the photon mapping technique [18] which has 

hardware accelerated implementations [19–21]. Because 
of the biased nature, photon mapping has predictable cal-
culation time. Recently, a hybrid solution is proposed by 
Georgiev et al. [22] which simulate the light transport with 
a biased start and end with an unbiased algorithm.

All of the methods described above have usage for gener-
ating illumination data for real-time applications. Real-time 
applications uses these generated illumination data by storing 
them on low resolution data structures in order to meet the 
computation time budget.

In real-time each rendering phenomenon is tackled indi-
vidually. Specular indirect illumination is approximated by 
image-based lighting (IBL) [23, 24] or screen-space methods 
[25, 26]. Ambient light occlusion [27] is mostly approximated 
by screen-space methods [28, 29]. Screen space methods fail 
to incorporate out of screen geometry. Image based lightning 
solutions have hard time incorporating dynamic objects to 
global illumination.

Moreover, probe based [30], field based [31] or image based 
[24] and other light discretization based [32, 33] solutions are 
available for approximating global illumination. Pre-baked 
light maps which is a image based solution, were most com-
mon on real-time applications. However; these maps have long 
generation times and dynamic objects could not be able to con-
tribute to the overall illumination of the scene. Light or scene 
discretization methods [24, 30–33]; like any other discretiza-
tion method, is prone to information loss of rapid changes of 
occlusion or radiance over space because of the low resolution.

Another approximation for real-time global illumination is 
light propagation volumes (LPV) [34], which approximates 
the indirect illumination by using the reflective shadow maps 
[15] and a dense volumetric structure. It is designed to work in 
previous generation hardware (Playstation® 3 and Xbox® 360). 
LPV is mostly used for low-frequency (diffuse) illumination 
because of the low resolution data structure. It can, however, 
be adapted to high-frequency (specular) indirect illumination 
by increasing the volume density and sample count.

Another related approach is the voxel cone tracing method 
[35]. Cone tracing method relies on multi-resolution data 
structure for volume sampling in order to approximate the 
rendering equation [9]. Rendering equation’s hemispherical 
integral is approximated by only few amount of cones com-
pared to hundreds or even thousands of path tracing rays. 
Voxel cone tracing method is a combination of volumetric 
and a ray based approaches. Proposed method is applied to 
voxel cone tracing method in order to show its use.

3 � Voxel transformation

The main idea comes from one of the core purposes of the 
graphics hardware, space transformation. Calculating high 
amounts of small linear transformations over vertices is one 
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of the fundamental capabilities of the traditional graphics 
acceleration devices. Just like vertices, voxels can also fit 
into this transformation logic quite nicely.

3.1 � Pre‑voxelization

In order to transform voxels, they are needed to be created. 
For voxel generation, only triangle surfaces are considered 
since it is the most common surface representation for real-
time graphics. Each surface in the scene are voxelized and 
stored on a cache. For demonstration (Sect. 4), Crassin’s 
voxelization method for this pre-voxelization task [3] is 
utilized. This is actually may not be desirable for certain 
tasks, because resulting voxels only covers the surface of the 
provided object. For global illumination use-case, this rep-
resentation is more prone to light leaks compared to sparse 
solid or dense voxelization. However, it is one of the faster 
algorithms for generating voxels. The reason of this choice 
is to do a fair comparison between voxel transformation and 
voxelization both computationally and visually (Sect. 5). 
Unlike voxelization, voxel transformation does not suffer 
from additional run-time costs when choosing another com-
putationally expensive voxelization method because all of 
the voxelization cost of objects are moved to initialization-
time of computation.

Data that is required to be voxelized can vary from 
problem to problem. For indirect illumination case, diffuse 
albedo, specularity and normal information are sufficient to 
achieve pleasant results. For more sophisticated (for example 
physically-based) illumination, more data may be required.

3.2 � Transformation types

In this section, two fundamental transformation cases which 
should cover most of the real-time animated objects are 
explained: basic linear transformations and weighted linear 
transformations.

Basic linear transformations
Basic linear transformations are applied to each vertex 

independently. This is the most basic case and do not have 
any caveats.

Weighted linear transformations
The most common method for animating objects is to bind 

a skeleton to an object and animate that skeleton instead of 
each vertex. For these kind of animated objects, pre-voxeliza-
tion data is required to hold the weight index and the weights 
just like the vertex weights and the weight indices. For raster-
izer based pre-voxelization, those weights are interpolated 
from each vertex and re-normalized into the voxel and stored. 
For large voxel sizes, even selecting weights of random ver-
tices of that triangle gives pleasant results.

Weighted linear transformations can introduce minimal 
stretches on locations that are close to joints. One may 
argue that these stretches should create artifacts since the 
voxel size is fixed and cannot stretch like a triangle. For 
very small voxel sizes this is true, however current gen-
eration hardware does not have enough power to derive 
such high resolution of voxels in real-time. Additionally, 
accompanying filtering method further minimizes these 
artifacts, and they are not visually apparent on final image.

Other transformation methods For the use-case scenario 
provided in Sect. 4, most of the other animation methods 
have too subtle of an impact over the scene. For example, 
morph target animations which are used in order to ani-
mate humanoid face expressions would not be captured 
by the current voxel resolution limit because these anima-
tions have real-time computation requirements. Addition-
ally since such animations deform the mesh, transforma-
tion over voxels could introduce gaps due to fixed voxel 
size. Because of that proposed method cannot cover morph 
targets.

Traditional particle systems actually fit into this type 
of methods quite nicely. Similar to morph targets, vox-
els are too large to be as same size as a single particle. 
Unfortunately, particles that derive a sprite cannot be sup-
ported by voxel transformation algorithm since the surface 
information of such particles changes over time. Further 
limitations are explained in Sect. 6 in detail.

3.3 � Filtering

Fundamentally, pre-voxelized geometry is transformed 
over a static, world-space and axis-aligned grid. Since this 
grid represents discrete locations in space and transforma-
tion results are real numbers, the results are needed to be 
discretized in order to fit them into the grid. Most basic 
solution is to choose the nearest grid location (Fig. 1a). 
This is considered as nearest filtering.

Such naive voxel filtering does not have desirable 
results (Fig. 2, top). Nearest filtering allows multiple adja-
cent voxels to be on the same grid, thus creating voxel 
holes over the object. Results are required to be filtered 
into not a single grid location but all the neighboring grid 
locations depending on how much of the transformed vox-
els’ volume resides on that gird location (Fig. 1b). This is 
called this 8-neighbor split filtering. 8-neighbor split fil-
tering is temporally less jittery since it minimizes sudden 
jumps of transformed voxels.

However 8-neighbor filtering has higher computational 
cost, since each voxel splits into eight neighboring loca-
tion. At each location, algorithm is required to blend voxel 
fragments that resides on the same space.
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4 � Use case: cone tracing

Crassin’s voxel cone tracing method [36] is chosen to incor-
porate proposed method in order to demonstrate method. 
It should be noted that voxel transformation method can 
be applied for other voxel based techniques when a high 
throughput scene geometry discretization is required.

In this section,how to utilize the generated world space 
voxels for indirect illumination using the voxel cone tracing 
method [35] is explained. Cone tracing method requires a 
sparse voxel octree (SVO) data structure. In Crassin’s paper, 
the proposed SVO is split into two portions: a node hierar-
chy and a brick map. Node hierarchy defines the general 
tree structure and brick map, which is in a texture memory, 
holds the actual data. The reason of texture memory usage 
is to perform a hardware interpolation when you sample the 
actual data. Cones are sampled from higher levels of the 
structure depending on their current opening size which 
depends on the distance from the cone tip. This means that 
the proposed structure should hold data for every level, not 
only at the tree leaves.

There are couple of limitations of the proposed struc-
ture. First of all dynamic generations cannot overwrite 
static nodes of the SVO [36]. This is not a game-breaking 
limitation since most of the scene objects are rigid and rigid 
objects should not overlap with each other anyway. Another 
issue is the brick map set-up. Brick maps are designed to 
have fast sampling while having high construction time. 
This is purposely designed to be that way since most of the 
objects (i.e. static objects) are written on to the brick maps 
at initialization time.

Because our motivation is to design a highly scalable data 
structure in the presence of many dynamic objects, these 
limitations are not acceptable for our needs. We can over-
come this problem by incorporating our high-throughput 
Voxel Transformation method to the Crassin’s Cone Trac-
ing algorithm. To this effect, a new SVO structure has to be 
designed.

4.1 � Algorithm overview

Generic structure of the algorithm is comparable to the 
Crassin’s Method. Figure 3 shows the overall voxel genera-
tion and usage. “SVO Average”, “SVO Light Injection” and 
“Cone Tracing” parts are the same.

Apart from Crassin, a simple brute force Sparse Voxel 
Octree (SVO) generation and storage sceheme is incorpo-
rated instead of holding SVO as a Brick Map/Node Tree pair.

Unlike Crassin, propsed method first transforms the vox-
els from a pre-generated voxel cache. Then, it generates the 
SVO from scratch every frame. This is required because of 
our dynamic object scalability claim. Even though some 

Fig. 1   After the transformation (which includes a rotation in this 
case), voxels are needed to be aligned with the world space voxel grid 
which is not always aligned with the world space axes. a Shows the 
nearest filtering method which snaps the transformed voxel into clos-
est grid position. b Shows 8-neighbor filtering method which blends 
voxels into eight nearest neighbor grid slots and adjusts occlusion 
value of that grid according to space covered by voxels in that space

Fig. 2   Resulting images between two filtering methods. 8-neighbor 
filtering (bottom) method is computationally expensive. However it 
fixes the hole problem which is visible when nearest filtering (top) 
method is used. This visual discrepancy should not be that notice-
able in an indirect illumination sampling unless the sampled surface 
is highly specular
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of the scenes in Sect. 5 section do not have many dynamic 
objects, pipeline considers them as dynamic in order to 
show the method’s scalability. In a practical sense, this is 
not necessary unless most of the scene has dynamic voxels. 
Same argument can be done for light injection. Again, light 
is not required to be injected every frame if there are no 
spatial changes considering light and objects.

Additionally, proposed method requires to consider 
how to resolve overlapping voxels between dynamic and 
static objects if it wants to utilize portion of the previ-
ous frame’s SVO. This makes the method unable to blend 
dynamic voxels over static voxels that resides on the same 
space since un-blending those voxels are impractical. Just 
like Crassin, dynamic voxels can be omitted if those are 
overlapped with static voxels. Thus making static object 
portion tree structure remains intact. In our situation, over-
lapping voxels are simply blended between dynamic and 
static objects since SVO is going to be generated from 
scracth on the next frame anyway.

Basic steps of the algorithm is as follows:

–	 Transform the voxels.
–	 Construct the SVO nodes.
–	 Inject the light over the SVO.
–	 Generate data for non-leaf nodes of the SVO.
–	 Do cone-tracing over the SVO.

4.2 � Transformation

Up until this point technical details of the algorithm are 
not specified since actual method could be applied to 
many scenarios. In this section an example design of voxel 

transformation method is discussed over the use-case of 
indirect illumination calculation.

Pre-voxelized geometry is stored on voxel cache struc-
ture in which each voxel is stored linearly. Each voxel 
holds position that is stored as a 30-bit integer coordinates 
(10-bit for each dimension) relative to the corner of the 
axis aligned bounding box (AABB) of the object. Such 
AABB is on object-space.

Voxel Transformation is a two phase algorithm: 
allocation space determination and the actual voxel 
transformation.

GPU optimized algorithms favor simple data structures 
and contagious data access over these data structures. Fur-
thermore dynamic space allocation on the GPU while GPU 
is doing some work has a performance penalty. With these 
facts in mind, voxel data array (Fig. 3) is a simple chain of 
the same sized arrays and these arrays are allocated in bulk. 
First phase of the algorithm, which is called “Object I-O”, 
determines spaces on this chain for newly introduced objects. 
Such a case may happen when a moving object enters the 
scene, or at the initialization time. If enough space is not 
available, more chunks are appended to the chain. “Object 
I-O” also stores transformation scheme and transformation 
data indices for the voxel transformation algorithm. When an 
object leaves the scene, “Object I-O” marks the freed spaces 
available for future objects.

After location of every object is determined on this data 
structure, transformation algorithm starts. Main purpose of 
the transformation algorithm is to transform voxels accord-
ing to the transformation scheme of the objects. Transfor-
mation algorithm converts each object-space voxel posi-
tion from integer to world-space floating point by applying 

Fig. 3   Entire pipeline of the voxel cone tracing algorithm using voxel 
transformation. Orange boxes show processes and yellow boxes show 
data. Green arrows show that the process generated those data. Blue 

arrows show the used data by the process. Since the implementation 
is on the GPU, each orange box is a GPU Kernel
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Eq. 1. Then transformation matrix (or multiple matrices 
with weights in joint-transform case) are applied. After that 
world-space coordinates are discretized using Eq. 2.

On Eqs. 1 and 2 , �x is voxel size, io and iw are integer loca-
tions of voxels on object grid and world grid respectively, 
pw , po , pgrid and pAABB are positions of world-space, object-
space, grid corner and AABB corner respectively. po to pw 
conversion are done by transformation.

In order to support 8-neighbouring filtering, remainder of 
division operation on Eq. 2 is stored as well. This remainder 
will be used to split the transformed voxels into its 8-neigh-
bours. On the other hand, quotient is converted into integer 
and stored as voxel position.

4.3 � Sparse voxel octree (SVO) generation

Even though this papers aim is to explain voxel transforma-
tion method, an SVO structure should be provided in order 
to show proposed method over voxel cone tracing. Voxel 
cone tracing method requires quad-linear interpolation sup-
porting SVO data structure, which means samples should 
be interpolated spatially and additionally between levels of 
the tree. This requirement mandates an efficiently accessible 
data structure with respect to spatial adjacency.

Algorithm 1: Atomic allocation pseudocode.
Algorithm uses hardware compare and swap
and atomic add operations. “VolatileCast”
forces a global memory write on the GPU in-
stead of a potential cache only write which
guarantees that new node location is visible for
all other threads.
1 function AtomicAllocate (node, allocator)

Input : node pointer to location that will
point 8 children
allocator holds index of the next available

node position of one lower level
Output: allocated location

2 if node < ALLOCATING then
3 return node;
4 end
5 old = ALLOCATING;
6 while old = ALLOCATING do
7 old = atomicCAS(node, EMPTY ,

ALLOCATING);
8 if old = EMPTY then
9 location = atomicAdd(allocator, 8);

10 VolatileCast(node) = location;
11 old = location;
12 end
13 threadfence();
14 end
15 return old;

(1)po = pAABB + io�x

(2)iw = (pw − pgrid)∕�x

SVO generation is as follows. A top-down atomic node 
generation scheme over a pre-allocated array of nodes is 
employed. Each tread is responsible for a leaf node and 
those threads tries to allocate required intermediate nodes 
for that leaf in a top down fashion. Since each thread runs 
on parallel using GPU, a spin-lock mechanism is utilized. 
Until allocation happens all other threads busy-waits. 
Allocation is marked as completed when the allocating 
node writes the index of the allocated node.

Even though SVO construction algorithm is parallel, at 
higher levels of the tree most of the work is done by small 
amount of threads while all other threads wait busily. This 
atomic congestion creates a quite a bit of performance pen-
alty. In our tests, with high amount of voxels, SVO generation 
uses all of the real-time computation budget by itself. In order 
reduce computational budget, generation of the higher levels 
of the tree is eliminated completely. Which means that up until 
a certain level, tree is stored densely. With this method, both 
cone tracing over higher-levels will be faster since there will 
not be any tree traversal. Moreover neighbour data acquisi-
tion for interpolation will be simpler. The illustration of such 
partially dense tree can be found in Fig. 4. In this demonstra-
tion, Storing the nodes densely until level 6 ( 64 × 64 × 64 ) is 
a good trade-off between memory and performance.

In order to apply 8-neighbour filtering over the tree, each 
voxel will actually try to allocate 8-neighbouring leaves for 
each partial data of the tree. This is where most of perfor-
mance cost of 8-neighbour filtering method comes from. 
Furthermore, overlapping voxels should be resolved between 
voxels since 8-neighbour split filtering will introduce data of 
multiple voxels will be filtered over same leaf node. In order 
to support parallel average operation of overlapping voxels, 
“moving weighted average” method is used similar to [3] 
using hardware atomics.

4.4 � Neighbor pointers generation

In order to construct the SVO in real-time and support fast 
interpolation, neighboring pointer hierarchy is directly 
stored instead of generating brick maps according to the lay-
out of the world space voxels. Although sampling from this 
structure is comparably less efficient, construction of such 
a tree is more scalable when employing GPU parallelism.

Until this point, only the leaf nodes have appropriate 
data for the solution and top down (parent to child) chain of 
pointers are generated. Additionally, all of the neighbouring 
pointer structures are not constructed yet.

In addition to the SVO node data, each node also holds 
three pointers for their forward axial neighbors. This can be 
considered as a three dimensional singly linked list. Only 
axial pointers are provided in order to save on memory. 
Axial pointers are enough to traverse over all 8-neighboring 
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voxel nodes. In order to rely on only forward pointers, sam-
pling scheme should be defined. Each world-space position 
that is going to be sampled are rounded down to nearest node 
location. This guarantees all other interpolation locations to 
be accessible with forward pointers. In contrast, only back-
ward pointers could be stored and sampled point would be 
rounded up the world-space positions instead.

In order to populate these pointers, each node on a level 
of the tree will try to allocate (or access) its backward neigh-
bouring locations using (Algorithm 1) and sets proper point-
ers (Fig. 5). All of the 8 backward neighbouring locations are 
found and created this way. Constructing unavailable nodes 
are important since it guarantees that, on edge cases, each 
interpolation operation would be able to access a valid data. 
For example, a single lone node would create all its own 
8-backward neighbours and sets pointer chain accordingly so 
that any sampled position would be able to access that data 
by first traversing to that level of the tree and then accessing 
data for interpolation by using neighbour pointer scheme.

Holding three pointers for each axial neighbors means 
that only non-diagonal neighbors can be accessed with a 
single pointer dereference. In order to access diagonal neigh-
bors, multiple hops from the starting node is required. This 
pointer structure purposely designed in order to reduce the 
memory footprint of each node and the construction cost of 
the entire SVO tree. Additionally, we are going to hop every 
neighbouring location anyway since interpolation would 
require all 8-neighbouring nodes. Two tri-linear interpola-
tions are done on neighbouring levels of the tree. Then these 
results are interpolated in order to create the final result.

4.5 � Cone tracing

After the SVO is fully generated, cone tracing is done over 
the generated data structure. Sampling is comparable to the 

Crassin’s method with slight deviations. Like Crassin, this 
implementation launches single specular cone and multi-
ple diffuse cones in order to simulate the Phong Shading 
Model. Specularity of the object determines the specular 
cone aperture and diffuse cones are launched over different 
directions with a static aperture. Unlike Crassin’s method, 
diffuse cones are launched at half resolution since high-
frequency illumination would not require extra resolutions. 
Resulting diffuse sampled image is then filtered by a Gauss-
ian filter. A sample resulting image can be seen in Fig. 6.

5 � Results

Multiple scenes are utilized as shown through the fig-
ures and the supplementary video. Firstly, the run-time 
cost comparison between the real-time 6-separating thin 
voxelizer and voxel transformation is conducted. After 
that, total SVO generation timings and memory costs are 
provided.

Fig. 4   Four level quadtree 
representation. First three levels 
are densely stored and last 
level is stored sparsely. Orange 
portion illustrates the data that 
will be sampled for indirect 
illumination calculation. All of 
the dense layers are required to 
be available for cone traversal. 
Blue portion illustrates the 
pointer hierarchy for traversing 
the sparse layers of the tree. 
Only the last dense layer is 
required to be allocated for stor-
ing initial pointers

Fig. 5   2D grid representation of a quad-tree leaf. Orange boxes show 
the occupied nodes. The configurations before (left grid) and after 
(right grid) pointer and dummy node generation are shown. When 
algorithm samples a grid location, it can find all the required data by 
using pointers
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Finally a comparison is shown of the application of the 
Voxel Transformation method over Voxel Cone Tracing 
and a ground-truth.

Scene information can be seen on Table 1. Through-
out the scenes, skeletally animated Nyra character is used 
which has 54 individual parts all of which are driven by 22 
joints. First scene is the modified Crytek Sponza Atrium 
scene with a single Nyra character patrolling the scene. 
Second scene only consists of single Nyra character, which 
is extensively used in the accompanying video in order to 
compare with the standard voxelization method and pro-
posed voxel transformation method with different filtering 
schemes. Final scene consists of up to 256 Nyra charac-
ters with many other rotating tori and cubes. This scene 
is specifically constructed to show the scalability of the 
algorithm with many dynamic objects. On Table 2, 256 
Nyra character version of the dynamic scene is used for 
time measurements.

Timings (in milliseconds) that are reported in this 
paper are obtained with Nvidia® GeForce GTX 980ti GPU 
and indirect illumination render resolution is chosen as 
1280 × 720 . On the other hand, direct illumination is ren-
dered over an 1920 × 1080 canvas.

5.1 � Voxel transformation comparisons

Scaling comparison between real-time voxelization and 
voxel transformation can be seen on Fig. 7. Voxelization 
time converges toward 5.8  ms when object count goes to 
zero. This is because of the initial texture clear cost before 
voxelization starts. On the other hand, voxel transforma-
tion’s scaling is directly proportional to the number of 
voxels that are required to be transformed. Around 256 
complex dynamic objects, rasterizer based voxelizer com-
pletely saturates real-time frame budget (60  FPS, 16  ms). 
On the other hand Voxel Transformation barely passes 2ms 
mark at that same object count.

This comparison is done by swapping “Voxel Trans-
fom” portion of the algorithm (Fig. 3) by a 6-separating 
thin rasterizer based voxelizer. Timings are only for those 
kernels, not the entire pipeline.

Direct renderings of SVO structures can be seen on Fig. 8. 
The images are generated using ray-tracing where ray blends 
traversed voxels considering their occupancy value as alpha.

Accompanying video has more extensive comparisons 
between different voxel resolutions and filtering methods 
in addition to voxelization method. 8-neighbour filtering 
represents the scene spatially more coherently. Additionally 
temporal transitions are much smoother as demonstrated on 
the supplementary video.

Timings of voxelization and voxel transformations can 
be seen on Table 2. Coverage values represent how much 
area of the underlying tree structure covers in the scene. 
First value represents the leaf voxel size. Second value rep-
resents the voxel count for each dimension. For example 
(0.6, 512) means that entire scene fits into 5123 sized grid 
with leaf voxel size of 0.6 in scene distance units. Entire tree 
will cover 512 × 0.6 = 307.2 units. Dashed lines show that 
the scene is not constructed by that coverage value mostly 
because coverage being too small to hold entire scene inside.

6-separating rasterizer based voxelization scheme over a 
dense 3D canvas is used which is similar to [3]. A dense vox-
elizer is specifically chosen since it is the computationally 
most efficient algorithm. However memory cost is quite high 
because of that, 10243 sized voxel structures, GPU did not 
have enough memory for the data required. Same technique 
is used to pre-generate voxels for voxel transformation in 

Fig. 6   Comparison between direct illumination (top) and indirect 
illumination sampled using transformed voxels (bottom). Scene is the 
modified Crytek Sponza Atrium scene with a single skeletally ani-
mated mesh. Sampling is done using the sparse voxel octree

Table 1   Scene information, peak voxel counts and memory usage for 
each scene

Sponza Nyra Dynamic

Triangles 280.7 K 25.7 K 6.6 M
Rigid dynamic 9 0 256
Joint dynamic 54 54 13824
Total objects 444 54 7170
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order to have fair visual comparison between methods. As 
it can be seen from the Table 2, our voxel transformation is 
faster on all cases.

Timings for other portions of the proposed algorithm (ini-
tialization time voxelization, SVO generation, down to top 
averaging and neighbour pointers generation) can be seen 
on Table 3. Pre-voxelization time specifically takes a long 
time. The reason for that is, each object on the scene should 

be voxelized individually since every object will be exposed 
to different transformations dictated by their model.

5.2 � Indirect illumination comparison

In addition to the indirect illumination example given in 
Figs. 6, 9 contains the indirect illumination comparisons 
between the ground-truth, which is rendered using Arnold® 
Renderer, and Voxel Cone Tracing method. Figure 9 also 
shows the ambient occlusion comparisons.

Both specular sampling and diffuse sampling are queried 
with interpolation. Cone aperture is chosen as 30◦ for diffuse 
cones and for specular cones, cone aperture varies between 
1◦ and 30◦ depending on specularity of surface material. 
Each pixel launches diffuse cones in circular pattern and 
then resulting frame buffer is blurred in order to simulate 
multiple diffuse cone per pixel. All of scenes are illuminated 
by a single directional light.

Cone-tracing computation costs are mostly bottlenecked 
by changes between camera angles. For example, if cam-
era stares into a highly glossy material, computation cost 
of specular cone increases since specular objects require 
a narrower cone to be traced, which in turn increases the 
required SVO depth to be traversed. Computation cost On 
average total cost of cone-tracing over 1280 × 720 pixels var-
ies between 5 ms and 25 ms. 25 ms is when entire camera 
stares on a mirror-like object which can be considered as a 
worst-case scenario. On scene by scene basis; Sponza scenes 
on average has 15  ms, dynamic scene has 12  ms, and single 
Nyra scene has 2  ms of overall cone tracing cost.

Images of proposed method are close to the ground-truth 
overall, however in detail, cone tracing method leaks light 
over dark places such as balcony (Figs. 6, 9a).

Ambient occlusion results can be seen in Fig. 9c and 
f. In some portions of the scene, like under the curtains, 
ambient occlusion is over-estimated and on flat surfaces it 
is underestimated.

6 � Limitations

Since geometry is pre-voxelized, voxels’ material informa-
tion cannot change during run-time. Consequently, animated 
surface albedo, normal and specular properties cannot be 
supported by the proposed method. A solution for that prob-
lem can be achieved by holding multiple voxelized geometry 
for each different temporal state of that material and then 
material information can be interpolated depending on the 
time frame. However this will introduce additional memory 
cost for objects that have material animation. Overall anima-
tion over materials is a rare case.

Fig. 7   Comparison between voxel transformation method and 6-sepa-
rating thin voxelization with respect to different number of Nyra char-
acters. Voxelization is done over 5123 dense grid

Fig. 8   Comparison of nearest filtering (top) and 8-neighbor filtering 
(bottom). Images are generated using ray-tracing over the respective 
sparse voxel octrees



	 Journal of Real-Time Image Processing

1 3

Another limitation of this method is that it cannot sup-
port scale and shear transformations. Since voxels have 
static sizes, during run-time, object scale transformation will 
require us to introduce additional voxels in order to com-
pensate the increased size of the object. However, this is not 
possible by the proposed system because voxel sizes and 
counts are pre-determined at the initialization time.

Pre-voxelization step only supports dynamic objects with 
either rigid or skinned transform, and cannot be extended 
for any heavily deformed objects with shape changes. We 
should, however, note that rigid or skinned transforms are 
the most common ones in computer graphics.

7 � Conclusions and future work

Alternative to the voxelization technique, a novel method 
that is based on transforming pre-computed voxels is pre-
sented. With the proposed Voxel Transformation method, 
data generation for sparse voxel octrees (SVO) is shown to 
be faster than the version built on the classical voxelization 
method. It also produces temporally coherent data with the 
accompanying 8-neighbour filtering technique. Additionally, 
filtering technique improved the rendering by resolving the 
issue of hole problem, which is raised by the proposed voxel 
transformation method. The generated SVO is utilized in 
voxel cone tracing method to achieve realistic renderings 
with indirect illumination and ambient occlusion, which are 
comparable to the ground-truth counterparts. Finally, pro-
posed generation scheme is scalable over high amount of 
dynamic objects.

In future, this method can be improved in two directions. 
Firstly, instead of averaging in the filtering, the pre-voxelized 
low-resolution voxels can be employed in order to resolve 
the non-leaf node data. Those voxels can again be trans-
formed and stored in the appropriate locations. Secondly, 
applying N3-tree [37] with values different than N = 2 
should decrease the SVO reconstruction time by reducing 
the amount of pointers that are required to be generated 
while slightly increasing number of dummy nodes, which in 

Table 2   Timings (in 
milliseconds) of different 
coverage values for both voxel 
transformation and 6-separating 
thin voxelizer

Coverage resolution can be interpreted as (“voxel span” and “grid count”). Dashed lines are present where 
grid size cannot enclose the entire scene

SVO coverage Voxel transformation 6-separating thin voxelizer

Sponza Nyra Dynamic Sponza Nyra Dynamic

(0.25, 10243) − 0.06 − Out of Memory
(0.50, 10243) − 0.06 4.29 Out of Memory
(0.50, 5123) − 0.05 2.45 − 0.11 −
(1.00, 5123) 1.04 0.06 1.46 5.41 0.13 14.11
(2.00, 5123) 0.32 0.05 1.25 3.11 0.11 10.13
(4.00, 2563) 0.12 0.04 1.16 1.84 0.11 6.20

Table 3   Timings (in milliseconds) of different portions of the algo-
rithm from different scenes and coverage values

Coverage resolution can be interpreted as (“voxel span” and “grid 
count”). Again, dashed lines shows that the scene cannot be enclosed 
by that coverage values

Timings (ms) Scenes

Pre-voxelization Sponza Nyra Dynamic

SVO generation

Neighbor Ptr generation

Down to top averaging

(0.25, 10243) − 692 −
− 0.53 −
− 0.15 −
− 0.11 −

(0.50, 10243) − 540 3408
− 0.32 28.7
− 0.15 3.07
− 0.08 3.43

(1.00, 10243) 9766 588 4241
16.12 0.32 13.67
2.23 0.11 1.03
2.67 0.08 1.07

(0.50, 5123) − 540 3408
− 0.32 16.06
− 0.13 1.71
− 0.07 2.13

(1.00, 5123) 9766 540 4241
11.67 0.32 11.43
1.49 0.13 0.86
2.02 0.07 1.01

(2.00, 5123) 6641 610 4396
3.43 0.26 6.67
0.50 0.12 0.31
0.64 0.07 0.32

(4.00, 2563) 6144 628 4695
1.12 0.24 5.13
0.17 0.09 0.15
0.16 0.07 0.12
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turn should increase the overall memory cost. This trade-off 
may be desired for real-time scenes since the time constraint; 
most of the time, has a priority over the memory constraint.
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